DNA double-strand break repair through the RAD52 homologous recombination pathway in the yeast *Saccharomyces cerevisiae* requires, among others, the RAD51, RAD52, and RAD54 genes. The biological importance of homologous recombination is underscored by the conservation of the RAD52 pathway from fungi to humans. The critical roles of the RAD52 group proteins in the early steps of recombination, the search for DNA homology and strand exchange, are now becoming apparent. Here, we report the purification of the human Rad54 protein. We showed that human Rad54 has ATPase activity that is absolutely dependent on double-stranded DNA. Unexpectedly, the ATPase activity appeared not absolutely required for the DNA repair function of human Rad54 in *vivo*. Despite the presence of amino acid sequence motifs that are conserved in a large family of DNA helicases, no helicase activity of human Rad54 was observed on a variety of different DNA substrates. Possible functions of human Rad54 in homologous recombination that couple the energy gained from ATP hydrolysis to translocation along DNA, rather than disruption of base pairing, are discussed.

DNA double-strand breaks (DSBs),\(^1\) generated by ionizing radiation and endogenously produced radicals, are extremely genotoxic lesions because as few as one or two unrepaired DSBs can lead to cell death (1). Therefore, it is not surprising that multiple pathways have evolved for the repair of DSBs (2, 3). Of the two main pathways, DNA end-joining uses no or extremely limited sequence homology to rejoin ends directly in a manner that need not be error-free, whereas homologous recombination requires extensive regions of DNA homology to repair DSBs accurately using information on the undamaged sister chromatid or homologous chromosome. The biological importance of DSB repair through homologous recombination is underscored by the conservation of its salient features from fungi to humans (4, 5).

Genetic experiments have established a role for at least nine genes of the yeast *Saccharomyces cerevisiae* in homologous recombination (6). These so-called RAD52 epistasis group genes include RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, MRE11, and XRS2 (7–9). Mutations in any of these genes result in ionizing radiation-sensitive phenotypes. To date, proteins with amino acid sequence similarity to Rad50, Rad51, Rad52, Rad54, and Mre11 have been identified in mammals (3, 5). It is clear that the RAD52 homologous recombination pathway is functionally conserved from fungi to mammals. Biochemical experiments have demonstrated that the yeast and human Rad51 and Rad52 proteins perform key steps in homologous recombination, the search for DNA homology, and strand exchange, through similar mechanisms (9–20). Genetic experiments have shown that human RAD54 is the functional homolog of *S. cerevisiae* RAD54, because the human gene complements certain DNA repair phenotypes of *S. cerevisiae* rad54 cells (21). In addition, disruption of RAD54 in mouse embryonic stem (ES) cells and chicken DT40 cells impairs homologous recombination and results in ionizing radiation sensitivity (22, 23).

In addition to the biochemical activities of Rad51 and Rad52, the activities of other RAD52 group proteins, including Rad54, Rad55, and Rad57, are becoming apparent (9–20, 24–27). Here, we report the purification of the human Rad54 protein (hRad54) from baculovirus-infected insect cells. Rad54 contains seven amino acid sequence motifs that are conserved in a large superfamily of proteins (28), including DNA helicases involved in replication, recombination, and repair, such as the *Escherichia coli* DnaB, RuvB, and UvrD proteins. In particular, Rad54 belongs to the SWI2/SNF2 subfamily of ATPases (29). We show that hRad54 has ATPase activity that is absolutely dependent on double-stranded (ds) DNA. Unexpectedly, the ATPase activity of hRad54 is not absolutely required for its DNA repair function *in vivo*.

EXPERIMENTAL PROCEDURES

DNA Constructs—A cDNA construct encoding hRad54 containing a polyhistidine amino-terminal tag (MGSSHHHHHHSSGLVPRGSH) and a carboxyl-terminal hemagglutin tag (VTYPYDVPDYAS) was generated. The sequence of all DNA fragments produced by polymerase chain reaction was confirmed by sequence analysis. For expression in mouse ES cells, the cDNA was placed under control of the phosphoglycerate kinase promoter. A construct expressing a tagged version of hRad54 containing a single amino acid substitution at position 189 was also generated. The invariant lysine residue at this position, which is in the putative GKT Walker-type nucleotide binding motif, was changed to an arginine residue (21). This protein is referred to as hRad54\(^{K189R}\).

ES Cell Culture—ES cells were cultured and electroporated with DNA constructs as described (30). The hRad54 expressing constructs described above were electroporated into mRAD54 knockout ES line

\(^{1}\) This research was supported by Grants EUR94-858 and EUR95-1775 from the Dutch Cancer Society, Grant PGN 901-01-097 from the Netherlands Organization for Scientific Research, Grant RO063/1997 from the Human Frontier Science Program Organization, and Grants F13PCT920007 and F14PCT960010 from the EURATOM/EEC. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

\(\dagger\) Fellow of the Royal Netherlands Academy of Arts and Sciences. To whom correspondence should be addressed: Dept. of Cell Biology and Genetics, Erasmus University Rotterdam, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands. Tel.: 31-10-408-7168; Fax: 31-10-436-0225; E-mail kanaar@@pop.fgg.eur.nl.

\(\dagger\dagger\) The abbreviations used are: DSB, double-strand break; ES, embryonic stem; hRad54, human Rad54; ds, double-stranded; ss, single-stranded; bp, base pair(s).
mRAD54^{Δhistidine₆/purK} (22). The disrupted mRAD54 alleles in this line contain the neomycin- and puromycin-selectable markers, respectively. The constructs were co-electroporated with a plasmid carrying the hygromycin-selectable marker. Clones were selected as described (22) and screened for hRAD54 expression by immunoblot analysis. The location of ES cells to insulin irradiation and mitomycin C was determined by measuring their colony-forming ability. After trypsinization and counting, various dilutions of the different ES cell lines were placed into gelatinized 60-mm dishes, and after 12–24 h, cells were incubated for 1 h in mitomycin C-containing medium. Ionizing radiation sensitivity was determined by comparing the colony-forming ability of the ES cell lines after irradiation with the colony-forming ability of the ES cell line as a source as described (22). Cloning efficiencies varied from 10 to 30%. Cells were grown for 7 days, fixed, stained, and counted. All measurements were performed in triplicate.

Purification of hRad54 Protein—The cDNAs encoding the tagged hRad54 and hRad54^{Δhistidine₆} proteins were subcloned into pFastBac1 (BAC-TO-BAC Baculovirus Expression System, Life Technologies, Inc.). The resulting plasmids were transformed into DH10Bac E. coli cells to allow site-specific transposition into bacmid BMON14272. High molecular weight recombiant bacmids were isolated and transfected into Sf21 cells to produce virus stocks that were amplified as described by the manufacturer. For protein production, 4.5 × 10⁷ Sf21 cells were infected with the recombinant baculoviruses at a multiplicity of infection of 10. Two days postinfection, cells were collected by low speed centrifugation and washed twice with ice-cold phosphate-buffered saline (PBS). For the purification of hRad54 protein, we generated a cDNA expression construct encoding a fusion protein containing 526 residues with an amino-terminal polyhistidine tag and a carboxyl-terminal glutathione-S-transferase (GST) tag. The GST-hRad54 protein was expressed in Sf21 cells infected with recombinant baculoviruses, purified by glutathione-Sepharose affinity chromatography, and eluted in 10 mM reduced glutathione (final concentration). The GST-hRad54 protein was purified by affinity chromatography on a 1-mL column of glutathione-Sepharose beads (GE Healthcare). After the elution, the protein was dialyzed into 10 mM reduced and oxidized glutathione and concentrated to 1 mg/ml protein. The protein was then subjected to size-exclusion chromatography on a Superdex 200 column (GE Healthcare) and analyzed by SDS-PAGE and Coomassie Blue stain. We estimate that the final yield from 4.5 × 10⁷ infected Sf21 cells varied between 60 and 120 μg of hRad54 protein.

ATPase Assay—Standard reaction mixtures contained 20 mM KPO₄ (pH 7.0), 4 mM MgCl₂, 40 mM KCl, 1 mM dithiothreitol, 100 μM bovine serum albumin, 200 μM ATP, 0.25 μCi of [γ³²P]ATP ([γ³²P]ATP labeled by incubation with T4 polynucleotide kinase and [γ³²P]ATP) for 30 min at 37 °C with 0.2 μM protein. The reactions were initiated by the addition of DNA and MgCl₂ to a final concentration of 0.75 M KH₂PO₄ as running buffer. Hydrolysis was quantitated with the use of a Berthold LB 9505 counter (Berthold, Bad Wildbad, Germany). The resulting plasmids were transformed into DH10Bac E. coli (BAC-TO-BAC Baculovirus Expression System, Life Technologies, Inc.). The resulting plasmids were transformed into DH10Bac E. coli cells to allow site-specific transposition into bacmid BMON14272. High molecular weight recombiant bacmids were isolated and transfected into Sf21 cells to produce virus stocks that were amplified as described by the manufacturer. For protein production, 4.5 × 10⁷ Sf21 cells were infected with the recombinant baculoviruses at a multiplicity of infection of 10. Two days postinfection, cells were collected by low speed centrifugation and washed twice with ice-cold phosphate-buffered saline. For the purification of hRad54 protein, we generated a cDNA expression construct encoding a fusion protein containing 526 residues with an amino-terminal polyhistidine tag and a carboxyl-terminal glutathione-S-transferase (GST) tag. The GST-hRad54 protein was expressed in Sf21 cells infected with recombinant baculoviruses, purified by glutathione-Sepharose affinity chromatography, and eluted in 10 mM reduced glutathione (final concentration). The GST-hRad54 protein was purified by affinity chromatography on a 1-mL column of glutathione-Sepharose beads (GE Healthcare). After the elution, the protein was dialyzed into 10 mM reduced and oxidized glutathione and concentrated to 1 mg/ml protein. The protein was then subjected to size-exclusion chromatography on a Superdex 200 column (GE Healthcare) and analyzed by SDS-PAGE and Coomassie Blue stain. We estimate that the final yield from 4.5 × 10⁷ infected Sf21 cells varied between 60 and 120 μg of hRad54 protein.

RESULTS AND DISCUSSION

Purification of the Human Rad54 Protein—For the purpose of purification, identification, and protein-protein interactions studies, we constructed a cDNA expressing hRAD54 containing an amino-terminal polyhistidine tag and a carboxyl-terminal hemagglutinin tag. The addition of the tags did not interfere with the biological function of hRad54. However, the presentation and discussion of those results is deferred until Fig. 3. In addition to the cDNA expressing wild-type tagged hRad54 protein, we generated a cDNA expression construct encoding a tagged version of hRad54 containing a single amino acid substitution at position 189. This invariant lysine residue is in the putative Walker A nucleotide binding motif and was changed to an arginine residue using site-directed mutagenesis. The resulting protein is referred to as hRad54^{ΔK189R}. For a number of ATPases, including E. coli UvrD and S. cerevisiae Rad3, conversion of the equivalent lysine residue into an arginine residue severely impairs nucleotide triphosphate hydrolysis (34, 35). However, for UvrD and Rad3, nucleotide binding is unaffected by the mutation, implying that the overall structure of the protein remains intact.

For protein production, we placed both cDNAs under transcriptional control of the polyhedrin promoter in recombinant baculoviruses. These viruses were used to infect Sf21 cells. A Coomasie-stained SDs-polyacrylamide gel containing crude extract of the cells infected with the hRAD54 encoding baculovirus is shown in Fig. 1, lane 4. Immunoblot analysis demonstrated that the prominent band between the 47- and 68-kDa molecular mass markers is the hRad54^{ΔK189R} protein (data not shown). The extract was subsequently fractionated over phosphocellulose, Ni²⁺-nitrilotriacetate agarose and Mono S columns (not shown). The affinity column was subsequently washed with Buffer D (20 mM Hepes-KOH (pH 7.5), 1 mM β-mercaptoethanol, 0.05% Nonidet P-40, 10% glycerol, 500 mM KCl, and 20 mM imidazole-HCl (pH 7.9)). hRAD54 proteins were eluted with Buffer E (20 mM Tris-HCl (pH 7.5), 1 mM β-mercaptoethanol, 0.05% Nonidet P-40, 10% glycerol, 200 mM KCl, 1 mM EDTA, and 200 mM imidazole-HCl (pH 7.9)) to yield fraction III. Fraction III was diluted with 10 volumes of Buffer F (20 mM Hepes-KOH (pH 8.0), 1 mM EDTA, 1 mM dithiothreitol, 10% glycerol, 0.01% Nonidet P-40) and loaded onto a Mono S column (HR5/5) equilibrated with Buffer F containing 0.2 M KCl. The column was washed with 5 column volumes of equilibration buffer, and the hRAD54 proteins were eluted with a 20-column volume linear gradient from 0.2 to 1.0 M KCl in Buffer F. The proteins (fraction IV) eluted around 0.4 M KCl. Aliquots were frozen in liquid N₂ and stored at −80 °C. The yield from 1.5 × 10⁸ infected Sf21 cells consisted of 20 μg and 120 μg of hRad54 protein.

DNA Helicase Assay—Partially dsDNA substrates were made by annealing three partially complementary oligonucleotides. The sequences of the oligonucleotides (designated oligonucleotides I–3) were the same as those used to investigate the DNA helicase activities of the E. coli RecG and T4 UvsW proteins (31, 32). The arms of the branched structure were between 24 and 28 nucleotides long. The DNA helicase assays and annealing procedures were as described (33). In the experiment shown, oligonucleotide 2 was 5′-end-labeled with the use of T4 polynucleotide kinase and [γ³²P]ATP. All DNA substrates were incubated for 60 min at 30 °C. Protein concentrations were varied from 0 to 0.1 μM, and ATP concentrations were varied from 0.2 to 2 μM. Reactions that were carried out in the presence of an ATP regeneration system contained 40 μM phosphocreatine and 10 units/ml creatine phosphokinase. Reactions were terminated by the addition of SDS and EDTA to 0.2% and 20 mM, respectively. DNA species were separated by electrophoresis through nondenaturing polyacrylamide gels that were dried and analyzed by autoradiography.

Downloaded from http://www.jbc.org/ by guest on December 24, 2017
hRad54 preparation had a purity of approximately 90%. A sample of the final purification step of the hRad54 K189R protein, which was produced and purified in exactly the same manner as the wild-type protein, is shown in Fig. 1, lane 6.

The Human Rad54 Protein Is a dsDNA-dependent ATPase—We tested whether the purified hRad54 protein could hydrolyze ATP, because it contains Walker A and B amino acid sequence motifs that are involved in ATP hydrolysis in a large number of proteins (36). Increasing amounts of hRad54 protein were incubated with ATP for 60 min at 30 °C. Released radiolabeled phosphate was separated from nonhydrolyzed ATP by thin layer chromatography, and the extent of hydrolysis was quantitated (Fig. 2). In the absence of DNA, no significant hydrolysis of input ATP was observed. The amount of input ATP hydrolyzed varied between 0.2 and 1.0% and did not increase with increasing protein concentration. Because the ATPase activity of the SWI2/SNF2 protein is stimulated by DNA (37), we included dsDNA in the reaction mixture. Fig. 2A shows that inclusion of dsDNA is absolutely required for the activation of the ATPase activity of hRad54. Recently, it was shown that, like hRad54, the *S. cerevisiae* Rad54 protein also possesses DNA-dependent ATPase activity (26). The observed ATPase activity of hRad54 was not due to a contaminating ATPase, because the identical preparation of hRad54K189R protein displayed no ATPase activity in the presence of dsDNA. The lack of ATPase activity of hRad54K189R is not due to a defect in DNA binding, because analysis of the DNA binding properties showed that the wild-type and mutant proteins had similar affinities for both ds and single-stranded (ss) DNA (data not shown).

Fig. 1. Purification of the hRad54 protein. Coomassie-stained SDS-polyacrylamide gel containing samples taken at different stages of the hRad54 purification. A protein extract from Sf21 cells infected with a baculovirus expressing hRad54 (CE) (lane 2) was fractionated sequentially over phosphocellulose (P-cell) (lane 3), nitrilotriacetate agarose (Ni-NTA) (lane 4), and Mono S (lane 5) columns. The hRad54K189R protein was purified by the same method, and a sample of the final preparation is shown in lane 6. Lanes 4–6 contain approximately 0.4 μg of protein. The size of the protein molecular mass markers (M) in lane 1 is indicated in kDa.

Fig. 2. The hRad54 protein is a dsDNA-dependent ATPase. A, the amount of ATP hydrolyzed by hRad54 and hRad54K189R after 60 min in the presence and absence of DNA is displayed as a function of enzyme concentration. The amount of ATP in the reaction mixture at time 0 was 2 nmol. ATPase assays were carried out as described under “Experimental Procedures.” Reaction mixtures (10 μl) contained 0–100 ng of hRad54. B, as in A except that poly(dA), poly(dT), or hybridized poly(dA-dT) was used as DNA cofactor. C, kinetics of ATP hydrolysis by hRad54. Aliquots were removed from a reaction mixture at the indicated time points, and the extent of ATP hydrolysis by hRad54 in the presence of dsDNA was measured. The concentration of hRad54 in the reaction corresponded to the 15-ng data point in A.
ssDNA that does not form secondary structure can stimulate the ATPase activity. Therefore, we incubated increasing amounts of hRad54 with poly(dA) or poly(dT). Both homopolymers were unable to activate the ATPase activity of hRad54 (Fig. 2B). The measured ATPase activity in the presence of poly(dA) and poly(dT) was 0.1–0.5% and 0.3–0.9%, respectively. However, when the two polymers were allowed to form base pairs before addition to the reaction mixture, they did efficiently activate the hRad54 ATPase activity (Fig. 2B). We conclude that hRad54 is a dsDNA-dependent ATPase and that the substitution of amino acid 189 from lysine to arginine results in loss of the ATPase activity.

The rate of ATP hydrolysis by hRad54 was determined in the presence of dsDNA (Fig. 2C). The turnover rate was found to be \(\approx 800 \text{ mol of ATP min}^{-1} \text{ mol}^{-1} \) hRad54. Thus, hRad54 is a more active ATPase than other DNA-dependent ATPases involved in recombination, such as human Rad51, a DNA strand exchange protein that exhibits ssDNA-stimulated ATPase activity with a turnover rate of 0.16 min\(^{-1}\) (14). The hRad54 ATPase exhibits a turnover rate within the range of DNA helicases involved in recombination and repair, such as RuvB (4.2 min\(^{-1}\)) and UvrD (10,000 min\(^{-1}\)) (35, 38).

We varied a number of reaction conditions to determine some requirements for hRad54-mediated ATP hydrolysis. The results of these experiments are summarized in Table I. In addition to dsDNA, divalent cations were found to be essential for ATP hydrolysis. The topology of the dsDNA cofactor is not critical, because duplex linear and supercoiled DNA stimulated the ATPase activity of hRad54 to similar levels. Like ssDNA, RNA did not activate the hRad54 ATPase activity. Optimal catalytic activity was obtained at pH 7.0 and at a temperature of 25–30 °C.

Table I

<table>
<thead>
<tr>
<th>Variable</th>
<th>Relative ATPase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divalent cation</td>
<td>(\text{None})</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>100</td>
</tr>
<tr>
<td>Mn(^{2+})</td>
<td>109</td>
</tr>
<tr>
<td>pH</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>100</td>
</tr>
<tr>
<td>7.5</td>
<td>83</td>
</tr>
<tr>
<td>8.0</td>
<td>44</td>
</tr>
<tr>
<td>8.5</td>
<td>14</td>
</tr>
<tr>
<td>Temperature</td>
<td>25 °C</td>
</tr>
<tr>
<td>30 °C</td>
<td>100</td>
</tr>
<tr>
<td>37 °C</td>
<td>34</td>
</tr>
<tr>
<td>Nucleic acid cofactor</td>
<td>(\text{None})</td>
</tr>
<tr>
<td>Supercoiled DNA</td>
<td>100</td>
</tr>
<tr>
<td>Linear dsDNA</td>
<td>90</td>
</tr>
<tr>
<td>M13 viral DNA</td>
<td>48</td>
</tr>
<tr>
<td>Poly(dT)</td>
<td>(<1)</td>
</tr>
<tr>
<td>Poly(dA)</td>
<td>(<1)</td>
</tr>
<tr>
<td>RNA</td>
<td>(<1)</td>
</tr>
</tbody>
</table>

The ATPase activity of 20 ng of hRad54 was determined under standard conditions described under “Experimental Procedures,” with the exception of the indicated variable. An ATPase activity of 100% corresponds to hydrolysis of 85% of input ATP.

Amino- and Carboxyl-terminal Tags Do Not Interfere with the Biological Function of hRad54—Before analyzing other activities of the hRad54 protein, we determined whether the tags on the protein would interfere with its function. \(mRAD54 \) knockout cells were electroporated with the cDNA constructs expressing tagged hRad54 and hRad54\(^{K189R}\) proteins. For each construct, 24 clones were analyzed for protein expression by immunoblot analysis using anti-hRad54 antibodies. A number of independent cell lines were identified that expressed either tagged wild-type or mutant protein. Expression levels, which did not vary much between the different clones, ranged from one-half to twice the level found in wild-type ES cells. An example of an immunoblot containing protein extracts from \(mRAD54 \) knockout ES cell lines expressing tagged versions of the wild-type and mutant hRad54 proteins is shown in Fig. 3A.

We have shown previously that \(mRAD54 \) knockout ES cells are sensitive to ionizing radiation and the DNA cross-linking agent mitomycin C. In addition, the mRad54 protein could rescue the mitomycin C sensitivity (22). Therefore, we tested whether the \(mRAD54 \) knockout cell lines that expressed the tagged wild-type and mutant hRad54 proteins could rescue the \(\gamma \)-ray and mitomycin C sensitivity. Fig. 3B shows that the wild-type tagged hRad54 completely corrects the \(\gamma \)-ray sensitivity caused by the mutations in \(mRAD54 \). The efficiency of the rescue did not depend on the expression level of hRad54 because a cell line expressing one-half the level of Rad54 found in wild-type cells gave similar results (data not shown).

Interestingly, expression of the tagged hRad54K189R protein resulted in a partial rescue of the \(\gamma \)-ray sensitivity (Fig. 3B). As above, the expression level of hRad54\(^{K189R}\) was critical to the observed effect because an independently obtained cell line, expressing twice the level of Rad54 compared with wild-type cells, gave similar results (data not shown). Tagged hRad54 also rescued the mitomycin C sensitivity of \(mRAD54 \) knockout cells (Fig. 3C). Again, expression of tagged hRad54\(^{K189R}\) led to a partial rescue. Similar results were obtained with independent clones expressing different levels of tagged hRad54 and hRad54\(^{K189R}\) respectively (data not shown). We conclude that the amino-terminal polyhistidine tag and the carboxyl-terminal hemagglutinin tag do not interfere with the function of the hRad54 protein.

Rad54, together with SWI2/SNF2 and Mot1, belongs to the SNF2/SWI2 family of DNA-stimulated ATPases (29). The ATPase activity of the SNF2/SWI2 and Mot1 proteins is essential for their functions in vivo (37, 39). Surprisingly, we found that the hRad54\(^{K189R}\) protein, which is completely deficient in ATPase activity (Fig. 2A), is partially functional in vivo (Fig. 3, B and C). Thus, ATP hydrolysis can, at least in part, be uncoupled from other biological activities of hRad54, implying that other properties of the protein are also important for its function. One of those functions could be in contributing to the formation of multiprotein complexes. The absence of one of the components of such complexes might be more detrimental than the presence of a crippled component. For example, the absence of one of the components of the ERCC1/XPF structure-specific endonuclease causes instability of the other component (40, 41). Because genetic and physical interactions have been detected among many of the RAD52 group genes and proteins (25, 26, 42–48), it is likely that these proteins function in the context of complex protein machines. Similar to the observation presented here for hRad54, an ATPase-deficient mutant of the transcription-coupled nucleotide excision repair protein CSB, which is part of a multiprotein complex, is partially active in vivo as well (49).

Analysis of hRad54 Activity in DNA Helicase Assays—Because the hRad54 protein contains seven amino acid sequence motifs that are found in many DNA helicases and because it has DNA-dependent ATPase activity, we tested whether hRad54 could use the energy gained from ATP hydrolysis to disrupt base pairing in duplex DNA. We tested five distinct DNA substrates in helicase assays, because DNA helicases differ in their substrate specificity. The first set of three substrates consisted of M13 viral DNA to which oligonucleotides were annealed. One substrate contained a 35-bp duplex region,
Whereas the other were forked substrates that contained 15-nucleotide noncomplementary regions either 5’ or 3’ of the 35-bp duplex region. The hRad54 protein appeared unable to displace the oligonucleotide from the M13 DNA (Fig. 4A). The hRad54 protein concentration was varied over the same range as was used for the ATPase assays shown in Fig. 2 (data not shown). The lack of helicase activity cannot be explained by a rapid depletion of ATP, because the inclusion of an ATP regeneration system in the reaction mixture did not result in detectable helicase activity (data not shown). In contrast, the UvrD protein efficiently displaced the oligonucleotide from all three substrates (Fig. 4A). Our results with hRad54 are consistent with those obtained with the S. cerevisiae Rad54 protein, which also displays no helicase activity on substrates containing non-complementary ssDNA tails (26).

In E. coli, the RecBCD DNA helicase plays a pivotal role in processing DSBs during recombination (50). Its substrate is a dsDNA end. Given the involvement of Rad54 in recombinational DSB repair, it was important to test whether the protein exhibited DNA helicase activity on a blunt-ended dsDNA substrate (Fig. 4B). We were unable to detect any helicase activity of hRad54 on this substrate, even in the presence of an ATP regeneration system and over a wide range of hRad54 concentration. In contrast, UvrD efficiently separated the strands this
DNA substrate (Fig. 4B).

Some DNA helicases, such as the *E. coli* RecA protein, which is involved in recombination and repair, are inactive on forked duplexes and blunt-ended duplex DNA substrates, such as those tested in Fig. 4, A and B. Instead, the RecA protein unwinds substrates containing a three-way duplex branch (31). However, even with this DNA substrate, no helicase activity of hRad54 was detected (Fig. 4C).

On the basis of its amino acid sequence, Rad54 belongs to a superfamily of DNA-dependent ATPases (28). Many superfamily members have DNA helicase activity. Although the experiments presented above do not rule out the possibility that hRad54 has DNA helicase activity, they make it less likely. Possibly, the seven conserved amino acid sequence motifs that define the superfamily provide a general activity, of which helicase activity could be a subset (51). This more general activity could be the ability to translocate along DNA at the expense of ATP hydrolysis (52). By using the energy gained from ATP hydrolysis translocation of Rad54 along DNA might be useful in at least three stages of homologous recombination. First, in light of the interaction between the Rad54 and Rad51 proteins (26, 45, 47, 48), translocation of Rad54 might provide processivity to Rad51-mediated DNA strand exchange. Compared with the *E. coli* RecA protein, hRad54 makes short heteroduplex joints (9). A role for Rad54 in extending these joints is consistent with the recent demonstration that *S. cerevisiae* Rad54 stabilizes D-loops (26). Providing processivity to joint formation might be especially important in the context of chromatin. Second, translocation of hRad54 could be to promote branch migration of Holliday junctions to extend heteroduplex DNA, in a manner that is analogous to the molecular motor function of the RuvB protein. Third, an alternative function of Rad54 could be in removing the Rad51 protein from joint molecules, formed during the two recombining partners after the initiation of recombination, in order to prevent reversal of the reaction. In this respect, the action of Rad54 would be analogous to that of the Mot1 protein, which disrupts protein DNA-complexes involved in transcription (35). The availability of purified hRad54 protein facilitates testing of the possible functions of the protein described above.

Acknowledgments—We are grateful to Claude Backendorf and Geri Moedenaar for the generous gift of purified UvrD protein. We thank Steve West for discussion and members of the Department of Cell Biology and Genetics for comments on the manuscript.

REFERENCES

Downloaded from http://www.jbc.org/ on December 24, 2017
The Human Rad54 Recombinational DNA Repair Protein Is a Double-stranded DNA-dependent ATPase

Sigrid M. A. Swagemakers, Jeroen Essers, Jan de Wit, Jan H. J. Hoeijmakers and Roland Kanaar

doi: 10.1074/jbc.273.43.28292

Access the most updated version of this article at http://www.jbc.org/content/273/43/28292

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 51 references, 18 of which can be accessed free at http://www.jbc.org/content/273/43/28292.full.html#ref-list-1