Solution-active Structural Alterations in Liganded Hemoglobins C (β6 Glu → Lys) and S (β6 Glu → Val)*

(Received for publication, October 13, 1998, and in revised form, February 5, 1999)

Rhoda Elison Hirsch‡§, Laura J. Jusczak¶, Nazim A. Fataliev†, Joel M. Friedman‡, and Ronald L. Nagel††

From the Departments of §Medicine (Division of Hematology), ¶Anatomy & Structural Biology, and ††Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461

Based upon existing crystallographic evidence, HbS, HbC, and HbA have essentially the same molecular structure. However, important areas of the molecule are not well defined crystallographically (e.g. the N-terminal nonhelical portion of the α and β chains), and conformational constraints differ in solution and in the crystalline state. Over the years, our laboratory and others have provided evidence of conformational changes in HbS and, more recently, in HbC.

We now present data based upon allosteric perturbation monitored by front-face fluorescence, ultraviolet resonance Raman spectroscopy, circular dichroism, and oxygen equilibrium studies that confirm and significantly expand previous findings suggesting solution-active structural differences in liganded forms of HbS and HbC distal to the site of mutation and involving the 2,3-diphosphoglycerate binding pocket. The liganded forms of these hemoglobins are of significant interest because HbC crystallizes in the erythrocyte in the oxy form, and oxy HbS exhibits increased mechanical precipitability and a high propensity to oxidize. Specific findings are as follows: 1) differences in the intrinsic fluorescence indicate that the Trp microenvironments are more hydrophobic for HbS > HbC > HbA, 2) ultraviolet resonance Raman spectroscopy detects alterations in Tyr hydrogen bonding, in Trp hydrophobicity at the αβ, interface (β37), and in the A-helix (ε14/β15) of both chains, 3) displacement by inositol hexaphosphate of the Hb-bound 8-hydroxy-1,3,6-pyrenetrisulfonate (the fluorescent 2,3-diphosphoglycerate analog) follows the order HbA > HbS > HbC, and 4) oxygen equilibria measurements indicate a differential allosteric effect by inositol hexaphosphate for HbC ~ HbS > HbA.

Naturally occurring β6 hemoglobin mutants aggregate into defined structures in the erythrocyte. Sickle cell hemoglobin (Hbs, β6 Glu → Val) forms polymers in the deoxy state, whereas HbC (β6 Glu → Lys) forms crystals in the oxy liganded state. A complete understanding of the mechanisms giving rise to deoxy HbS polymers and oxy HbC crystals remains to be elucidated. In the last few years, our laboratory has pursued questions related to mechanisms involved in the ligand-specific, induced crystallization of HbC, starting with site-specific probing of the R-state tetrameric structure of HbC (1, 2). Here, we extend the studies to include a comparison of the R-state of HbS. The R-state of HbS is of particular relevance because oxy HbS exhibits unusual properties compared with HbA, such as mechanical precipitability (3–5), greater unfolding at an air-water interface (6, 7), and increased autooxidation (8–10).

According to existing crystallographic evidence, Hbs, HbC, and HbA have essentially the same molecular structure. However, this ignores the following: 1) important areas of the molecule are not well defined crystallographically (e.g. the N-terminal nonhelical portion of the α and β chains), and 2) crystals might constrain conformation compared with that in solution.

Spectroscopic and biochemical findings by our laboratory and others revealed distal (away from the mutation site) conformational changes: for HbS, NMR studies revealed alterations in the pK of surface His, including β2 His affecting the DPG binding site (11, 12). Optical spectroscopies and ~SH group reactivity demonstrate a long-range tertiary effect of the β6 Val substitution around the heme pocket (13–16). Organic phosphates decrease the β93 sulfhydryl reactivity more for oxy HbA than for oxy HbS, which is indicative of weaker organic phosphate binding to Hbs compared with HbA (16). Polymerization-independent functional differences were shown for HbS compared with HbA (17, 18). Hemoglobins HbC > HbS > HbA bind to the cytosolic side of the erythrocyte membrane (19–21). It is noteworthy that the membrane binding site for hemoglobin is the 11-amino acid N-terminal of the cytosolic side of band 3 that fits into the hemoglobin DPG pocket (22). A close examination of subunit dissociation studies indicates a slight but reproducible difference between the intersubunit bonds for Hbs and HbS and the A5 hybrid (23). This is in contrast to functional and ligand binding studies presented by others (e.g. Refs. 24 and 25). Despite all of the reported differences (5–21), it is generally concluded that the similarities between HbA and Hbs are emphasized and viewed as more significant. The “small differences” are typically regarded as having no structural or functional relevance (e.g. Refs. 26 and 27).

A recent study using more sensitive spectroscopic instrumentation, front-face fluorometry, and ultraviolet resonance Raman (UVRR) spectroscopy revealed differences in the H-bonding between β15 Trp and β72 Ser of HbC versus HbA under conditions of 0.3 M perchlorate (1), suggesting a displacement of the A-helix away from the E-helix with a weakening of the H-bond between β15 Trp and β72 Ser. Crystal growth kinetics and spectroscopic studies of HbC in the presence of hemoglobin central cavity-binding proteins and effectors point to differences in the DPG pocket (2).

* This work was supported in part by National Institutes of Health Grants HL 38656, HL 58247, P01HL15804, HLBI RO152703, and HL 07556. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Medicine (Ullmann 925), Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461. Tel.: 718-430-3604; Fax: 718-824-3153; E-mail: rhirsch@aecom.yu.edu.

‡ The abbreviations used are: DPG, 2,3-diphosphoglycerate; UVRR, ultraviolet resonance Raman; HPT, 8-hydroxy-1,3,6-pyrenetrisulfonate; COHb, carbonmonoxyhemoglobin.

This paper is available on line at http://www.jbc.org
The present study focuses on a comparison of R-state forms of HbC, HbS, and HbA. The comparison is made using intrinsic fluorescence, extrinsic fluorescence spectroscopic probing of the central cavity DPG binding site, UVRR spectroscopy, CD spectroscopy, allosteric perturbation, and oxygen equilibrium studies. These results confirm and significantly expand previous findings and demonstrate a differential response between the R-states of HbC and HbS to central cavity perturbations.

EXPERIMENTAL PROCEDURES

*Human Hemoglobin Preparation—*HbC, HbA, and HbS were purified and separated from hemolysates obtained from AC, SS, or AS individuals by CM-52 cation exchange chromatography and stripped of organic phosphates by Sephadex G-25 (equilibrated with bid-Tris and 0.1 M NaCl) column chromatography. The eluted hemoglobin was concentrated and chromatographed again on a Sephadex G-25 column equilibrated with 0.05 M Hepes buffer at the desired pH of the experimental conditions. No significant met (oxidized) hemoglobin content was detected as determined by absorption spectrophotometry.

*Front-face Fluorescence Spectroscopy—*A SLM 8000C photon counting spectrophotometer adapted with a front-face cuvette holder was used to obtain the steady-state fluorescence intrinsic emission spectra of the hemoglobin solutions as well as the emission from the fluorescent DPG analog, 5-hydroxy-1,3,6-pyrenetrisulfonate (HPT) (1). The properties and binding of HPT to hemoglobins have been described previously in detail (2, 28–30). The addition of effectors to the hemoglobin solutions did not significantly alter the pH.

*UV Resonance Raman Spectroscopy—*The apparatus used to generate and collect the Raman signal was described previously (1). The excitation wavelength was 228 nm, and the UV power at the sample was 1.0 milliwatt. The spectrographic slit width was 200 μm. The Raman signal was collected at 5-min intervals for a total of 30 min. All samples were cooled under a stream of nitrogen gas to 6 °C to ensure that the hemoglobin ligation state remained unchanged during the course of the experiment, the absorption spectra of each sample were taken before and after UV exposure; no absorption band changes were seen during this experiment. For all hemoglobin variants, the hem concentration was 0.27 mM in 0.1 M Hepes buffer, pH 7.35. The internal calibration standard utilized was a Raman band at 1045 cm−1 from 0.56 mM potassium nitrate. Because the Raman cross-section of the 1045 cm−1 band diminishes upon prolonged UV exposure,2 sample-to-sample total UV exposure was tightly controlled by keeping sample irradiation times constant and operating the pump laser in light-controlled mode.

*Circular Dichroism Spectroscopy—*A Jasco J-720 spectropolarimeter was used to compare the CD spectra of purified and stripped HbC, HbS, and HbA (0.1 mM heme) in 0.1 M Hepes, pH 6.85, with and without an excess of inositol hexaphosphate (1 Hb:5 inositol hexaphosphate). The fluorescent DPG analog, HPT, has been used previously to show differences in the central cavity of hemoglobin species may be fit to two bands, one of which is centered at 1558.6 ± 0.2 cm−1 (data not shown). The position of the lower wavenumber band was centered at 1547.5 cm−1 for COHbA and COHbC. In the COHbA W3 band, however, this lower frequency band is shifted to 1545 cm−1. This frequency shift is illustrated by the 1542 cm−1 difference peak for COHbS-CO-HbA (Fig. 2). The fractional cross-sections for both W3 bands were essentially identical for all three hemoglobins. It should also be noted that the 1547 cm−1 band for COHbC exhibits a small difference just above the level of noise when compared with COHbA. A comparison of the non-normalized UVRR spectra of the CO forms of the three hemoglobins (data not shown) demonstrates that the peak intensities of the W16 band for COHbA are greater than 0.5 g% where dissociation to dimers becomes negligible. COHbA at pH 6.35 has been shown to be in an altered R-state of HbC compared with a similarly altered R-state of HbA (2). These comparative studies are now extended to HbS. Front-face fluorometry permits a direct spectroscopic view of HPT bound to Hb as well as the ability to view HPT in the presence of concentrations of R-state hemoglobins greater than 0.5 g% where dissociation to dimers becomes negligible. COHbA at pH 6.35 has been shown to be in an altered R-state capable of binding IHP (38, 39). It was previously shown that IHP displaces HPT at a 1:1 molar ratio, and that IHP has a higher affinity for the DPG binding site than HPT (28–30). Released HPT is monitored at 385 nm, a region of little or no Hb interference under the conditions of our experiment with COHbA (pH 6.35).

*Probing the Central Cavity DPG Binding Site with a Fluorescent DPG Analog—*The fluorescent DPG analog, HPT, has been used previously to show differences in the central cavity of an altered R-state of HbC compared with a similarly altered R-state of HbA (2). These comparative studies are now extended to HbS. Front-face fluorometry permits a direct spectroscopic view of HPT bound to Hb as well as the ability to view HPT in the presence of concentrations of R-state hemoglobins greater than 0.5 g% where dissociation to dimers becomes negligible. COHbA at pH 6.35 has been shown to be in an altered R-state capable of binding IHP (38, 39). It was previously shown that IHP displaces HPT at a 1:1 molar ratio, and that IHP has a higher affinity for the DPG binding site than HPT (28–30). Released HPT is monitored at 385 nm, a region of little or no Hb interference under the conditions of our experiment with COHbA (pH 6.35).

As IHP is added to each of the CO hemoglobins, HbA, HbC, and HbS at pH 6.35, an increase in the HPT fluorescence intensity is observed at the 385 nm emission maximum upon excitation at 280 nm (Fig. 3), corresponding to a release in HPT.

2 T. Spiro, private communication.
These results indicate a differential affinity of IHP for \(\text{HbA} \), \(\text{HbS} \), and \(\text{HbC} \).

Probing the Heme Environment by CD Spectroscopy—Small differences in the ellipticity of the oxy liganded state of \(\text{HbS} \) and \(\text{HbC} \) in 0.1 M Hepes buffer, pH 6.85, are enhanced with the addition of excess IHP (Fig. 4). The addition of excess IHP results in a small but 2-fold increase in ellipticity exhibited by intensity changes and a shift from 420.5 nm to longer wavelengths (\(\text{HbA}, 424 \text{ nm}; \text{HbC}, 423 \); and \(\text{HbS}, 422 \text{ nm} \)).

Oxygen Equilibrium Measurements—Oxygen affinity differences between \(\text{COHbC} \) and \(\text{COHbA} \) (long and short dashed lines) and between \(\text{COHbS} \) and \(\text{COHbA} \) (dashed line) are shown at the bottom.

(30). These results indicate a differential affinity of IHP for \(\text{HbA} > \text{HbS} > \text{HbC} \).

FIG. 2. Ultraviolet resonance Raman spectroscopy shows differences in the Tyr and Trp microenvironments of the \(\beta 6 \) mutants. 228 nm excited UVRR spectra of COHb in 0.1 m Hepes, pH 7.35, at 6 °C. The spectra are normalized to the 1045 cm\(^{-1} \) nitrate internal standard. COHbA, solid line; COHbC, long and short dashed line; COHbS, dashed line. The W3 band from 1530 to 1580 cm\(^{-1} \) is expanded and inset in the upper right. The UVRR difference spectra between \(\text{COHbC} \) and \(\text{COHbA} \) (long and short dashed lines) and between \(\text{COHbS} \) and \(\text{COHbA} \) (dashed line) are shown at the bottom.

FIG. 3. Displacement by IHP of the hemoglobin-bound HPT, the fluorescent DPG analog (28, 29), indicates a differential affinity of IHP for \(\text{HbA} > \text{HbS} > \text{HbC} \). 280 nm excitation of the hemoglobin solutions. Released HPT is monitored at 385 nm, a region of little or no Hb fluorescence interference under the conditions of our experiment with COHbA (pH 6.35, 0.05 m Hepes).

FIG. 4. Soret CD spectroscopy of oxy \(\text{HbA}, \text{HbS}, \) and \(\text{HbC} \) reveals changes in ellipticity in the heme environment upon the addition of excess IHP. (0.1 m Hepes, pH 6.85, 0.1 mM heme). IHP is added in a 5-fold excess of hemoglobin.

FIG. 5. Oxygen equilibria measurements indicate an altered allosteric effect by IHP for \(\text{HbC} \sim \text{HbS} \sim \text{HbA} \). The measurements were made using a HEMO-SCAN instrument calibrated to 37 °C as described previously (2). IHP was added to hemoglobin solutions at pH 7.35 in 0.05 m Hepes buffer. The \(P_{50} \) was determined and is plotted here as a function of the IHP:Hb tetrameric ratio.

The addition of excess IHP results in a small but 2-fold increase in ellipticity exhibited by intensity changes and a shift from 420.5 nm to longer wavelengths (\(\text{HbA}, 424 \text{ nm}; \text{HbC}, 423 \); and \(\text{HbS}, 422 \text{ nm} \)).

Probing the Heme Environment by CD Spectroscopy—Small differences in the ellipticity of the oxy liganded state of \(\text{HbS} \) and \(\text{HbC} \) in 0.1 M Hepes buffer, pH 6.85, are enhanced with the addition of excess IHP (Fig. 4). The addition of excess IHP results in a small but 2-fold increase in ellipticity exhibited by intensity changes and a shift from 420.5 nm to longer wavelengths (\(\text{HbA}, 424 \text{ nm}; \text{HbC}, 423 \); and \(\text{HbS}, 422 \text{ nm} \)).

Oxygen Equilibrium Measurements—Oxygen affinity differences between \(\beta 6 \) mutants and \(\text{HbA} \) (0.05 m Hepes buffer, pH 7.35) as a function of IHP titration are demonstrated by oxygen-equilibrium measurements (Fig. 5). The differences approach a plateau at a 1.5:1 IHP:Hb tetramer molar ratio. This is consistent with the known binding of IHP to the hemoglobin tetramer (1:1 at the DPG binding site) and reports of a secondary lower-affinity binding site.

Stripped \(\text{HbA} \) compared with \(\text{HbC} \) and \(\text{HbS} \) under conditions similar to that of the fluorescence studies (0.05 m Hepes buffer,
Spectroscopic Indications of Structural Differences in HbC and HbS

TABLE I

The oxygen affinity (P_{50}) of stripped HbA, HbS, and HbC in 0.05 M Hepes buffer, pH 7.35 (37 °C) (Student's t test)
The difference in P_{50} between HbA and each of the β-mutants under these conditions is significant.

<table>
<thead>
<tr>
<th></th>
<th>HbA</th>
<th>HbC</th>
<th>HbS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.77</td>
<td>6.01</td>
<td>6.86</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.367</td>
<td>0.751</td>
<td>1.15</td>
</tr>
<tr>
<td>Variance</td>
<td>0.254</td>
<td>1.24</td>
<td>1.94</td>
</tr>
<tr>
<td>n value</td>
<td>11</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

The difference in P_{50} between HbA and each of the β-mutants under these conditions is significant (Table I).

DISCUSSION

To date, there is no detailed mechanistic explanation as to why HbC forms crystals in the oxy state and HbS forms polymers in the deoxy state or why oxy HbS exhibits mechanical instability, greater unfolding at an air-water interface, and a high propensity to oxidize. The ligand-specific induction of these distinct processes weakens the argument that the aggregation phenomena arise exclusively from electrostatic or hydrophobic differences at β. Rather, we hypothesize that the ligand-specific characteristics of each of these β-mutant hemoglobins arise from an intramolecular long-range communication of the conformational change at the β site. The alteration need not be the same for HbS and HbC.

Spectroscopic and functional (oxygen equilibria) studies presented here strongly suggest that global, solution-active conformational alterations, particularly those involving the A-helix and the DPG binding pocket, are different in HbS and HbC. The intrinsic fluorescence studies show a small but reproducible shift of the emission maxima to shorter wavelengths for these R-state β-mutants. Because it is well established that tryptophan emission wavelength shifts are a function of hydrophobicity (32–34), the findings indicate that the β-helix and E-helices may be predictive of alterations in the DPG pocket. Spectroscopic and functional (oxygen equilibria) studies presented here strongly suggest that global, solution-active conformational alterations, particularly those involving the A-helix and the DPG binding pocket, are different in HbS and HbC. The intrinsic fluorescence studies show a small but reproducible shift of the emission maxima to shorter wavelengths for these R-state β-mutants. Because it is well established that tryptophan emission wavelength shifts are a function of hydrophobicity (32–34), the findings indicate that the β-helix and E-helices may be predictive of alterations in the DPG pocket. Similar UVRR findings for the T-state fluorometer HbS were reported recently (48).

At physiological pH 7.35, the -1558 cm^{-1} UVRR signal from COHbS, HbC, and HbA (Fig. 2) indicates a tightening of the H-helix in the order of HbS > HbC > HbA. Our earlier studies (1), which were conducted at pH 6.85, indicated an outward displacement of the A-helix in HbC compared with HbA. UVRR studies comparing the use of nitrate and perchlorate as the internal standard reveal that the different observations in our earlier study (1) result from the presence of 0.3 M perchlorate, which we speculate may function as an allosteric effector. Studies of the effects of chloride at low pH (45) and other allosteric effectors are underway.

In general, with respect to the UVRR results, in going from HbA to HbC to HbS, there are intensity increases in most of the tyrosine and tryptophan bands. Most significantly, the γ-band at 1615 cm$^{-1}$ does not shift (no derivative signal), and the differences in W3 are largely but not entirely due to the γ_{14}, β_{15}, and β_{37}, as reflected in a greater W3 band cross-section for both mutants relative to COHbA. In support of this, at pH 6.35, these effects are shown to be further exaggerated (45). The position of the W3 UVRR signal is a function of the dihedral angle, $\gamma_{2,1} (C_{2}–C_{3}–C_{4}–C_{5},)$, which is the angle between the indole residue and the backbone C$_{\alpha}$ (Ref. 46). An equation relating the W3 frequency to the dihedral angle has been proposed (47). Applying this equation, we find that the 1547.5 cm$^{-1}$ W3 band for β-Trp of COHbA and COHbC (48) corresponds to a $\gamma_{2,1}$ dihedral angle of 87°, whereas the 1545 cm$^{-1}$ band of COHbS maps to a dihedral angle of 81°. The change in intensity at the 1558 cm$^{-1}$ band assigned to differences in the H-bonding between β_{15} Trp and β_{37} Ser of the A- and E-helices may be predictive of alterations in the DPG pocket. Similar UVRR findings for the T-state fluorometer HbS were reported recently (48).

At physiological pH 7.35, the -1558 cm^{-1} UVRR signal from COHbS, HbC, and HbA (Fig. 2) indicates a tightening of the H-helix in the order of HbS > HbC > HbA. Our earlier studies (1), which were conducted at pH 6.85, indicated an outward displacement of the A-helix in HbC compared with HbA. UVRR studies comparing the use of nitrate and perchlorate as the internal standard reveal that the different observations in our earlier study (1) result from the presence of 0.3 M perchlorate, which we speculate may function as an allosteric effector. Studies of the effects of chloride at low pH (45) and other allosteric effectors are underway.

In general, with respect to the UVRR results, in going from HbA to HbC to HbS, there are intensity increases in most of the tyrosine and tryptophan bands. Most significantly, the γ-band at 1615 cm$^{-1}$ does not shift (no derivative signal), and the differences in W3 are largely but not entirely due to the γ_{14}, β_{15}, and β_{37}, as reflected in a greater W3 band cross-section for both mutants relative to COHbA. In support of this, at pH 6.35, these effects are shown to be further exaggerated (45). The position of the W3 UVRR signal is a function of the dihedral angle, $\gamma_{2,1} (C_{2}–C_{3}–C_{4}–C_{5},)$, which is the angle between the indole residue and the backbone C$_{\alpha}$ (Ref. 46). An equation relating the W3 frequency to the dihedral angle has been proposed (47). Applying this equation, we find that the 1547.5 cm$^{-1}$ W3 band for β-Trp of COHbA and COHbC (48) corresponds to a $\gamma_{2,1}$ dihedral angle of 87°, whereas the 1545 cm$^{-1}$ band of COHbS maps to a dihedral angle of 81°. The change in intensity at the 1558 cm$^{-1}$ band assigned to differences in the H-bonding between β_{15} Trp and β_{37} Ser of the A- and E-helices may be predictive of alterations in the DPG pocket. Similar UVRR findings for the T-state fluorometer HbS were reported recently (48).

At physiological pH 7.35, the -1558 cm^{-1} UVRR signal from COHbS, HbC, and HbA (Fig. 2) indicates a tightening of the H-helix in the order of HbS > HbC > HbA. Our earlier studies (1), which were conducted at pH 6.85, indicated an outward displacement of the A-helix in HbC compared with HbA. UVRR studies comparing the use of nitrate and perchlorate as the internal standard reveal that the different observations in our earlier study (1) result from the presence of 0.3 M perchlorate, which we speculate may function as an allosteric effector. Studies of the effects of chloride at low pH (45) and other allosteric effectors are underway.
The present results are consistent with these results and conclusions.

It should be noted that in our earlier report (1), solution conditions using pH 6.85 for the spectroscopic studies had been chosen because hemoglobin exhibits a maximal fluorescence emission difference upon R → T switching at this pH. This maximal difference in fluorescence was attributed to alterations at the αβ interface, because it appeared to be obliterated when β43 Glu was covalently modified (49–52). Studies pursuing the structural effects imposed by this pH difference are ongoing.

A direct confirmation of a perturbed central cavity of HbC and HbS is seen with the use of the extrinsic fluorescent DPG analog HPT, which directly probes the DPG binding site (28–30). The results with COHb at pH 6.35, previously shown to form an altered R-state (38, 39), indicate that the affinity of IHP for the hemoglobins discussed earlier follow the order HbA > HbS > HbC. These results, combined with the UVRR findings, indicate an alteration of the DPG pocket at physiological pH. A possible source for this alteration is a β6-induced tightening of the β15 Trp-β72 Ser hydrogen bond, with the consequence that the A-helix moves closer to the E-helix for the β6 mutants HbC and HbS.

The effects of IHP upon the P50 of HbC and HbS compared with HbA provide further support that there is an A-helix perturbation in the β6 mutants that translates to an altered DPG pocket and consequently affects oxygen binding properties (Fig. 5). HbC and HbS stripped of organic phosphates show a small but statistically significant difference in their oxygen affinities when compared with HbA (Table 1). These differences in oxygen affinities are consistent with the suggested A-helix alterations and/or subtle differences in the microenvironment of β37 Trp at the αβ interface for the β6 mutants, both of which are indicated by the spectroscopic data. The differences are enhanced by the addition of the DPG analog IHP.

Structural alterations corresponding to the heme environment are correlated with the change in oxygen affinity upon addition of IHP, as reflected by the CD Soret spectral changes (~420 nm). The addition of IHP under the conditions used in this study alters the Soret band in ellipticity and wavelength for oxy HbA > oxy HbC > oxy HbS (Fig. 4). Above 300 nm, the optical activity of the heme results from short and long distance interactions of the heme with the protein matrix, specifically attributed by theoretical calculations to a coupled oscillator interaction between the heme transitions and those of the surrounding aromatic side chains (53, 54). This interpretation is consistent with the altered microenvironments of the aromatic amino acids of these β6 mutants, as indicated by the fluorescence and UVRR spectroscopic results. The implication of differences in the heme environment initially arises from the observation that for HbS, the deoxy form gives rise to polymerization, whereas for HbC, the oxy form promotes intracellular crystallization. Hence, the CD Soret differences in ellipticity may serve as a direct measurement of conformational changes distally communicated to the heme microenvironment. Differences in the oxy hemoglobin CD spectra of HbA, HbS, and HbC were reported earlier by Melki (55) and of COHbS were reported by Fronticelli et al. (13–15).

For decades, functional studies in which HbS and/or HbC were compared with HbA (conducted under very different conditions (e.g. bis-Tris buffer) than those used in the present study) gave rise to the concept that functional and structural differences distal to the site of the β6 mutations did not exist on a significant level (24, 25). Early spectroscopic findings and binding studies questioned these conclusions (11–21, 55, 56), but the dogma prevailed, especially in light of the crystal structure showing no differences distal to the site of mutation, albeit at 3 Å resolution (57, 58).

Padlan and Love (57, 58) found that the deoxy HbS crystal structure exhibits a narrowing of the DPG pocket compared with HbA by a comparison of the eight deoxy hemoglobin S subunits with the symmetry-averaged subunits of deoxy HbA. The biggest structural change is a shift in a hinge-like motion of the A-helices of 1β6 and 2β6 subunits, resulting in a 5 Å displacement of the α carbons of the N-terminal valine and a narrowing of the DPG binding pocket. This finding is consistent with the conclusion presented here. However, Eaton and Hohfritcher (27) reason that because no change in the A-helices is observed in the 1β6 and 2β6 subunits, the displacement observed in the 1β6 and 2β6 subunits presumably results from the formation of the intermolecular contacts in the crystal (the E- and F-helices of β subunits in neighboring molecules) and is not a direct result of the substitution of valine at β6. On the contrary, this difference may very well be intrinsic to the mutation as indicated by: 1) the findings presented in this investigation, and 2) the recently published 2.05 Å resolution crystal structure of deoxy HbS by Harrington et al. (59), reporting movement of the A-helices and subtle changes in the positions of the residues in the acceptor pocket that demonstrate that plasticity in both the donor and acceptor chains of the lateral contact facilitates binding.

In general, the advent of state of the art spectroscopic techniques with site-specific signal assignments permits superior signal resolution and, consequently, highly detailed structural information for many proteins. For hemoglobins, this has resulted in the uncovering of solution-active structural differences at the tetrameric molecular level and, as exemplified here, distal to the site of the β6 mutations when compared with HbA. Our results point to A-helix alterations that may be the likely candidate in the primary mechanism driving oxy HbC to crystallize and causing destabilization of oxy HbS, which, under deoxy conditions, may give rise to the polymerization process. Similar A-helix perturbations have also been reported by others for both T- and R-state forms of fluoro-met HbS (48). Extensive comparative investigations of the deoxy forms of these mutants are planned.

REFERENCES
Spectroscopic Indications of Structural Differences in HbC and HbS

Solution-active Structural Alterations in Liganded Hemoglobins C (β6 Glu → Lys) and S (β6 Glu → Val)
Rhoda Elison Hirsch, Laura J. Juszczak, Nazim A. Fataliev, Joel M. Friedman and Ronald L. Nagel

doi: 10.1074/jbc.274.20.13777

Access the most updated version of this article at http://www.jbc.org/content/274/20/13777

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 52 references, 15 of which can be accessed free at http://www.jbc.org/content/274/20/13777.full.html#ref-list-1