The Role of Intron Structures in trans-Splicing and Cap 4 Formation for the Leishmania Spliced Leader RNA*

(Received for publication, September 4, 1998, and in revised form, March 17, 1999)

Nancy R. Sturm‡ and David A. Campbell§

From the Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095-1747

A 39-nucleotide leader is trans-spliced onto all trypanosome nuclear mRNAs. The precursor spliced leader RNA was tested for trans-splicing function in vivo by mutating the intron. We report that in Leishmania tarentolae spliced leader RNA 5′ modification is influenced by the primary sequence of stem-loop II, the Sm-binding site, and the secondary structure of stem-loop III. The sequence of stem-loop II was found to be important for cap 4 formation and splicing. As in Ascaris, mutagenesis of the bulge nucleotide in stem-loop II was detrimental to trans-splicing. Because restoration of the L. tarentolae stem-loop II structure was not sufficient to restore splicing, this result contrasts the findings in the kinetoplastid Leptomonas, where mutations that restored stem-loop II structure supported splicing. Methylation of the cap 4 structure and splicing was also dependent on both the Sm-binding site and the structure of stem-loop III and was inhibited by incomplete 3′ end processing. The critical nature of the L. tarentolae Sm-binding site is consistent with its essential role in the Ascaris spliced leader RNA, whereas in Leptomonas mutation of the Sm-binding site and deletion of stem-loop III did not affect trans-splicing. A pathway for Leishmania spliced leader RNA processing and maturation is proposed.

Kinotoplastid nuclear gene expression is dependent on the trans-splicing process. The common substrate for all trans-splicing reactions is the spliced leader (SL)† RNA, also known as the mini-exon derived RNA, whose first 39 nt constitute the 5′ ends of both mono- and polycistrionally synthesized mRNAs (1). The polycistrionic pre-mRNAs require trans-splicing to acquire the specialized “cap 4” structure on the SL RNA. The cap 4 consists of a 7mG attached to the first nucleotide (2), in addition to methylation of the first four and sixth nucleotides of the SL RNA (3–5). These modifications are made to the primary SL RNA and spliced onto the mRNA as part of the 39-nt exon. The cap 4 may have roles in mRNA trans-splicing, transport, stability and translation.

The SL RNA contains two functional domains as follows: the exon and the intron or snRNA-like domain (6). The exon sequence is conserved among 38 different members of the order Kinetoplastida (7). Positions 1–9 and 20–39 of the exon are nearly identical, whereas positions 10–19 are relatively heterogeneous and characteristically AT-rich. This conservation cannot be ascribed to internal promoter location in Leishmania (8, 9), as found in Ascaris (10). It was surprising that mutations within positions 20–39 permitted accurate trans-splicing in Leishmania tarentolae and did not lower splicing efficiency (11) because these results contrasted with findings in Leptomonas (12). Thus, the results in L. tarentolae more closely resemble the findings in worms as follows: in Ascaris, exon sequences are not necessary for trans-splicing in vitro (13); in Caenorhabditis elegans, length, primary sequence, and composition of the SL are not critical parameters for essential embryonic function, although certain nucleotides may be essential for in vivo splicing of the SL1 RNA (14, 15).

The primary sequence of the SL RNA intron is not conserved among the trypanosomatids (7); however, the secondary structure is consistent (16). This structure has been confirmed by physical-chemical and enzymatic studies (17, 18) and examined by mutagenesis (12). An equivalent structure is also conserved in the nematode SL RNAs (16, 19). The intron contains a putative Sm-binding site (16), an element found in the small nuclear RNAs of higher eukaryotes but apparently lacking in all U-RNAs of kinetoplastids (20) except U5 RNA (21, 22). The Sm-binding element is required for SL RNA trans-splicing in Ascaris (23) but not in Leptomonas (12).

We demonstrated recently that the T tract downstream of the SL RNA gene is a transcription termination element and that staggered T tract termination products are processed via nucleolytic cleavage to the base of stem-loop III (24). The signals for 3′-processing begin in the Sm-binding site at position 76 and include the structure, but not content, of stem-loop III. Studies in Leptomonas seymouri demonstrated that mutation of a variety of elements in the intron was acceptable for trans-splicing (12), whereas in Leptomonas collosoma the loop portions of stem-loops II and III were tolerant to insertions but not to replacement with the Trypanosoma brucei intron (25). By contrast, the bulge of stem-loop II was critical for trans-splicing in Ascaris (26).

In this paper we report that methylation of nucleotides in the cap 4 structure of the Leishmania SL RNA is influenced by formation of stem-loop III, the Sm-binding site, and specific sequences in stem-loop II. The methylation of the cap 4 structure correlates with correct 3′ end formation; defects in 3′ end processing and cap 4 formation result in failure of the mutated SL RNA to undergo trans-splicing. However, correct maturation of the SL RNA is not sufficient to obtain a positive splicing phenotype since mutation of nucleotides in the stem I region of the intron can also result in loss of function. Our data from L. tarentolae broadly reflect the results obtained in vitro in the nematode Ascaris, where nucleotides in stem-loop II and the

* This work was supported in part by National Institutes of Health Grant AI34536. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
‡ Postdoctoral trainee supported by Microbial Pathogenesis Training Grant 2-T32-AI-07323.
§ To whom correspondence should be addressed: Dept. of Microbiology and Immunology, UCLA School of Medicine, 10833 Le Conte Ave., Los Angeles, CA 90095-1747. Tel.: 310-825-4195; Fax: 310-206-3865; E-mail: dc@ucla.edu.
† The abbreviations used are: SL, spliced leader; tSL, tagged SL; Arl, ADP-ribosylation factor-like; PCR, polymerase chain reaction; RT, reverse transcriptase; TV, transversion; WT, wild type; bp, base pair; kb, kilobase pair; nt, nucleotide(s); snRNA, small nuclear RNA.
SL RNA trans-Splicing in Leishmania

EXPERIMENTAL PROCEDURES

Generation of Mutations and Transfectants—Mutagenesis was performed using the Sculptor Mutagenesis kit (Amersham Pharmacia Biotech) or using PCR to generate mutated DNA fragments for subcloning into the transfection vector. Mutated fragments were cloned for transfection into a pX plasmid (27) containing an SL RNA gene (9).

Transfections were performed by electroporation as described (11).

Nucleic Acid Isolation and Gel Analysis—RNA was purified using Trizol reagent (Life Technologies, Inc.) and was electrophoresed through 1.1% agarose-formaldehyde, blotted, and hybridized as described previously (28). Quantitation was performed using a Phosphorimager (Molecular Dynamics).

Reverse Transcriptase-Polymerase Chain Reaction trans-Splicing Assay—To assay for trans-splicing of mutant-SL RNAs, complementary oligonucleotides were hybridized to Arl mRNA (29) and extended by Moloney murine leukemia virus-reverse transcriptase (RT) to produce templates for PCR analysis (RT-PCR (30)) with a second, SL-specific oligonucleotide (28/39 tag) directed against the exon tag. Two of the ribosomal RNA exclusion zones (2.2 and 1.5 kb) and the SL RNA (96 nt) served as size markers (M). B, low levels of trans-splicing detected by RT-PCR. RT-PCR assays were performed on the mutant RNA populations with either nonspecific SL RNA primer (top and middle) or 28/32 tag-specific SL RNA primer (bottom) using the L. tarentolae Arl mRNA (29) as the query template. Control reactions included RNA from a mutant containing tSL coupled with an inactive promoter, −67/−58 + tSL (11), −RT, and RNA reactions. Additional 5' and 3' end phenotypes (24) are summarized as follows: + = WT, − = WT, and − = T tract for 3' end formation, and − = WT, − = 50%, and − = 50% cap methylation.

RESULTS

Intron Mutations Affect trans-Splicing—To localize specific elements within the intron of the SL RNA that play a role in the process of trans-splicing, a systematic mutagenesis approach was adopted (Fig. 1). To differentiate mutated, episomally derived SL RNA from the endogenous WT SL RNA population, an exon tagged at positions 28 and 30–39 (28/39 tag), which was previously shown to trans-splice accurately and efficiently (11), was used as a molecular tag (tSL RNA) for detection by hybridization. A series of linker scan (CTCGAGTCCTA) mutations in the tSL RNA gene was created for transfection to L. tarentolae. Two mutations in the 40–49 region were created as follows: a mutant with alterations in bases 42–48 (42/48), changed all but the splice donor site of SL RNA-U6 snRNA interaction (31), and a second mutant, altered at positions 42–48 (42/48), changed all but the splice donor site with the linker scan sequences. Subsequent intron mutations continued from position 50 (52/59) and proceeded through the end of the intron. Three mutations lay downstream of the mature 3' end of the SL RNA transcript (position 96) and were included to identify potential adjacent expression elements (100/109, 110/119, 120/129; WT sequence not shown).

Analysis of total RNA from the transfectants demonstrated tSL RNA (−96 nt) in all the samples by low resolution formaldehyde-agarose gel blotting (Fig. 2A). A broadened size range from the wild-type (WT) 96 nt to at least 175 nt was noted for the 100/109 tSL RNA, consistent with discrete higher molecular weight bands visible in higher resolution gel analyses (24). The presence of tagged precursor SL RNA indicated that all the mutants have the potential to trans-splice. An artificial tran-
script (~1.45 kb) that accumulated in each sample provided an internal control for transfection, should stability be disrupted. The presence of the exon tag in a range of high molecular weight RNA species (500 nt to 9 kb) in the tSL, 43/44, 100/109, 110/119, and 120/129 samples suggested that active trans-splicing was occurring in these transfectants (11). Splicing of 43/44 is consistent with results from a similar study in Leptomonas (12). Conversely, splicing of the tagged exon was impaired in the 42/48, 52/59, 62/69, 70/79, 80/89, and 90/99 mutants, where only substrate tSL RNA and the artifactual transcripts accumulated. The levels of accumulating tSL RNAs varied relative to the artifactual transcripts and the episomally encoded drug selectable marker mRNA NEO (data not shown). The 52/59 mutant in particular showed an increased accumulation of substrate molecules relative to other non-splicing mutants.

In addition, trans-splicing was assayed by RT-PCR (11, 29) to detect low levels of splicing (Fig. 2B). When “total” SL primer (i.e. will amplify from both WT and tSL exons) was used in the amplification, all samples showed the positive control WT amplification products, but the 28/39-tag oligonucleotide hybridized only to the tSL, 43/44, 100/109, 110/119, and 120/129 products, consistent with the total RNA blot analysis. However, using a tSL-specific primer for amplification, some level of splicing was detected in all but the 70/79 mutant. These experiments included WT L. tarentolae RNA, no reverse transcriptase, and no RNA reactions as negative controls for contamination and dependence on the use of RNA templates. Furthermore, a promoter knockout in combination with tSL (−67/−58 + tSL (11)) was used as a control for spurious PCR amplification; this cell line resulted in an artifactual ~1.45-kb transcript containing the 28/39-tag sequence but no mature tSL RNA (shown in Fig. 5B) and did not yield a tSL PCR product. Previously determined phenotypes for cap 4 and 3′ end formation (24) are also indicated in Fig. 2. Thus, trans-splicing was adversely affected in mutants 42/48, 52/59, 62/69, 80/89, and 90/99 and appeared to be abolished in mutant 70/79.

Structural analyses of the SL RNA predict three stem-loop structures and a single-stranded region containing the Sm-binding site (Ref. 17; Fig. 1). Previously, it was demonstrated that stem-loop I is not required for trans-splicing in L. tarentolae (11). Because trans-splicing was reduced or abolished in mutants 52/59, 62/69, 70/79, 80/89, and 90/99, we considered the effects of mutations in stem-loop II, the Sm-binding site, and stem-loop III on SL RNA trans-splicing with regard to the structural or sequence elements. The mutations described below are organized with regard to both these elements and the linker scan mutation results in the following order: structural features of stem-loop II, fine analysis of the 70–81 region which includes part of stem-loop II and the Sm-binding site, and features of stem-loop III.

Sequence and Structure of Stem-Loop II Are Necessary for trans-Splicing—Two mutations, 52/59 and 62/69, disrupted stem-loop II (Fig. 3A) and were not efficiently trans-spliced (Fig. 2). To address the importance of stem-loop II, 52/59 was further mutated to restore base pairing (52/59 + 65/72; Fig. 3A); this replaced the stem structure but with a different sequence content than WT. A further mutation was designed (42/48 + 77/80) to restore a possible extension of stem-loop II in the 45–48 region, which was disrupted by mutations 42/48 and 70/79 (Fig. 3A). 77/80 was also tested for independent effects due to its disruption of the conserved Sm-binding site. Neither
of the compensatory base pairing mutations restored trans-splicing (Fig. 3B). 77/80 alone or in combination with 42/48 resulted in extended, heterogeneous 3' end formation (data not shown) consistent with the 70/79 phenotype (24), whereas 52/59 and 52/59 + 65/72 possessed correct 3' ends (data not shown). 42/48 + 77/80, 52/59 + 65/72, and 77/80 showed undermethylated cap 4 structures (data not shown), as did 42/48, 52/59, and 70/79 (24).

Both the structure and sequence content of stem-loop II are thus important features in the maturation of the SL RNA precursor. The structure alone is not sufficient to direct either cap 4 methylation or splicing. The stem-loop II extension structure may play an intermediate role in the splicing pathway, but it is not sufficient to restore processing or splicing.

The Stem-Loop II Single Nucleotide Bulge and Sm-binding Site Affect trans-Splicing and Cap 4 Methylation—Because 70/79 altered most of the Sm-binding site and resulted in no trans-splicing and defects in both 5' and 3' end formation, we examined the area in finer detail. A 2-bp transversion (TV) series was created from position 70 to 81; in addition, 70/79 and 75/81 TV mutations were made (Fig. 4A). It should be noted that 70/71 and 72/73 comprise part of stem-loop II (see Fig. 1) and that 74/75 TV may extend the Sm sequence (AAUCUUUGG).

The total RNA of these transfectants revealed a variety of phenotypes for trans-splicing and methylation. By formaldehyde-agarose gel analysis, only the 74/75-tSL RNA was an efficient trans-splicing substrate, with low levels of splicing evident in 72/73 (Fig. 4B). The presence of tSL RNA but lack of the 1.45-kb artifact RNA in mutants 76/77, 70/79 TV, and 75/81 suggested additional increased stability phenotypes. Primer extension revealed an intriguing gradient of SL RNA cap 4 methylation in the 70/71, 72/73, and 74/75 mutants (Fig. 4C), which showed low (5%), medium (40%), and normal (75%) methylation, respectively, and were trans-spliced proportional to their methylation state. Thus, as a component of the Sm-binding consensus, A75 does not appear to be an essential nucleotide in Leishmania; alternatively, the 74/75 mutation is a biologically acceptable extension of the Sm site.

The Stem-Loop III Formation Affects trans-Splicing and Cap 4 Methylation—Mutations 80/89 and 90/99 disrupted stem-loop III (Fig. 5A) and resulted in 3'-extended, undermethylated tSL RNAs (11) that were not efficiently trans-spliced. To examine further the role of stem-loop III structure, a series of mutations was created that disrupted and then replaced 1 or 3 bp of the stem and that altered the loop sequence (Fig. 5A). The single base disruptions were expected to disrupt only one rung of the stem, and thus lead to a minor size difference in the tSL RNA, whereas the triple base mutations were designed to disrupt the stem completely.

Formaldehyde-agarose gel analysis of total RNA showed that the single base pair-disrupted SL RNAs (83, 96) could be trans-spliced, but the triple base pair-disrupted SL RNAs (83/85, 94/96) were not trans-spliced efficiently (Fig. 5B). The base pairing compensated SL RNAs (83 + 96, 83/85 + 94/96) were both efficient splicing substrates. The 88/91 loop mutation SL RNA appeared to be spliced with lowered efficiency based on the reduced mRNA smear relative to the tSL RNA substrate levels. These experiments show that the structure, but not the primary sequence, of stem-loop III is necessary for trans-splicing.

Primer extension analysis indicated that the cap 4 methylation patterns (Fig. 5C) correlated with the levels of trans-splicing. 83, 96, and 83 + 96 were methylated efficiently and trans-spliced relative to the abundance of free tSL RNA (Fig. 5B) and by total SL RT-PCR assays; 83/85 and 94/96 showed less than 5% methylation and had splicing that was only detectable by the mutation-specific RT-PCR assay (data not shown). In mutant 83/85 + 94/96, the tSL RNA cap 4 was methylated to WT levels, thus the compensating mutations, which restored stem-loop III, also restored a structural signal for the cap 4 methylase. 88/91 showed approximately 50% methylation (Fig. 5C) and displayed reduced splicing (Fig. 5B); the intron tag previously used to follow SL RNA transcription (9) was inserted into this loop and does not interfere with cap 4 methylation of tagged SL RNA (11). Thus, methylation is linked to the formation of a minimum of 4/5 bp stem in stem-loop III.

DISCUSSION

We have made a series of mutations in the region downstream of the exon in the SL RNA gene to examine effects on trans-splicing. We have assayed for the ability of mutated SL RNA to trans-splice, and we have correlated this with correct cap 4 formation, transcription termination, and 3' end processing as determined here and elsewhere (11, 24). A summary of nine phenotypes associated with the intron mutations is presented in Table I. In the majority of mutants, reduction or loss...
of trans-splicing correlates with defects in cap 4 methylation and 3' end maturation. Where cap 4 methylation and 3' end formation are WT, primary catalytic elements may have been mutated (e.g. 42/48). The mutant phenotypes have allowed us to evaluate structures and elements that may be important for SL RNA maturation and to propose a possible pathway for discrete processing steps in \textit{L. tarentolae} (Fig. 6). In this model, the T tract functions as a transcription termination element (24). The Sm-binding site and stem-loop III structure are required to allow precise 3' end maturation. Formation of the mature 3' end, along with elements within stem-loop II, are required for cap 4 synthesis, as is the 10-29 region of the exon (11). Nucleotides within the intron region of stem I are likely to be required for splicing catalysis.

Transcription of the SL RNA gene \textit{in vivo} terminates in a T tract of greater than six T residues (Fig. 6, step 1). Mutation of the Sm-binding site (e.g. 76/77) and stem-loop III (e.g. 90/99) yielded mutants with defects in the nucleolytic formation of the mature 3' end of the SL RNA, demonstrating a cooperative

\begin{table}[h]
\centering
\caption{Summary of mutant phenotypes}
\label{tab:mutant}
\begin{tabular}{llllllll}
\hline
\textbf{trans-Splicing} & \textbf{Agarose} & \textbf{RT-PCR} & \textbf{5' end, cap 4} & \textbf{3' end} & \textbf{Mutants, +tSL} \\
\hline
+++ & +++ & + & + & + & 100/109, 102/107, 104/107 \\
+ & +++ & + & +++ & +++ & 88/91 \\
+ & +++ & + & +++ & + & 72/73 \\
- & + & - & +++ & + & 42/48 \\
- & + & - & + & + & 52/59, 62/69, 52/59 + 65/72, 70/71 \\
- & - & + & + & + & 80/89, 90/99, 83/85, 94/96 \\
- & - & - & + & + & 80/81 \\
- & - & - & + & + & 70/79, 75/81, 76/77, 78/79, 80/81 \\
\end{tabular}
\end{table}

\footnote{a Nucleolytic processing to base of stem-loop III.}
\footnote{b Staggered T track termination products.}
\footnote{c See Ref. 24.}
trans in vitro studies showed that the Sm-binding site was required in the 42/48 splicing defect. Nucleotides 42 can be mutated without affecting (equivalent to positions 46–47 in \textit{L. tarentolae} U5 snRNA (21, 22). Nucleotides splicing in steps of that the intron region of stem I may be involved in catalytic \textit{Leptomonas} (25); however, in \textit{L. collosoma} deletion of stem-loop III in for than primary sequence of the stem-loop III stem was required for \textit{cap 4} methylation, are included in the shaded oval and are discussed in the text.

function between these two elements (step 2). Structure rather than primary sequence of the stem-loop III stem was required for \textit{trans}-splicing. Consistent with this, an 8-nucleotide insertion in the loop of stem-loop III in \textit{L. collosoma} did not affect \textit{trans}-splicing (25); however, in \textit{L. seymouri} deletion of stem-loop III resulted in an actively \textit{trans}-spliced and normally methylated SL RNA (12). Mutants that do not terminate accurately due to the disruption of their downstream T tract show an intermediate cap 4 phenotype (e.g. 100/109) that we interpret as indicative of a temporal order of 3′-processing (step 2) followed by cap 4 methylation (step 3). Methylation alone is not sufficient to confer splicing potential, since the 42/48 mutant is sufficient to confer splicing potential, since the 42/48 mutant is required for the intron component of \textit{cap 4} formation. In \textit{Lep-}

counterpart (78/79) was viable for ribonucleoprotein assembly and splicing. Splicing in the 74/75 mutant, which has a transversion of the A of the Sm site, may reflect flexibility within the conserved Sm-binding site, as found in the U5 snRNA of \textit{Saccharomyces} (33). An additional experimental difference to be considered between the two studies in trypanosomatids is that the exon tag in \textit{L. tarentolae} consisted of 11 mutated nucleotides, whereas that in \textit{Leptomonas} consisted of one mutated nucleotide. The contradictory results for Sm-binding site and stem-loop III in the kinoplastids may be informative in interpreting our results as follows: given that stem-loop III does not contain primary sequence necessary for \textit{trans}-splicing in \textit{Leptomonas}, our non-splicing phenotypes may be secondary effects (e.g. additional 3′-extended sequences may inhibit the folding of stem-loop II).

As indicated by mutant 70/71, elements in stem-loop II are required for the intron component of \textit{cap 4} formation. In \textit{Lep-}

tomonas, deletion or substitution of stem-loop II above the bulge position did not affect cap 4 methylation (12), suggesting that some of the methylation phenotypes that we observed may be secondary effects due to interference with secondary or tertiary structure formation within the SL RNA itself or between the SL RNA and other splicing components. Similar to \textit{L. tarentolae}, nucleotides in stem-loop II of the \textit{Ascaris} SL RNA (positions 39–42 and 61–65) are essential for \textit{trans}-splicing and include a single nt (U, position 62) bulge (26). Consistent with the \textit{L. tarentolae} results and contrasting the \textit{Leptomonas} results, deletion of nucleotides 59–68 in stem-loop II of the \textit{Leishmania amazonensis} SL RNA (Δ1) resulted in either inefficient or no \textit{trans}-splicing (8).

In this study we have identified how various structures within the intron of the SL RNA are interdependent in 3′ end formation and cap 4 methylation, and we provide a possible pathway to describe the processing steps. We distinguish among \textit{trans}-splicing negative mutants that are defective for discrete steps in SL RNA maturation and a mutant that may be affected in catalytic steps. These and subsequent mutants will facilitate studies on the intracellular trafficking of SL RNA, the identification of new \textit{trans}-splicingosomal proteins and protein-RNA interactions, and allow testing of new models of interactions with other splicing RNA/ribonucleoproteins.

Acknowledgments—We thank Steve Beverley for the pX plasmid, T. Guy Roberts, and Michael C. Yu for stimulating discussions, and Doug Black, Larry Feldman, and Dan Ray for critical reading of the manuscript.

REFERENCES

The Role of Intron Structures in trans-Splicing and Cap 4 Formation for the Leishmania Spliced Leader RNA
Nancy R. Sturm and David A. Campbell

doi: 10.1074/jbc.274.27.19361

Access the most updated version of this article at http://www.jbc.org/content/274/27/19361

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 32 references, 18 of which can be accessed free at http://www.jbc.org/content/274/27/19361.full.html#ref-list-1