Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway

REQUIREMENT FOR Flk-1/KDR ACTIVATION*

(Received for publication, March 26, 1998, and in revised form, July 28, 1998)

Hans-Peter Gerber‡, Amy McMurtrey‡, Joe Kowalski‡, Minhong Yan§, Bruce A. Keyt‡, Vishva Dixit§, and Napoleone Ferrara¶

From the Departments of ‡Cardiovascular Research and §Molecular Oncology, Genentech, Inc., South San Francisco, California 94080

Vascular endothelial growth factor (VEGF) has been found to have various functions on endothelial cells, the most prominent of which is the induction of proliferation and differentiation. In this report we demonstrate that VEGF or a mutant, selectively binding to the Flk-1/KDR receptor, displayed high levels of survival activity, whereas Flt-1-specific ligands failed to promote survival of serum-starved primary human endothelial cells. This activity was blocked by the phosphatidylinositol 3′-kinase (PI3-kinase)-specific inhibitors wortmannin and LY294002. Endothelial cells cultured in the presence of VEGF and the Flk-1/KDR-selective VEGF mutant induced phosphorylation of the serine-threonine kinase Akt in a PI3-kinase-dependent manner. Akt activation was not detected in response to stimulation with placenta growth factor or an Flt-1-selective VEGF mutant. Furthermore, a constitutively active Akt was sufficient to promote survival of serum-starved endothelial cells in transient transfection experiments. In contrast, overexpression of a dominant-negative form of Akt blocked the survival effect of VEGF. These findings identify the Flk-1/KDR receptor and the PI3-kinase/Akt signal transduction pathway as crucial elements in the processes leading to endothelial cell survival induced by VEGF. Inhibition of apoptosis may represent a major aspect of the regulatory activity of VEGF on the vascular endothelium.

Angiogenesis and vascular remodeling occur throughout growth and development and involve both proliferation and regression of vascular endothelial cells. Although extensive research has been dedicated to the elucidation of the factors that induce endothelial cell proliferation and differentiation (for review, see Refs. 1, 2), surprisingly little is known about the mechanisms that regulate regression of blood vessels. Rapid degeneration of vascular structures occurs under various physiological or pathological circumstances. Apoptosis of endothelial cells probably contributes to the maturation of vascular granulation tissue into avascular scar tissue (3) and to the pruning of retinal vessels during development (4). Apoptosis-like changes in endothelial cells have been also observed in the involuting corpus luteum, breast (5), parotid glands undergoing pressure atrophy (6), and fibrotic lung lesions (7). However, experiments designed to study blood vessel regression in vivo have not been very successful so far at detecting apoptotic endothelial cells lining the blood vessels. This may be attributable, at least in part, to the fact that endothelial cells undergoing apoptosis tend to lose their attachment to the basement membrane. In addition, apoptotic endothelial cell may become the target of the immune system and thus are eliminated by phagocytes as soon as they manifest early signs of apoptosis (8). In vitro, apoptosis often follows withdrawal of a critical trophic factor. Accordingly, human umbilical vein endothelial (HUVE) cells undergo apoptosis after loss of adhesion or serum deprivation (9, 10). Fibroblast growth factor and phorbol esters reduce the apoptosis of serum-deprived HUVE cells (11), and heat shock and endotoxin act together to increase apoptosis in porcine endothelial cells (12).

It has recently been shown that the survival signal mediated by various growth factors and cytokines may be dependent on the phosphatidylinositol 3′-kinase (PI3-kinase)/Akt signal transduction pathway (13–19). However, not all survival signals require PI3-kinase activity, and Akt (also referred as protein kinase Bα or Rac1-independent survival pathways exist (20–22). It was shown previously that vascular endothelial growth factor (VEGF) can induce PI3-kinase activity in a variety of endothelial cell (23–25), but so far a specific biological function of PI3-kinase in endothelial cells has not been demonstrated.

The endothelial cell-specific mitogen VEGF has been shown to be a key positive regulator of normal and abnormal angiogenesis (2, 26). The critical role of VEGF in the development of the vascular system is emphasized by embryonic lethality after loss of a single VEGF allele. A growing body of evidence indicates that VEGF may also act as a survival factor for newly formed blood vessels. In the developing retina, vascular regression in response to hyperoxia has been correlated with inhibition of VEGF release by glial cells (4). Furthermore, administration of anti-VEGF monoclonal antibodies results in regression of already established tumor-associated vasculature in xenograft models (27). More recently, using a tetracycline-regulated VEGF expression system in xenografted C6 glioma cells, it has been shown that decreased levels of VEGF produc-

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
¶ To whom correspondence should be addressed: Dept. of Cardiovascular Research, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080. Tel.: 650-225-2968; Fax: 650-225-6327.

1 The abbreviations used are: HUVE, human umbilical vein endothelial; PI3-kinase, phosphatidylinositol 3′-kinase; VEGF, vascular endothelial growth factor; rh, recombinant human; PlGF, placenta growth factor; PBS, phosphate-buffered saline; PI, propidium iodide; bFGF, basic fibroblast growth factor; sel, selective; KDR, kinase domain region.
tion lead to detachment of endothelial cells from the walls of preformed vessels in the tumor, and detached apoptotic endothelial cells were identified by means of double staining for Van Willebrand factor and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (28).

VEGF exerts its biological effects by binding to its respective transmembrane receptors VEGF receptor 1 (Flt-1) and VEGF receptor 2 (Flk-1/KDR), both of which are expressed on endothelial cells specifically and contain a cytoplasmic tyrosine kinase domain. Knockout studies in mice revealed that both receptors are essential for the development of the embryonic vasculature, and mouse embryos null for either receptor died in utero between days 8.5 and 9.5 (29, 30). Stimulation of endothelial cells with VEGF demonstrated that VEGF induces phosphorylation of a variety of proteins, including phosphatidylinositol 3-kinase, Ras GTPase-activating protein, p190- rhoGAP, p62, phospholipase C-γ, the oncogenic adapter protein Nck, p125 focal adhesion kinase, paxillin, and several others (23, 31–37; for review, see Ref. 38). Strong experimental evidence links Flk-1/KDR activation to VEGF-induced mitogenesis and angiogenesis (2). In contrast, the maintenance and survival function of VEGF has been associated with the Flt-1 receptor, because the Flt-1 mRNA is highly expressed in quiescent endothelium (39), whereas Flk-1/KDR is primarily expressed in proliferating vessels (40).

In the present study, we investigated the survival role of VEGF in HUVE cells cultured in serum-free conditions. We found that VEGF potently prevents apoptosis and promotes survival in this system. Using several approaches, we demonstrate the critical role of the PI3-kinase-Akt pathway in such effects. We also show that Flk-1/KDR, not Flt-1, is the primary mediator of such a signal.

EXPERIMENTAL PROCEDURES

Materials—Primary cultures of HUVE cells and human dermal microvascular endothelial cells were purchased from Cell Systems (Kirkland, WA). Wortmannin and dimethylsulfoxide were purchased from Sigma. ZVAD-fmk was purchased from Enzyme Systems Products (Dublin, CA). Cytomegalovirus-luciferase was purchased from Promega, and pGREEN LANTERN was from Life Technologies, Inc.

The KDR receptor-selective VEGF_165 mutant D63A, K84E, H86E has been previously described (41). The triple mutant R82F, K84E, H86E is a derivative of the Flt-1-selective R82A, K84A, H86A VEGF mutant (41), with ~10-fold higher selectivity, which results in an overall 1000-fold increase in Flt-1 over KDR. Wild-type recombinant human (rh) VEGF_165, and receptor-selective VEGF mutants were expressed in _Escherichia coli_ and purified to homogeneity as described previously. The endotoxin content of the final purified material did not exceed 0.3 endotoxin units/mg of protein. rhPlGF_152 was expressed and purified as described previously (42). Recombinant proteins were quantified by amino acid analysis. Medium 199 was purchased from Life Technologies, Inc. CS-C medium was from Cell Systems. EB medium was from Clontech (San Diego, CA). Flag-Akt179 was generated by mutation of Flag-Akt 2D with the enhanced chemiluminescence detection system. The chemiluminescence was added, followed by 2 min of constant vortexing. The mixture was allowed to settle for 1 min before tubes were centrifuged for 5 s in a tabletop microcentrifuge. The supernatant was removed, and the gold pellet was washed first with 140 μl of 70% ethanol followed by 140 μl of 100% ethanol. After removing the supernatant, the gold particles were taken up in 55 μl of 100% ethanol, and 10 μl was used for biolistic transfection. Immediately after bombardment, 5 ml of complemented medium was used.

Analysis of Endothelial Cell Apoptosis—For fluorescence-activated cell sorter analysis, cells were stained by fluorescein isothiocyanate-conjugated annexin V and by the fluorescent die propidium iodide (PI). Cells negative for both PI and annexin V staining are live cells; PI-negative, annexin V-positive staining cells are early apoptotic cells; PI-positive, annexin V-positive staining cells are primarily cells in a late stage of apoptosis (45). Cells of one 6- or 10-cm dish were harvested immediately after induction of serum starvation, cells were washed twice with serum-free M199, and cells were incubated in serum-free M199 complemented with 0.1% bovine serum albumin, with or without growth factors. After 4 or 5 days, 25 μl of alamar blue was added to each well. After a 2-h incubation, plates were read at 405 nm in an enzyme-linked immunosorbent assay plate reader. Alternatively, cells were dissociated by exposure to trypsin, and the cell number was determined.

Gene Transfer of HUVE Cells by Microprojectile Bombardment—Gene transfer was performed using the Bio-Rad 500 optimization kit in the Biolistic PDS-1000/He® particle delivery system (Bio-Rad). In a series of pilot experiments using luciferase reporter gene DNA, parameters were established to achieve the highest levels of luciferase activity in primary HUVE cell cultures [data not shown; particle size, 1.6 μm; rupture disc, 1100 p.s.i. bombardment chamber vacuum, 25 mm Hg; the microcarrier launch assembly was positioned in shelf position 1, the target shelf was at position 3 (from the top). Gold particles were prepared according to the manufacturer’s recommendations and stored as 50–μl aliquots for 3–4 months at ~20 °C. Aliquots were coated with DNA immediately before gene transfer following the manufacturer’s recommendations. Briefly, for five samples, a 50-μl aliquot of gold particles (100 μg of plasmid DNA, 3.3 μg of pCMV-DsRed-MCS; 3.5 μg of pGreen 3.7 plasmid DNA) was added, followed by 2 min of constant vortexing. The mixture was allowed to settle for 1 min before tubes were centrifuged for 5 s in a tabletop microcentrifuge. The supernatant was removed, and the gold pellet was washed first with 140 μl of 70% ethanol followed by 140 μl of 100% ethanol. After removing the supernatant, the gold particles were taken up in 55 μl of 100% ethanol, and 10 μl was used for biolistic transfection. Immediately after bombardment, 5 ml of complemented medium was used.

RESULTS

Growth Factor Removal Reduces Apoptotic Endothelial Cell Death—To investigate the survival activity of VEGF relative to...
that of basic fibroblast growth factor (bFGF), which was previously
found to be a survival factor for endothelial cells (11), we
incubated HUVE cells in serum-free medium in the presence of
VEGF (100 ng/ml) or bFGF (100 ng/ml). Control cells were
cultured in the presence of 10% serum, which stimulated pro-
liferation. As illustrated in Fig. 1A, the number of cells de-
creased significantly after 24 h of serum starvation, whereas
cell numbers remained relatively constant over 48 h of incuba-
tion in the presence of VEGF or bFGF. These findings indicated
that VEGF can induce a survival response in HUVE cells to
similar levels as bFGF. In the absence of VEGF, extensive
membrane blebbing, loss of contacts with neighboring cells,
shrinking of the cytoplasm, disintegration into small vesicles,
also called apoptotic bodies, and ultimately detachment of cells
from the culture dish were observed by means of time lapse
video recording (Fig. 1B). These features are indicative of apop-
totic cell death. Under such conditions, we did not observe any
obvious morphological differences between VEGF-treated cells
and cells exposed to 10% serum (data not shown). To determine
whether the endothelial cell loss was a consequence of apop-
totic cell death, we analyzed HUVE cells for binding to annexin
V, which serves as a marker for early apoptosis (46). As early as
16 h after growth factor removal, we observed a significant
increase in the number of apoptotic, annexin V-positive cells,
which continued over time, and after 48 h, 50–80% of the cells
had undergone apoptotic cell death (Fig. 2B and data not
shown).

To test whether the observed induction of endothelial cell
apoptosis was mediated by the universal cell death machinery,
we added ZVAD-fmk, an inhibitor of caspases I (interleukin-1
β-converting enzyme) (ICE) and 3 (CPP32) (48) to HUVE cells.
Apoptosis induced by serum starvation was completely blocked
after 24 h by ZVAD-fmk at concentrations as low as 2 μM. These
findings indicated that endothelial cells grown in culture un-
derwent caspase-dependent, programmed cell death on serum
withdrawal.

VEGF Is a Survival Factor for Primary Human Endothelial
Cells: Requirement for Flk-1/KDR Activation—VEGF reduced
the serum starvation-induced apoptosis of HUVE cell with a
bell-shaped dose-response curve, with a maximal effect be-
tween 10 and 100 ng/ml (Fig. 2A). Higher concentrations re-
sulted in lower reduction of apoptosis. Human dermal micro-
vascular endothelial cells responded at even lower VEGF levels
(0.3 ng/ml; data not shown). Similar bell-shaped dose-response
curves in response to VEGF in cell-based assays have been
reported before (49). Although the cause of this effect is not
entirely clear, a current thought is that a vast excess of ligand
over receptor results in a reduced effectiveness of receptor
dimerization and signaling, such that an increasing number of
receptors remain in a monomeric form after ligand binding.
However, the percentage of apoptotic cells detected in the pres-
ence of 10% serum was usually lower compared with cells
grown in the presence of VEGF, at all concentrations tested,
suggesting that additional factors present in the serum render
the cells more resistant to apoptosis (9). Whether this is a
consequence of increased survival activity or is attributable
to the ongoing proliferation, or both, remains to be analyzed.

We next attempted to determine the role of the two VEGF
receptors in mediating the survival activity induced by VEGF.
We first tested placenta growth factor (PIGF), a member of the
VEGF family of proteins, which binds Flt-1 with high affinity
but fails to bind Flk-1/KDR. Previous studies have shown that

binding and propidium iodide staining, as described under “Experimen-
tal Procedures.” Bars represent means ± S.E. of two independent ex-
periments conducted with different preparations of endothelial cells.
PlGF induces little or no mitogenic activity on HUVE cells, nor does it induce tyrosine phosphorylation of Flt-1 (42). In our survival assay, PlGF did not reduce the number of apoptotic HUVE cells at all concentrations tested, as assessed by binding to annexin V (Fig. 2, B and D) or alamar blue staining of cells (Fig. 2C). To further confirm these findings, we tested receptor-selective VEGF mutants, which bind preferentially to either one of the VEGF receptors, KDR/Flik or Flt-1, respectively. Previous studies have shown that mutants defective in KDR binding lack the ability to induce proliferation, whereas Flt-1 binding-deficient mutants are effective mitogens (41). We found that the KDR-selective VEGF₁₆₅ mutant (KDR-sel) ex-

Fig. 2. VEGF is a survival factor for primary HUVE cells in culture. A, HUVE cells were grown for 24 h in the presence of 10% serum and rhVEGF₁₆₅ was added immediately after changing to serum-free conditions. Apoptotic cell death was determined after 24 h by flow cytometry for annexin V and propidium iodide, as described under “Experimental Procedures.” Bars represent means ± S.E. of two independent experiments conducted with different preparations of endothelial cells. B, HUVE cells were cultured for 48 h in the presence of the indicated amounts of rhVEGF₁₆₅ or PlGF. Apoptotic cell death was determined as described above. C, After 5–12 h in serum-containing media, HUVE cells were washed twice and incubated in 0% serum in the presence of rhVEGF₁₆₅ (100 ng/ml), Flt-1-sel (100 ng/ml), which is an Flt-1-selective mutant VEGF₁₆₅ form, or KDR-sel (100 ng/ml), which binds Flk-1/KDR 100-fold more selective than VEGF (for descriptions see “Materials” under “Experimental Procedures”). The relative number of cells was quantified after 4 days in culture by alamar blue staining, as described under “Experimental Procedures.” Error bars represent the S.E. of triplicate analysis of one representative experiment. D, HUVE cells were cultured for 36–48 h in the presence of the indicated concentrations of VEGF, PlGF, and the receptor-selective mutant VEGF forms Flt-1-sel and KDR-sel. The number of apoptotic cells was determined as described in A. Data points represent the average of three independent experiments with different HUVE cell preparations.
erted a similar survival activity as wild-type VEGF in the 4-day survival assay. However, we could not detect any significant survival effect by the Flt-1 mutant (Fig. 2C).

In agreement with these findings, neither PIGF nor the Flt-1 mutant led to a reduction in the amount of apoptotic HUVE cells after 36–48 h, as assessed by annexin V binding (Fig. 2D). In contrast, the KDR-sel mutant was as potent as wild-type VEGF165. From these findings we conclude that activation of Flk-1/KDR is necessary to mediate the survival-promoting activity of VEGF.

The Antiapoptotic Activity of VEGF Is Mediated by PI3-kinase—The PI3-kinase-specific inhibitor wortmannin is known to block the protective action of nerve growth factor (50) and platelet-derived growth factor in serum-deprived PC12 cells (14). These findings implicated an important role of the PI3-kinase pathway in apoptosis prevention by growth factors. To examine the involvement of PI3-kinase in VEGF-mediated protection, we incubated HUVE cells with the two specific inhibitors of PI3-kinase, wortmannin and the structurally unrelated synthetic compound LY294002 (51). As assessed by the numbers of apoptotic cells, wortmannin (30 nM) and LY294002 (100 nM) almost completely blocked the protective effect of VEGF (Fig. 3, A and B). Both agents slightly enhanced the degree of apoptosis observed in the absence of VEGF, possibly resulting from the inhibition of basal PI3-kinase activity present in serum-starved cells, similarly to what has been observed in other systems (16, 18, 52). Our results support the conclusion that the antiapoptotic activity of VEGF on endothelial cells is mediated via PI3-kinase.

The Flk-1/KDR-selective VEGF Mutant but Not Flt-1-selective Ligands Triggers Akt Phosphorylation—To test whether the PI3-kinase effector protein Akt is involved in the survival response, we analyzed whole-cell lysates of HUVE cells treated with VEGF for activation of Akt by phosphorylation at serine 473 by means of a phospho-specific antibody. Akt is activated by phospholipid binding, and phosphorylation occurs within the activation loop at threonine 308 and within the carboxyl terminus at serine 473. In initial time course experiments we found Akt to be maximally activated 15–30 min after exposure to VEGF. The response gradually decreased after prolonged incubation (data not shown). Incubation of HUVE cells with increasing concentrations of VEGF led to a dose-dependent activation of Akt, with highest levels between 1 and 10 ng/ml (Fig. 4A). Densitometric analysis of the signals displayed in Fig. 4 revealed a maximal 5.7-fold stimulation by VEGF at 1 ng/ml. At the same concentration, KDR-sel-stimulated cells displayed a 3.6-fold stimulation of Akt phosphorylation. Neither PIGF nor Flt-sel led to any increase in Akt activity at all concentrations tested (Fig. 4, C and D). Interestingly, the PI3-kinase inhibitor wortmannin (30 nM) completely abolished the Akt activation in response to VEGF or KDR-sel. In fact, Akt levels fell below unstimulated background. This latter finding correlates well with the slight increase in the amount of apoptotic cells observed in the presence of wortmannin alone, as shown in Fig. 3A. The reduction of background Akt activity in the presence of wortmannin or LY has been observed in other systems (17, 53) and is probably attributable to the low constitutive PI3-kinase background activity in HUVE cells cultured in serum-free conditions.

The Serine-Threonine Kinase Akt/Protein Kinase B Is Necessary and Sufficient to Transduce the Survival Signal Induced by VEGF—To verify that Akt, the downstream effector of PI3-kinase, is responsible for the survival response, we transiently transfected HUVE cells with expression vectors coding for wild-type Akt (Flag-Akt) or two mutant forms. Flag-Akt 179A represents a catalytically inactive mutant that contains a point mutation in the ATP binding site (43) and Flag-Akt 2D encodes a constitutively active Akt mutant (44). Transfected endothelial cells were identified after co-transfection with an expression vector for green fluorescent protein in a fluorescence microscope and classified by their morphology. Healthy
endothelial cells appear flat and well attached to the plate, forming the classical cobblestone pattern. Apoptotic endothelial cells are rounded, and some are fragmenting with small cytoplasmic blebs (Fig. 1B; Refs. 54, 55). When we stained cells with the DNA dye bisbenzimide (Hoechst 33258), apoptotic endothelial cells could be easily identified by the pronounced nuclear condensations (data not shown). We first examined whether the constitutively active Flag-Akt 2D form was sufficient to mediate survival of serum-starved endothelial cells. As shown in Fig. 5, biolistic transfection of the Flag-Akt 2D construct prevented endothelial cell apoptosis in the absence of VEGF and promoted survival to similar levels as seen when cells were grown in the presence of VEGF or 10% serum. Moreover, transfection of endothelial cells with the dominant-negative Flag-Akt 179A construct blocked VEGF survival activity completely. In the absence of VEGF, a weak increase in apoptosis was observed in cells transfected with Flag-Akt 179A, which probably reflects inhibition of constitutive Akt activity in serum-starved cells. Our findings indicate that Akt is critically involved in mediating the VEGF effects on endothelial cell survival.

DISCUSSION

The elucidation of the mechanisms responsible for blood vessel regression is critical to address several fundamental biological questions. This process is prominent not only in the course of organogenesis and organ remodeling during embryonic life but also in a variety of physiological situations in the adult, such as corpus luteum regression (56) and uterine or breast involution after delivery (5). Over the last few years, several inhibitors of angiogenesis have been identified, including angiostatin (57) and endostatin (58). These agents are able to inhibit tumor growth by suppressing angiogenesis in xenograft models. However, it is presently unknown whether these molecules participate in the physiological regulation of blood vessel regression. Recently, members of the family of Tie-2 ligands such as angiopoietin-2 have been shown to be involved in blood vessel remodeling and pruning, at least during embryonic development (59).

Increasing evidence supports the concept that the withdrawal of a positive effector such as VEGF is sufficient to result in blood vessel regression in various *in vivo* systems, including tumors (60) and developing organs (4, 28, 56). These studies demonstrated the presence of an inverse correlation between VEGF expression and the levels of vessel regression, implicating VEGF as an important survival factor for endothelial cells present in newly formed vasculature.

Using an *in vitro* model system of serum-starved HUVE cells, we attempted to elucidate the signal transduction pathways resulting in VEGF-mediated survival. The HUVE cells used in our experiments consisted of pooled primary isolates from 300 individual donor umbilical veins and thus are likely to represent an average population of endothelial cells. Both VEGF receptors, Flk-1/KDR and Flt-1, were previously found to be expressed on HUVE cells by cell binding and cross-linking studies with VEGF or the Flt-1-specific ligand PIGF (35, 42) or by real-time reverse transcription-polymerase chain reaction analysis (61). We first verified that serum removal indeed resulted in apoptotic cell death. This was confirmed by a series of morphological changes consistent with apoptosis, as evidenced by time lapse video recording. Furthermore, the finding that the caspase inhibitor ZVAD-fmk completely prevented apoptosis and mimicked VEGF activity demonstrates that this process is mediated by the universal cell death machinery.

In our survival assay, we found decreased levels of VEGF-dependent survival when cells were exposed to wortmannin or LY 294002, two potent inhibitors of PI3-kinase. Activation of PI3-kinase increases the intracellular amounts of phosphatidylinositol-3,4,5-trisphosphate and phosphatidylinositol-3,4,5-trisphosphate, which positively regulates Akt by binding to the pleckstrin homology domain of Akt. Akt activation by growth factors requires PI3-kinase activity (62). In our experiments we found that Akt becomes phosphorylated after VEGF stimulation, and such activation could be inhibited by the PI3-kinase-
specific inhibitor wortmannin. In a previous report, PI3-kinase was found to be tyrosine phosphorylated after exposure of endothelial cells to VEGF (23). However, another report failed to detect induction of PI3-kinase after stimulation of HUVE cells by VEGF (34). These latter findings do not necessarily conflict with our data, because those experiments were conducted in presence of 2% fetal bovine serum, which may induce the PI3-kinase/Akt pathway to high levels, which cannot be further increased by VEGF. Interestingly, Xia et al. (24) recently reported that PI3-kinase is activated 2.1-fold by VEGF in cultured endothelial cells but is not required for VEGF-dependent proliferation.

The serine-threonine protein kinase Akt (63) is one of the major targets of PI3-kinase-generated signals. The ability of activated Akt to promote survival was found in fibroblasts (18) and PC12 pheochromocytoma cells (64) and neuronal cells (16). A number of different growth factors have been shown to rapidly activate Akt via PI3-kinase activation, such as platelet-derived growth factor, epidermal growth factor, bFGF, insulin, and insulin-like growth factor 1 (43, 65–69). In our experiments, VEGF and a mutant VEGF form, which binds to the Flk-1/KDR receptor specifically, could strongly induce Akt phosphorylation, and this induction was PI3-kinase-dependent. Moreover, in transient transfection experiments, the kinase-inactive Akt mutant, which has been suggested to act in a dominant-negative manner (43), was found to block VEGF survival activity on endothelial cells. These findings constitute, to the best of our knowledge, the first direct demonstration of a role played by the PI3-kinase/Akt pathway in mediating a VEGF biological activity.

Although the significance of VEGF and its endothelial cell-specific receptors in angiogenesis is well established, the signal transduction cascades initiated by the two known VEGF receptors resulting either in proliferation or in survival of endothelial cells are incompletely characterized.

Based on gene knockout experiments in mice and several other studies, it can be deduced that Flk-1/KDR is critical for VEGF-mediated angiogenesis, both in the developing and in the adult animal (29, 70). In contrast, Flt-1 appears to be primarily involved in endothelial cell morphogenesis, at least during embryonic development (30). Although the role of Flt-1 in the adult animal is less clearly defined, there is increasing evidence that Flt-1 is able to transduce a signal and mediate a biological response. Flt-1, but not Flk-1/KDR, has been implicated in monocyte migration in response to VEGF or PiGF via a GTP-dependent signaling pathway (71, 72). Furthermore, the finding that Flt-1 mRNA is expressed in both proliferating and quiescent endothelial cells suggests a role for this receptor in the maintenance of endothelial cells (39).

The motif YXXM required for binding of the SH2-domain of the p85 regulatory subunit of PI3-kinase is absent from the noncatalytic regions of the intracellular domain of Flt-1 as well as from Flk-1/KDR. Using the yeast two-hybrid system, two noncatalytic regions of the intracellular domain of Flt-1 as well as the PI3-kinase/Akt pathway. Further delineation of this signaling pathway may yield attractive targets for cancer therapy aimed to induce endothelial cell apoptosis and blood vessel regression.

Acknowledgments—We thank the fluorescence-activated cell sorting lab at Genentech for their excellent support, H. Nguyen for cell culture, M. Vasser, P. Ng, and P. Jhurani for oligonucleotide synthesis, and M. Winkler and T. Yee for purification of VEGF mutants. We also thank Hendrik Gille for valuable discussion and David Wood and Charles Hoffman for excellent graphic art work.

REFERENCES

Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction Pathway: REQUIREMENT FOR Flk-1/KDR ACTIVATION
Hans-Peter Gerber, Amy McMurtrey, Joe Kowalski, Minhong Yan, Bruce A. Keyt, Vishva Dixit and Napoleone Ferrara

doi: 10.1074/jbc.273.46.30336

Access the most updated version of this article at http://www.jbc.org/content/273/46/30336

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 71 references, 35 of which can be accessed free at http://www.jbc.org/content/273/46/30336.full.html#ref-list-1