The Activity of Cdc14p, an Oligomeric Dual Specificity Protein Phosphatase from *Saccharomyces cerevisiae*, Is Required for Cell Cycle Progression*

(Received for publication, April 22, 1997, and in revised form, July 18, 1997)

Gregory S. Taylor, Yan Liu, Christopher Baskerville, and Harry Charbonneau†

From the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907

The essential *CDC14* gene of the budding yeast, *Saccharomyces cerevisiae*, encodes a 62-kDa protein containing a sequence that conforms to the active site motif found in all enzymes of the protein tyrosine phosphatase superfamily. Genetic studies suggest that Cdc14p may be involved in the initiation of DNA replication, but its precise cell cycle function is unknown. Recombinant Cdc14p was produced in bacteria, characterized, and shown to be a dual specificity protein phosphatase. Polyanions such as polyglutamate and double-stranded and single-stranded DNA bind to Cdc14p and affect its activity. Native molecular weights of 131,000 and 189,000 determined by two independent methods indicate that recombinant Cdc14p self-associates *in vitro* to form active oligomers. The catalytically inactive Cdc14p C283S/R289A mutant is not able to suppress the temperature sensitivity of a *cdc14–1* mutant nor replace the wild type gene *in vivo*, demonstrating that phosphatase activity is required for the cell cycle function of Cdc14p. A distinctive COOH-terminal segment (residues 375–551) is rich in Asn and Ser residues, carries a net positive charge, and contains two tandem 21-residue repeats. This COOH-terminal segment is not required for activity, for oligomerization, or for the critical cell cycle function of Cdc14p.

Genetic analyses of temperature-sensitive *CDC* mutants as well as biochemical studies using *Xenopus* oocytes have revealed that reversible protein phosphorylation is a major mechanism for regulating cell cycle progression (1). Transitions in the cell cycle are coordinated by changes in the activity of kinases and phosphatases and in the phosphorylation state of their target proteins. *CDC* genes as well as a number of other genes that have been linked to cell cycle progression in *Saccharomyces cerevisiae* encode protein kinases or protein phosphatases. The *CDC14* gene (2) may encode a protein phosphatase, since the predicted sequence contains the highly conserved HCGAGXR/S/T motif that is located in the active site of enzymes from the protein tyrosine phosphatase family (3–5). To date, the enzymatic properties of Cdc14p have not been studied, and the existence of intrinsic phosphatase activity has not been directly demonstrated. The *CDC14* gene is essential (2), and at restrictive temperatures, cells carrying a thermosensitive mutation in the *CDC14* gene arrest in late mitosis with elongated mitotic spindles and a single bud (6). Homozygous *cdc14* mutants exhibit defects in meiosis and, depending on when they are switched to restrictive temperatures, arrest in either meiosis I or meiosis II (7).

The precise cell cycle function(s) of Cdc14p is unknown. However, several genetic studies suggest that Cdc14p may be involved in initiating DNA replication (8–11). For instance, the combination of *cdc14–1* and *orc2–1* mutations is lethal. The *ORC2* gene encodes one of the six subunits of the origin of replication complex, which binds in an ATP-dependent manner to yeast origins and is required for initiation of DNA replication (12, 13). Their synthetic lethality indicates that Orc2p and Cdc14p act in a common pathway or process. The terminal phenotype of *cdc14* mutants suggests that the *CDC14* gene may also execute a function required for completing mitosis (6, 14). Cdc14p may carry out two distinct functions during the cell cycle, one required for initiation of replication and one necessary for completing mitosis. Alternatively, a single Cdc14p-dependent event may be required for progression through mitosis and initiation of replication (8, 9).

As a first step toward identifying its cell cycle function and understanding its regulation, we have expressed Cdc14p in *Escherichia coli* for biochemical characterization. Our reexamination of the *CDC14* gene sequence has confirmed several errors in the original sequence (2) that when corrected result in a larger predicted open reading frame encoding a 62-kDa protein. We demonstrate herein that Cdc14p is an oligomeric, dual specificity phosphatase that is completely dependent on an active site cysteine for activity. We have shown that its phosphatase activity is required for its cell cycle function and have also found that the Asn/Ser-rich COOH-terminal domain is not required for activity, for oligomerization, or for the critical cell cycle function executed by Cdc14p.

EXPERIMENTAL PROCEDURES

Yeast Strains and Media—The following yeast strains were obtained from the Yeast Genetic Stock Center: 7–41 (*MATa ade1 ade2 ura1 his7 lys2 tyr1 gal1 cdc14–1*), YHP2 (*MATa ura3–52*), and BJ5465 (*MATa trpl1 ura3–52 leu2–0 ura3-52 his3200 pep4::HIS3 prb1::pDR16R can1 GAL+-*). Strain DBY746 (*MATa his3-1 leu2-3 leu2-112 ura3-52 trpl1-129 gal1*) and CG219–2 (*MATa ura3-52 gal1*) were provided by G. Kohlhaw. Strains YLC1 (*MATa trp1-129 gal1 cdc14–1*) and YLC11 (*MATa ura3–52 cdc14–1*) were generated for this study using strains 7–41, DBY746, and CG219–2. Strain DBYLC5 (*MATa his3-3 leu2-0 leu2-112 ura3-52 trpl1-129 gal1 cdc14-1 HIS3*), which requires plasmid pYL56 (*CEN6 ARSH4 URA3 CDC14*) for viability, was prepared as described below. YPD, SD, and sporulation media were prepared as described (15, 16). Unless indicated otherwise, yeast were grown at 30 °C. Yeast transformations were performed using a lithium acetate protocol (16).
Cloning of CDC14—A λ phage genomic clone (17) of S. cerevisiae (70468) that contains a fragment (~7 kb) of chromosome VI and the CDC14 gene was obtained from the American Type Culture Collection. Phage DNA was digested with Smal and Xhol to yield a 2.6-kb fragment containing the CDC14 gene (see fig. 1) which was cloned into pBluescript II KS (+) to create pBSC15. To create pET-GSTx-Cdc14-(1–374), a 1.7-kb fragment containing XhoI restriction linkers and the coding sequence of the CDC14 gene was amplified by PCR 4 using λ genomic clone ATCC 70468 as template and cloned into the XhoI site of pET-GSTx-(1–374) which has a thrombin cleavage site between bases 1 and 375. Site-directed mutagenesis of XhoI site of pBSC15 was used to create pBS16 in which Cys35s of the Cdc14 coding sequence is replaced by Ser. The authenticity of all plasmids carrying inserts generated by PCR or modified by site-directed mutagenesis was verified by nucleotide sequencing. Yeast Plasmids—The wild type CDC14 gene and five mutant alleles were cloned into the XhoI sites of the single copy yeast plasmid, pRS314 (CEN ARSH TRP1) (19). These plasmids were constructed using either standard site-directed mutagenesis procedures or PCR. The plasmids and the proteins they encode are listed below. pYL1 contains the full-length CDC14 gene and encodes Cdc14p; pYL2 contains a stop codon after codon 462 and encodes Cdc14p (1–462); pYL3 contains the CDC14 gene in which a 398-nucleotide segment from base +1122 to +1520 was deleted and replaced by a 14-nucleotide segment containing a stop codon at position 375 (bases +1123 to +1125) and encodes Cdc14p-(1–374); pYL4 harbors an insert in which the Leu-Arg-Phe sequence (residues 313–315) was replaced by a fragment encoded Gly-Ile-Gln followed by a stop codon (it encodes Cdc14p-(1–315) L313G/R314I/F315Q); pYL10 encodes Cdc14p C283S; pYL35 encodes Cdc14p C283S/R289A. The plasmid pYL56 contains the wild type CDC14 gene in the plasmid pRS316 (CEN ARSH URA3). Construction of the CDC14 Deletion Mutant—The CDC14 gene was disrupted by the one-step gene replacement procedure (20) to create strain DBYLC5. A fragment containing the HIS3 gene was inserted into the SacI/EcoRI sites within the plasmid pYLP1 to create plasmid pYLP5, which was digested with PstI/XbaI to generate a linear fragment carrying an internal deletion of the CDC14 gene. The HIS3 insertion deleted base +465 to base +1473, equivalent to 336 amino acid residues (61%) of the CDC14 coding region. Strain DBY746 (MATa his3 leu2 ura3 trp1 gal1) was transformed with pYLP5, which carries the CDC14 and URA3 genes, and then transformed with linearized pYLP5 carrying the disrupted CDC14 gene and plated on media to select for URA+ and HIS+ cells carrying the disruption. PCR was used to verify the disruption of the CDC14 gene in DBYLC5. Plasmid Shuffle Assay—A plasmid shuffle assay (21) was used to ascertain whether plasmids bearing various cdc14 mutants could replace the pYL66 plasmid (CEN ARSH4 CDC14 URA3), which is required for viability of the strain DBYLC5 (MATa his3 leu2 ura3 trp1 gal1 CDC14: HIS3). The assay employs 5-fluorouracil acid (5-FOA) for negative selection of the pYL66 plasmid. Strain DBYLC5 cells were transformed with a second plasmid containing one of five cdc14 mutants (pYL2, pYL3, pYL4, pYL10, or pYL55). TRP+ transformants were selected and either directly plated or grown overnight in liquid media at 30 °C before streaking on negative selection media (SD plates supplemented with leucine, uracil, and 5-FOA). Growth on 5-FOA plates demonstrates the ability of a cdc14 mutant to complement the null mutation. Construction of Plasmids for Expression of Glutathione S-Transferase (GST) Fusion Proteins—Thrombin-cleavable GST fusion proteins of wild type and mutant Cdc14p were expressed in E. coli under the control of the tac promoter with polyethyleneimine according to the method of Burgess (24). After the Mon Q separation, purified GST fusion protein was bound to a protein A column (25) and GST-fusion protein was eluted at a flow rate of 1 ml/min with a 25-mM Tris, pH 7.4, 2 mM EDTA, 1 mM DTT, 137 mM NaCl, 0.5% Triton X-100, 1% phenylmethylsulfonyl fluoride, 2 mM benzamidine, and 2 μg/ml each aprotinin, leupeptin, and pepstatin), and lyased by sonication. After the removal of cell debris, Triton X-100 was added to a final concentration of 1% (v/v), and protein expression was induced overnight at room temperature by the addition of isopropyl thio-β-D-galactopyranoside to a final concentration of 50 μM. Bacteria were harvested by centrifugation, suspended in 25 ml of TPI buffer (25 mM Tris, pH 7.4, 2 mM EDTA, 1 mM DTT) 137 mM NaCl, 0.5% Triton X-100, and then sonicated. The supernatant was made 1 and 300 mM in phenylmethylsulfonyl fluoride, and protein concentration was determined using the Bio-Rad Protein Assay. After washing with 5 ml of buffer A, the column was eluted at a flow rate of 1 ml/min with a 25-min linear gradient from 0 to 500 mM NaCl in buffer A followed by a 5-min linear gradient from 500 to 1000 mM NaCl in buffer B. GST-Cdc14p was recovered in multiple peaks eluting between 325 and 395 mM NaCl; all fractions containing released Cdc14p was made 1 and 300 mM in phenylmethylsulfonyl fluoride and NaCl, respectively. Preparation of Phosphorylated Substrates—Myelin basic protein (MBP) (Life Technologies, Inc.), casein (Sigma), RCML (Life Technologies), Raytide (Oncogene Science), RR-Src (Life Technologies), or angiotensin (Sigma) was radiolabeled and phosphorylated on tyrosine residues using recombinant GST-tyrosine kinase as described previously (25).
Phosphoamino acid analysis of substrates confirmed the presence of phosphotyrosine and the absence of phosphoserine/threonine residues.

MBP, casein, histone H1 (Sigma), and Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) (Sigma) were phosphorylated on serine or threonine residues using the catalytic subunit of bovine cAMP-dependent protein kinase (26) as described by Kishimoto et al. (27). Phosphoamino acid analysis showed that MBP and histone H1 contained phosphoserine/threonine residues, whereas only phosphoserine was detected in casein.

Phosphatase Assays—Activity with pNPP was measured at 30 °C as described (25) in reaction buffer containing 50 mM imidazole, pH 6.9, 1 mM DTT, 1 mM EDTA, 20 mM pNPP, and 20–100 ng of enzyme. Assays with 5–10 μM phosphorylated protein and peptide substrates were performed at 30 °C in buffer containing 50 mM imidazole, pH 6.6, 1 mM DTT, 1 mM EDTA, and 20–200 ng of enzyme as described (25).

Generation of Polyclonal Antibodies against Cdc14p—Cdc14p prepared as described above was further purified by electrophoresis on 12% SDS-polyacrylamide gels. Gel slices containing only full-length Cdc14p were fragmented by passage through a 21-gauge needle as described (28) and injected subcutaneously into a rabbit without adjuvant. Standard antigen injection and serum collection protocols were used (28).

Antiserum was affinity-purified essentially as described by Olmsted (29) except that the antigen, GST-Cdc14p, was immobilized on polyvinyldene difluoride membrane following SDS-PAGE. Affinity-purified antiserum was concentrated to 1 mg/ml using an ultrafiltration device (Amicon) and stored at 4 °C. For immunoprecipitation, anti-Cdc14p antibodies were purified from serum using protein A-Sepharose (28).

Immunoprecipitation and Immunoblotting of Cdc14p and HA-Cdc14p—To immunoprecipitate Cdc14p from yeast, cells (strain BJ5465) were grown to mid-log phase (0.5–1.5×10^7 cells/ml), collected by centrifugation, washed in cold buffer H (20 ml/liter of yeast culture), and cells were mixed with an equal volume of glass beads and lysed by vortexing eight times for 30 s each. The lysate was centrifuged at 4 °C for 10 min at 15,000 × g, and Cdc14p was immunoprecipitated from the supernatant by the addition of anti-Cdc14p antibodies (100 μg/ml) for 2 h at 4 °C followed by incubation with protein A-Sepharose (200 μl/mg antibody added) for 1 h. After washing with buffer H containing 1% (v/v) Triton X-100, beads were treated with 2× SDS sample buffer. For immunoprecipitation of HA-tagged proteins, cell cultures (strain YLC11 transformed with pYLX105 or pYLX107) were grown to mid-log phase, harvested as described above, lysed by sonication, and centrifuged at 4 °C for 15 min at 15,000 × g. An aliquot of supernatant containing about 1 mg of protein was mixed with 5 μg of anti-hemagglutinin 12CA5 monoclonal antibody (Boehringer Mannheim) for 1 h at 4 °C and treated with protein A-Sepharose.

Immunoprecipitates were separated on SDS gels and electrophoretically blotted to polyvinyldene difluoride membranes (Millipore) that were blocked with 5% nonfat dried milk in TBS (10 mM Tris-HCl, pH 7.4, 250 mM NaCl, 1 mM EDTA). Blots were visualized with the ECL system (Amersham Corp.) and donkey anti-rabbit IgG-horseradish peroxidase conjugates according to the manufacturer’s protocols.

Molecular Weight Determinations—Native molecular weights were determined from Ferguson plots derived from the results of nondenaturing gel electrophoresis performed with running gels containing four different polyacrylamide concentrations (30). The Svedberg equation was used to calculate native molecular weights of proteins using their Stokes radii, sedimentation coefficients, and partial specific volumes. Stokes radii were determined by gel filtration chromatography on a Sephacryl S300 (Pharmacia) column (1.5 × 97 cm) eluted in 50 mM Tris, pH 8.0, 300 mM NaCl, 2 mM EDTA, 0.1% (v/v) β-mercaptoethanol at a flow rate of 15 ml/h. The Stokes radii of unknowns were estimated using a plot of Ks versus the log Stokes radii of six standards. Sedimentation coefficients were estimated using glycerol density gradient sedimentation as described (31). Linear 15–30% (v/v) glycerol gradients in 10 ml of buffer containing 50 mM imidazole, pH 7.0, 300 mM NaCl, 1 mM EDTA, and 1 mM DTT were formed and centrifuged in a SW41 Ti rotor at 41,000 rpm (45,000,000) for 24 h at 14 °C. The following protein standards were used for calibration of the gradient: bovine catalase (ks,20,000 = 11.3), bovine serum albumin (ks,20,000 = 4.3), rabbit aldolase (ks,20,000 = 7.4), and horse cytochrome c (ks,20,000 = 1.9). Partial specific volumes were calculated from the amino acid composition as described by Cohn and Edsall (32).

RESULTS

Data from this study (Fig. 1), the yeast genome sequencing project,2 and several other laboratories (14, 34) have confirmed that the original nucleotide sequence (GenBank™ M61194) reported for the CDC14 gene (2) contains several errors. The sequence (GenBank™ D50617) reported by Eki et al. (34) is identical to that reported here. The sequence (GenBank™ D55715) of Shirayama et al. (14) differs in having a C in place of G at position +352 in Fig. 1, which results in substitution of Pro for Ala at amino acid residue 118. This difference may be attributed to allelic variation.

The corrected sequence contains an open reading frame that is much larger than that which originally reported (2). As shown in Fig. 1, the CDC14 gene contains a 1655-bp open reading frame that encodes a protein of 551 amino acids with a predicted molecular mass of 61,906 Da and a calculated pI of 8.0. Sequences adjacent to the putative initiator codon give a good match to the consensus sequence thought to be required for efficient translation initiation in yeast (35). The location of the putative ATG start codon at a site where 20 of the 30 upstream nucleotides are adenines is not uncommon for yeast genes, which frequently contain A-rich 5’-leader sequences (35). The sequence, TATAAT, located at –63 to –58, fits the consensus for eukaryotic TATA boxes that typically precede the transcription start site by 20–30 nucleotides. The length of the deduced protein sequence is consistent with the size (1.9 kb) of the CDC14 transcript previously determined by Northern analysis (2).

The sequence, HCKAGLGRTG, located at residues 282–291 of Cdc14p (Fig. 1), fits the consensus sequence, HCXAGXXR(S/T), found at the active site of all protein tyrosine phosphatases (3–5). This phosphatase superfamily can be divided into distinct subfamilies, those that are tyrosine-specific and those that exhibit dual specificity because they are also capable of hydrolyzing phosphoserine/threonine residues. Aside from a 20-residue segment encompassing the active site motif, data base searches reveal that Cdc14p exhibits little similarity to the tyrosine-specific phosphatases and does not contain the 240-residue conserved domain that is found in this group of enzymes (3, 4). Previous sequence comparisons (25) suggested that Cdc14p might be a dual specificity enzyme because it is most closely related to BVP, a dual specificity phosphatase encoded by an insect virus.

The schematic diagram in Fig. 1B illustrates the structural organization of Cdc14p. Sequence alignments (25) with BVP and two other closely related homologs suggest that there is a 170-residue core structure that contains the highly conserved active site. Like most other protein tyrosine phosphatases, the catalytic core appears to be flanked by N- and COOH-terminal noncatalytic segments that exhibit no significant similarities to sequences of known proteins. The sequence 375–551 from the COOH terminus of Cdc14p has several notable features including an unusually high content of Asn (13.6 mol %) and Ser (15.3 mol %) residues and a large net positive charge (calculated pI = 10.1). As shown in Fig. 1C, the basic, Asn/Ser-rich COOH-terminal segment contains two internally homologous 21-residue repeats (33% sequence identity) located at residues 400–420 and 423–443. The structural and/or functional significance of these tandem repeats is unknown.

2
anti-Cdc14p antibodies. Immunoprecipitates prepared from crude cell lysates were separated on SDS gels and immuno-
blotted using affinity-purified anti-Cdc14p antibodies. As shown in Fig. 2, a single cross-reactive band with a mobility
identical to that of recombinant Cdc14p was observed in yeast
cell extracts. The identity in size of the recombinant and en-
dogenous enzymes is fully consistent with the assignment of
the start codon and the size of the open reading frame deduced
from the nucleotide sequence shown in Fig. 1.

Expression and Purification of GST-Cdc14p—
Cdc14p was
expressed as a cleavable GST fusion protein in
E. coli
BL21
(DE3) cells carrying the pET-21b GST-Cdc14 plasmid. As
shown in Fig. 3,
lane 2
, isopropyl thio-
b-D-galactopyranoside
induced the expression of protein with an apparent molecular
weight of 90,000, which is in agreement with the calculated
value of 90,359. Nearly all of the fusion protein was recovered
in the soluble fraction (Fig. 3,
lane 4
) of bacterial lysates,
yielding approximately 15 mg/liter of culture. After glutathi-
one-agarose affinity purification, the yield of GST-Cdc14p was
about 5 mg/liter of culture (Fig. 3,
lane 5
). Affinity-purified
GST-Cdc14p was subjected to Mono Q FPLC ion exchange
chromatography as described under “Experimental Proce-
dures” to reduce the level of a contaminant identified as GST by
immunoblotting and to remove a significant quantity of bacte-
rial nucleic acids that were not eliminated by affinity purifica-
tion (Fig. 3,
lane 6
). To ensure complete removal of nucleic acid
from the protein used for the size and subunit analyses de-
scribed below, bacterial lysates were also treated with polyeth-
yleneimine prior to affinity purification.

Phosphatase Activity of GST-Cdc14p—
GST-Cdc14p dephos-
phorylated Tyr(P)-MBP, Tyr(P)-casein, Ser/Thr(P)-MBP, and
Ser(P)-casein in a reaction that was linear with respect to time
(Fig. 4, A and B) and the amount of enzyme added (data not

FIG. 1. Nucleotide sequence of CDC14 and the predicted amino acid sequence of Cdc14p. A, amino acids are given in single letter code
and are numbered on the right. The nucleotide sequence is also numbered on the right beginning with the first base of the ATG initiator codon.
A putative TATA-box motif is shown in boldface type. The highly conserved active site motif is enclosed in a box. This sequence is identical to that
reported by Eki et al. (34) and can be found at the following accession numbers: GenBank 50617TM, PIR S56283.
B, schematic diagram illustrating
the structural organization of Cdc14p. The positions of a conserved catalytic core (solid black box) and an Asn/Ser-rich COOH-terminal domain
(shaded) are shown. The position of the highly conserved active site region and the locations of two 21-residue tandem repeats (hatched boxes) are
indicated. C, sequence alignment of the two internally homologous tandem repeats from Cdc14p.

FIG. 2. Immunoprecipitation of endogenous Cdc14p from
yeast. Cdc14p was immunoprecipitated from a soluble extract of yeast
strain (BJ5465) using polyclonal rabbit anti-Cdc14p antibodies or pre-
immune serum. Immunoprecipitates representing 5
107 cells were
resolved on a 10% SDS-polyacrylamide gel and immunoblotted with
affinity-purified anti-Cdc14p antibodies using the Amersham ECL de-
tection system.
Lane 1
, 3 ng of recombinant Cdc14p.
Lane 2
, immuno-
precipitate with preimmune antiserum.
Lane 3
, immunoprecipitate
with anti-Cdc14p antibodies. The positions and sizes of molecular
weight markers are shown on the
left
.
Cdc14p is an Oligomeric Dual Specificity Phosphatase

The time-dependent dephosphorylation of 5 mM Mono Q fractions. Lane 7, soluble fraction from a lysate of cells expressing GST-Cdc14p. Lane 5, rCdc14p-(1–374) released by thrombin cleavage. Samples in lanes 8 represent 50 μl bacterial culture. Samples in lanes 5–8 contain 3–4 μg of total protein. The positions of molecular weight markers are shown on the left.

The substrate pNPP was hydrolyzed at 30 °C with a pH optimum of 6.9, \(K_m \) of 4 mM, and \(k_{cat} \) of 1.7 s\(^{-1}\). GST-Cdc14p (\(k_{cat}/K_m = 480 \text{ M}^{-1}\text{s}^{-1} \)) hydrolyzes pNPP more effectively than three other dual specificity enzymes, GST-BVP, \(^3 \) GST-cdc25p, and VH6, which have \(k_{cat}/K_m \) values of 17, 16, and 1.6 M\(^{-1}\) s\(^{-1}\), respectively, but is about 7-fold less efficient than VHR, which has a \(k_{cat}/K_m \) of 3200 M\(^{-1}\) s\(^{-1}\) (25, 36–38). The 140-fold higher \(k_{cat}/K_m \) value measured for the T cell protein tyrosine phosphatase\(^3 \) is typical of the tyrosine-specific enzymes, most of which have \(k_{cat}/K_m \) values at least 2–3 orders of magnitude larger than those of the dual specificity enzymes (39, 40).

Cdc14p was separated from GST by thrombin cleavage to compare the activities of the carrier-free recombinant enzyme and the fusion protein. Enzyme generated by thrombin cleavage is herein designated as rCdc14p to denote that it contains four NH\(_2\)-terminal residues (GSGS) not found in the native protein. When expressed on a molar basis, the activities of rCdc14p and the fusion protein toward pNPP were nearly identical (data not shown). In contrast, the activity of rCdc14p toward both Tyr(P)- and Ser/Thr(P)-MBP was about 1.6-fold higher than that for the fusion protein (data not shown), indicating that presence of GST at its NH\(_2\) terminus reduces the activity of rCdc14p toward protein substrates by about one-third.

GST-Cdc14p C283S, a mutant in which the Cys located within the putative active site region was replaced by Ser, exhibited no detectable activity with all substrates that were tested (Table I). The lack of activity with this mutant shows that Cys\(^{283} \) is essential for activity and confirms that the observed phosphatase activity is catalyzed by GST-Cdc14p rather than a contaminating bacterial enzyme. These results demonstrate that Cdc14p is capable of dephosphorylating phosphotyrosine and phosphoserine/threonine residues and is a dual specificity phosphatase.

The dual specificity phosphatase activity of GST-Cdc14p and the GST-Cdc14p C283S mutant was measured under standard conditions using MBP and casein phosphorylated on either Tyr or Ser/Thr residues, A, dephosphorylation of 5 μM Tyr(P)-MBP (●), or 5 μM Ser/Thr(P)-MBP (■) by 20 ng of GST-Cdc14p, and 5 μM Tyr(P)-MBP by 20 ng of C283S mutant (○). B, time-dependent dephosphorylation of 5 μM Ser(P)-casein (●), or 5 μM Tyr(P)-casein (■) by 200 ng GST-Cdc14p. Substrate dephosphorylation did not exceed 15% during the 20-min time course, and all values represent the mean of duplicate samples.

The effect of the Cys\(^{283} \) mutation support our identification of Cdc14p as a dual specificity phosphatase.

\(^3 \) G. Taylor and H. Charbonneau, unpublished observations.
Cdc14p is an Oligomeric Dual Specificity Phosphatase

Specific activities were determined from assays performed at 30 °C using the indicated quantities of substrates. Reactions with pNPP were carried out in 50 mM imidazole, pH 6.9, 1 mM DTT, and 1 mM EDTA. Assays with protein and peptide substrates were performed in 50 mM imidazole, pH 6.6, 1 mM DTT, and 1 mM EDTA. The concentrations of peptide or protein substrates given below indicate the total concentration of phosphorylated residues. Protein was determined by the method of Bradford (33) using bovine serum albumin as a standard.

TABLE I

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Concentration</th>
<th>Activity</th>
<th>Activity</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/mg</td>
<td>GST-Cdc14p</td>
<td>GST-Cdc14p</td>
<td>GST-Cdc14p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C283S</td>
<td>(1–374)</td>
<td>C283S</td>
</tr>
<tr>
<td>pNPP</td>
<td>1200</td>
<td>101</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tyr(P)-MBP</td>
<td>31</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tyr(P)-casein</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tyr(P)-RR-Src</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tyr(P)-Raytide</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tyr(P)-angiotensin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ser(Thr)P-MBP</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ser(P)-casein</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ser(Thr)P-histone H1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ser(P)-Kemptide</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Zero indicates that no phosphatase activity was detected in assays in which the lower limit of detection was 0.1–0.2 pmol of phosphate released.

TABLE II

<table>
<thead>
<tr>
<th>Addition</th>
<th>Concentration</th>
<th>pNPP</th>
<th>Tyr(P)-MBP</th>
<th>Ser(Thr)P-MBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NaF</td>
<td>98</td>
<td>102</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Okadaic acid</td>
<td>100 nm</td>
<td>101</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Tartrate</td>
<td>5</td>
<td>103</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Tetrasimole</td>
<td>100 μM</td>
<td>100</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>Sodium vanadate</td>
<td>200 μM</td>
<td>5</td>
<td>48</td>
<td>33</td>
</tr>
<tr>
<td>Sodium tungstate</td>
<td>200 μM</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>94</td>
<td>90</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Spermidine</td>
<td>94</td>
<td>86</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>25.5 mM</td>
<td>97</td>
<td>108</td>
<td>106</td>
</tr>
<tr>
<td>ATP</td>
<td>1 mM</td>
<td>94</td>
<td>204</td>
<td>186</td>
</tr>
<tr>
<td>GTP</td>
<td>1 mM</td>
<td>90</td>
<td>226</td>
<td>199</td>
</tr>
<tr>
<td>cAMP</td>
<td>1 mM</td>
<td>47</td>
<td>220</td>
<td>228</td>
</tr>
<tr>
<td>Heparin</td>
<td>20 μg/ml</td>
<td>37</td>
<td>229</td>
<td>ND</td>
</tr>
<tr>
<td>Polyglutamate</td>
<td>100 μg/ml</td>
<td>34</td>
<td>370</td>
<td>395</td>
</tr>
<tr>
<td>dsDNA<sup>a</sup></td>
<td>100 μg/ml</td>
<td>56</td>
<td>387</td>
<td>258</td>
</tr>
<tr>
<td>ssDNA<sup>b</sup></td>
<td>50 μg/ml</td>
<td>30</td>
<td>367</td>
<td>156</td>
</tr>
</tbody>
</table>

* Double-stranded DNA (dsDNA) was linearized pYES vector (5.9 kb).

Effect of Polyanions on Cdc14p Activity—As shown in Table II, activity with Tyr(P)- or Ser(Thr)P-MBP was stimulated by polyanions, whereas activity with Tyr(P)-casein or pNPP was inhibited. With phospho-MBP substrates, stimulation of activity by nucleotide triphosphates, heparin, polyglutamate, and DNA ranged from 1.6 to 4.0-fold (Table II). The stimulation was dependent on polyanion concentration, but the response was biphasic with a sharp decrease in activity above a concentration of about 50 μg/ml (data not shown). In contrast, activity with pNPP or Tyr(P)-casein was unaffected by nucleotides and inhibited from 44–70% by high molecular weight polyanions such as heparin, polyglutamate, or DNA. With these substrates, inhibition by polyanions was concentration-dependent and saturated at concentrations above about 10 μg/ml (data not shown). Polyanions reduced V_{max} but had little effect on K_m for pNPP. The response of rCdc14p and GST-Cdc14p to polyanions was similar, indicating that GST does not influence nor mediate the effects of polyanions on phosphatase activity.

Polyanions appear to affect activity by binding directly to the enzyme, since rCdc14p was bound to heparin-agarose at ionic strengths as high as 0.4 M NaCl and was retained on either single- or double-stranded DNA-cellulose at up to 0.35 M NaCl (data not shown). Both Tyr(P)- and Ser(Thr)P-MBP were bound by heparin-agarose under conditions used for assays (data not shown), indicating that the influence of polyanions may also be explained in part by their ability to interact with these basic substrates.

The COOH-terminal Asn/Ser-rich Domain Is Not Required for the Activity of Cdc14p—As shown in Table I, truncated GST-Cdc14p-(1–374) in which residues 375–551 had been removed was active with all three substrates tested. When compared on a molar basis, the full-length and truncated enzymes had comparable activities toward the phosphoprotein substrates tested. In contrast, the truncated enzyme hydrolyzed pNPP at a rate that was about 10-fold lower than that of the full-length enzyme (Table I). Truncation of the fusion protein reduced the V_{max} with pNPP but had little effect on K_m. These data demonstrate that residues 375–551 from the Asn/Ser-rich COOH-terminal segment are not required for phosphatase activity in vitro and suggest that this noncatalytic domain has little influence on activity toward artificial protein substrates.

Recombinant Cdc14p Is an Oligomer—To estimate its size, thrombin-cleaved rCdc14p was analyzed by gel filtration chromatography on a Sephacryl S300 column as shown in Fig. 5A. A major protein peak (A₂₈₀) containing rCdc14p as confirmed by SDS-PAGE (data not shown) coeluted with a peak of pNPPase activity (Fig. 5). SDS-PAGE also showed that the shoulder (fractions 88–94) on the major protein peak (Fig. 5A) is due to the presence of lower molecular weight fragments derived from Cdc14p. Variable amounts of these fragments (about 5–20% of the total protein) were generated by internal cleavage during thrombin treatment of GST-Cdc14p but not GST-Cdc14p-(1–374). Calibration of the S300 column with molecular weight standards gave an apparent molecular weight of 248,000, suggesting that rCdc14p self-assembles to form multimers, since its calculated molecular weight is 62,200. The oligomeric nature of rCdc14p was confirmed by determining its native molecular weight using two different methods. Nondenaturing gel electrophoresis gave an estimated molecular weight of 131,000, while the value calculated from the sedimentation coefficient and Stokes radius was 169,000 (Table III). Although the values differ significantly, these independent measurements confirm the oligomeric state of rCdc14p.

When rCdc14p-(1–374) was separated on the same column (Fig. 5B), a single symmetrical protein peak also coeluted with phosphatase activity. The apparent molecular weight estimated from its elution position was 65,000, a value that is significantly larger than that expected for the monomer. The
Cdc14p is an Oligomeric Dual Specificity Phosphatase

FIG. 5. Gel filtration chromatography of rCdc14p and rCdc14p-(1–374). Approximately 0.5 mg of rCdc14p and rCdc14p-(1–374) were separated on a Sephacryl S300HR column (1.5 × 97 cm) in buffer containing 50 mM Tris, pH 8.0, 300 mM NaCl, 2 mM EDTA, 0.1% (v/v) β-mercaptoethanol and collected in 1.0-ml fractions. Purified rCdc14p and rCdc14p-(1–374) were prepared as described under “Experimental Procedures.” Panels A and B show the chromatograms for rCdc14p and rCdc14p-(1–374), respectively. Phosphatase activity toward pNPP was monitored by following absorbance at 410 nm, and protein was determined by absorbance at 280 nm (solid line). Approximately 80% of the total protein and 50% of the total activity loaded were recovered from both Cdc14p and Cdc14p-(1–374) samples. The arrows indicate the elution positions of the following molecular mass standards. a, thyroglobulin (676 kDa); b, apoferritin (443 kDa); c, alcalase (158 kDa); d, bovine serum albumin (67 kDa); e, TC-PTPa (45 kDa); f, carbonic anhydrase (29 kDa).

The Phosphatase Activity of Cdc14p Is Required for Its Cell Cycle Function—Centromeric plasmids carrying a cdc14 mutant cdc14 alleles were cloned into single copy plasmids as described under “Experimental Procedures” and transformed into the cdc14–1 temperature-sensitive strain YLC1 (MATα trp1 gal1 cdc14–1) to determine whether they could rescue growth at the restrictive temperature (37 °C).

The ability of Cdc14p to oligomerize in vitro indicates that it may also function as a multimer in vivo. Multimer formation could lead to intragenic complementation between the temperature-sensitive protein encoded by the plasmid and the plasmid encoded mutants. To avoid this potential complication, we determined whether the active site and truncation mutants could complement a null mutation in the essential CDC14 gene using the plasmid shuffle technique (21). As described under “Experimental Procedures,” we created strain DBYL5 (MATα his3 leu2 ura3 trp1 gal1 cdc14–1::HIS3) in which the chromosomal copy of the essential CDC14 gene is disrupted and plasmid pYL56 (CEN ARS H4 URA3 CDC14) is essential for growth. For these experiments, DBYL5 cells harboring plasmid pYL56 were transformed with a second, centromeric plasmid (CEN ARS H4 TRP) containing a cdc14 mutant and plated on media containing 5-FOA to select for loss of the URA3 plasmid carrying the wild type copy of the CDC14 gene. Cells can grow on 5-FOA media only if the cdc14 mutant allele carried on the TRP plasmid is functional and can replace the URA3 plasmid containing the wild type copy of the gene.

Carboxyl-terminal Residues 375–551 Are Not Required for the Cell Cycle Function of Cdc14p—To assess the function of the Asn/Ser-rich COOH-terminal domain, we constructed three truncation mutants that encoded Cdc14p-(1–462), Cdc14p-(1–374), and Cdc14p-(1–315). Fig. 6 illustrates the relative size of the proteins encoded by these cdc14 truncation mutants. The introduction of plasmids bearing the wild type CDC14 gene (Fig. 6) but not plasmid alone suppressed the temperature sensitivity of the cdc14–1 strain as expected. The cdc14 mutants encoding enzymes truncated at residues 462 and 374 were also able to suppress the temperature sensitivity of the host strain, whereas the mutant truncated at 315 failed to support growth at 37 °C. Similarly, cdc14 mutants truncated at 462 and 374 but not at 315 were able to complement a null cdc14 mutation as shown by plasmid shuffle assays (Fig. 6). These data demonstrate that residues 375–551, which encompass the Asn/Ser-rich COOH-terminal domain, are not required for the function of Cdc14p, whereas the region from residue 316 to 374 is essential.

The Phosphatase Activity of Cdc14p Is Required for Its Cell Cycle Function—Centromeric plasmids carrying a cdc14 mu-
t promote the dephosphorylation of a key substrate at a critical point in the cell cycle could be functionally equivalent to dephosphorylating it (4). In this way, the full-length C283S mutant could retain its ability to rescue the temperature sensitivity and complement the null mutant by virtue of its ability to sequester the phosphorylated substrate. In this regard, we found that GST-Cdc14p C283S immobilized on glutathione-agarose is capable of binding phosphorylated substrates and that GST-Cdc14p C283S inhibited the activity of GST-Cdc14p in a concentration-dependent manner (data not shown). Thus, the Cdc14p C283S mutant has the potential to mimic active enzyme by sequestering its phosphosubstrate. To eliminate or minimize the possibility of phosphosubstrate binding, we also constructed a cdc14 double mutant containing C283S and R289A replacements. Arg289 in Cdc14p corresponds to a critical active site Arg, which is involved in binding the phosphate group of the substrate (3, 5). Since the neutral Ala side chain at position 289 should be incapable of interacting with the phosphate, we reasoned that this replacement should reduce or eliminate the ability of Cdc14p to bind its substrate.

To demonstrate that active site mutants are stable and not degraded when expressed in yeast, HA-tagged wild type protein and double mutant, Cdc14p C283S/R289A, were overexpressed under the control of the constitutive triose phosphate isomerase promoter. The ability of cdc14−1 cells overexpressing HA-tagged Cdc14p to grow at the restrictive temperature (Fig. 6) demonstrated that the presence of the NH2-terminal epitope did not significantly affect the function of the protein and confirmed that overexpression of Cdc14p did not seriously affect growth (data not shown). In contrast, introduction of the plasmid encoding the mutant HA-Cdc14p C283S/R289A into cdc14−1 yeast failed to suppress the temperature sensitivity of this strain (Fig. 6). As shown in Fig. 7, comparable amounts of HA-Cdc14p and HA-Cdc14p C283S/R289A were immunoprecipitated with the HA-specific 12CA5 monoclonal antibody, ruling out the possibility that failure to rescue was due to enhanced degradation of the active site mutant.

As shown by plasmid shuffle assays (Fig. 6), both the C283S single and C283S/R289A double mutants failed to complement the cdc14 null mutation, suggesting that these inactive mutants are not able to function in vivo. The introduction of a plasmid carrying the cdc14 double mutant was also unable to rescue the temperature sensitivity of the cdc14−1 strain (Fig. 6). Interestingly, in this strain, the single C283S mutant was capable of supporting growth at the restrictive temperature. The data compiled in Fig. 6 and the evidence that the double mutant is stably expressed in cells demonstrate that the phosphatase activity of Cdc14p is required for its ability to support growth and to perform a critical step in cell cycle progression.

DISCUSSION

The CDC14 gene of S. cerevisiae encodes a 62-kDa protein containing the sequence, HCKAGLGRGT, that fits the consensus active site motif contained in all enzymes of the protein tyrosine phosphatase superfamily. Enzymatic characterization of the recombinant protein expressed in E. coli demonstrated that Cdc14p is a dual specificity phosphatase. Cys283 within the conserved active site region of Cdc14p is essential for ac-
activity, suggesting that its mechanism of catalysis is similar to that utilized by other protein tyrosine phosphatases (3, 5). Although the number of substrates tested in this study is limited, it is clear that Cdc14p exhibits substrate selectivity (Table I). A notable feature of Cdc14p is its ability to hydrolyze phosphoserine/threonine and phosphothreonine residues at comparable rates (Table I). This finding suggests that yeast proteins containing only phosphoserine/threonine must be given serious consideration as potential physiologic substrates of Cdc14p.

We have shown that the phosphatase activity of Cdc14p is essential for the viability of yeast and for the critical cell cycle function executed by this enzyme. To address this issue, we employed inactive C283S mutants, which have a one-atom replacement in the side chain of residue 283. As shown by the x-ray structure of a PTP1B mutant (42), replacement of the active site Cys with Ser has little effect on enzyme conformation. Thus, this mutation should specifically eliminate activity without perturbing other potential functions of the enzyme. Inactive mutants, Cdc14p C283S and Cdc14p C283S/R289A, were unable to complement the null cdc14 mutant. In contrast, Cdc14p C283S but not Cdc14p C283S/R289A was able to rescue the temperature sensitivity of a cdc14–1ts strain (Fig. 6). Suppression of temperature sensitivity by the C283S active site mutant was unexpected and most likely results from intragenic complementation due to the formation of thermostable mixed multimers composed of the temperature-sensitive enzyme and the C283S mutant. However, there are other plausible explanations that have not been excluded by our data. Shirayama et al. (14) recently found that C283A, A285L, and R289P single mutants were each unable to suppress temperature sensitivity. We did not examine single mutations at Ala285 or Arg289, but the discrepancy in results obtained with our Cys mutants may be attributed to the difference in the amino acid chosen as a replacement (Ser versus Ala). Nevertheless, our conclusions regarding the requirement for phosphatase activity agree with those of Shirayama et al. (14).

The Asn/Ser-rich COOH-terminal segment (residues 375–551) of rCdc14p is not required for phosphatase activity because its removal has little or no effect on activity measured in vitro. We have also shown that this Asn/Ser-rich COOH-terminal region is not required for the function of Cdc14p because it was not required for rescuing the temperature sensitivity of the cdc14–1ts strain or complementation of the null mutant. While we are not able to assign a functional role for this noncatalytic segment, it could be involved in mediating nonessential cell cycle functions of Cdc14p or in carrying out functions of the enzyme that are unrelated to its role in cell cycle regulation. In other protein tyrosine phosphatases, noncatalytic sequences such as this are involved in regulation by targeting enzymes to specific subcellular locations or by modulating their catalytic activity (3, 4). A truncation mutant, in which the first 124 NH2-terminal residues were removed, was expressed in bacteria and in insect cells. Although most of the recombinant enzyme produced in these systems was found in particulate fractions, the soluble protein was inactive, suggesting that residues 1–124 are required for folding into an active form of the enzyme.

Determination of the native molecular weight of rCdc14p using two different techniques demonstrated that the recombinant enzyme is active as an oligomer in vitro. The molecular weight of 131,000 determined by nondenaturing electrophoresis suggests a homodimer, whereas the value calculated with hydrodynamic parameters (Table III) is about 29% greater than that expected for a dimer but less than that of a trimer. With these discrepancies, we are unable to reach definitive conclusions regarding the subunit composition of rCdc14p. Determination of the subunit composition and the concentration depending on oligomerization will require more detailed biochemical analyses. With rCdc14p-(1–374), the native molecular weight values (Table III) are in good agreement and are corroborated by cross-linking studies indicating that the truncated enzyme is a homodimer. The ability of Cdc14p-(1–374) to oligomerize suggests that the Asn/Ser-rich COOH-terminal segment is not required for self-association.

To the best of our knowledge no other dual specificity or nonreceptor protein tyrosine phosphatase has been shown to self-associate to form oligomers. Bilwes et al. (43) have shown that the membrane-proximal domain of the receptor tyrosine phosphatase, RPTPA, exists as a dimer in crystals and oligomerizes in solution. However, in this case, oligomerization is thought to result in the inhibition of phosphatase activity and to serve as a means of regulating activity. The dependence of oligomerization on Cdc14p concentration was not analyzed in this study. We have not yet identified nondenaturing conditions that give subunit dissociation; therefore, we are unable to determine whether oligomerization is required for activity. Thus far, we have no evidence that Cdc14p exists as a multimer in the cell, but the fact that oligomerization occurred under conditions similar to physiologic ionic strength and pH suggest that it is feasible. If Cdc14p is able to form dimers or higher order oligomers in vivo, its multimeric state will permit sensitive regulation via allosteric interactions with effector molecules. Such regulatory features could prove to be advantageous for a protein involved in cell cycle regulation.

The activity of Cdc14p was inhibited by increasing NaCl concentration and was significantly affected by polyamionic compounds. Direct interactions with positively charged substrates (e.g. MBP) appears to account for some effects of polyanions. However, the binding of Cdc14p to immobilized heparin and double or single-stranded DNA shows that polyanions can affect activity by binding directly to the enzyme. The potential involvement of Cdc14p in initiation of DNA replication and its ability to bind polyanions including nucleic acids indicate that a careful investigation of its DNA-binding properties is warranted.

Sequence comparisons confirm our previous findings (25) that Cdc14p exhibits little or no significant similarity to VH1 and its mammalian homologs (PAC1, VH6, MKP1, etc.). VH1-like dual specificity phosphatases such as MKP1, MKP2, and PAC1 have been shown to dephosphorylate and inactivate MAP/ERK kinases (44, 45). The activity of Cdc14p toward phosphorylated ERK2 (46) was several orders of magnitude lower than that observed with artificial substrates, confirming that it is not a MAP kinase phosphatase. We believe that Cdc14p, like Cdc25p, is the prototype for a distinct class of dual specificity enzymes with specific roles in controlling cell cycle progression.

As with many other cell cycle proteins from yeast, there is considerable evidence that Cdc14p homologs are found in metazoan organisms. Residues 1–364 of Cdc14p exhibits 32% sequence identity with a putative phosphatase encoded by gene C17G10.5 (GenBank™ U28739) on chromosome III of the nematode, Caenorhabditis elegans, and by four expressed sequence tags corresponding to this gene. Human placenta cDNAs isolated in this laboratory and several human expressed sequence tags encode two different proteins with 32 and 36% sequence identity to Cdc14p. This degree of sequence similarity between yeast and human proteins suggests that Cdc14p is conserved among eukaryotes. It will be important to determine
whether these metazoan homologs have a cell cycle function like that of Cdc14p from *S. cerevisiae*.

Acknowledgments—We thank Dr. Gunter Kohlhaw for advice and for providing *S. cerevisiae* strains and plasmids. Dr. Natalie Ahn generously provided mitogen-activated protein kinase kinase and ERK2. Dr. Sandra Rossie supplied the catalytic subunit of bovine cAMP-dependent protein kinase. We appreciate the suggestions and critical comments of Drs. N. Tonks. Dr. Helge Zieler kindly provided strains and plasmids for establishing the colony sectoring assay.

REFERENCES

The Activity of Cdc14p, an Oligomeric Dual Specificity Protein Phosphatase from Saccharomyces cerevisiae, Is Required for Cell Cycle Progression

Gregory S. Taylor, Yan Liu, Christopher Baskerville and Harry Charbonneau

doi: 10.1074/jbc.272.38.24054

Access the most updated version of this article at http://www.jbc.org/content/272/38/24054

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 44 references, 25 of which can be accessed free at http://www.jbc.org/content/272/38/24054.full.html#ref-list-1