Yeast Mps1p Phosphorylates the Spindle Pole Component Spc110p in the N-terminal Domain*

Received for publication, November 20, 2000, and in revised form, March 1, 2001
Published, JBC Papers in Press, March 6, 2001, DOI 10.1074/jbc.M010461200

The yeast spindle pole body (SPB) component Spc110p (Nuf1p) undergoes specific serine/threonine phosphorylation as the mitotic spindle apparatus forms, and this phosphorylation persists until cells enter anaphase. We demonstrate that the dual-specificity kinase Mps1p is essential for the mitosis-specific phosphorylation of Spc110p in vivo and that Mps1p phosphorylates Spc110p in vitro. Phosphopeptides generated by proteolytic cleavage were identified and sequenced by mass spectrometry. Ser60, Thr64, and Thr68 are the major sites in Spc110p phosphorylated by Mps1p in vitro, and alanine substitution at these sites abolishes the mitosis-specific phosphorylation. Alanine substitution for any of these phosphorylated residues, in conjunction with an alanine substitution at residue Ser36, is lethal in combination with alleles of SPC97, which encodes a component of the Tub4p complex. Consistent with a specific dysfunction for the alanine substitution mutations, simultaneous mutation of all four serine/threonine residues to aspartate does not confer any defect. Sites of Mps1p phosphorylation and Ser36 are located within the N-terminal globular domain of Spc110p, which resides at the inner plaque of the SPB and binds the Tub4p complex.

Centrosomes are microtubule-organizing centers that serve as the poles of mitotic spindles during eukaryotic cell division. In each mitotic cell cycle, the centrosome must duplicate once in preparation to form the spindle apparatus. The mitotic spindle is instrumental for proper segregation of the duplicated chromosomes into two euploid daughter cells, each receiving one of the centrosomes. Proper centrosome function is vital to cell proliferation, and errors in centrosome duplication, spindle formation, or spindle function can lead to chromosome instability, chromosome non-disjunction, and aneuploidy.

Several lines of evidence from a wide variety of organisms suggest that protein phosphorylation plays a major role in centrosome control during the cell cycle. The MPM-2 monoclonal antibody recognizes mitosis-specific centrosomal phosphoepitopes in mammalian cells, Aspergillus nidulans and Schizosaccharomyces pombe (1–3), and MPM-2 antibodies inhibit microtubule nucleation in vitro (4). Several protein kinases have been implicated in centrosome control by their mutant phenotype, including yeast Mps1p (5, 6) and Drosophila aurora (7). In vertebrates, CDK2/cyclinE is important for initiation of centrosome duplication (8–10), and Nek2p is important for centrosome separation (11). Studies involving phosphatases and phosphatase inhibitors indicate that dephosphorylation is equally important for proper centrosome regulation (12–15).

In the budding yeast S. cerevisiae, the spindle pole body (SPB) is functionally equivalent to the centrosome. The SPB is a multilayered cylinder embedded in the nuclear envelope. Cytoplasmic microtubules emanate from an outer plaque, and nuclear microtubules emanate from the inner plaque. The 110-kDa spindle pole component Spc110p contains a large, central coiled-coil domain, which is located in the region of the SPB between the inner and central plaques (16). The C-terminal globular domain of Spc110p is located at the central plaque of the SPB (17, 18), and has been shown to interact with the SPB components calmodulin, Spc29p and Spc42p (17, 19–22). The N-terminal globular domain of Spc110p is located at the inner plaque, where Tub4p, Spc97p, and Spc98p are found (18, 23). The N-terminal globular domain of Spc110p interacts both genetically and biochemically with these components of the Tub4p complex (19, 23–25). Spc110p is also a phosphoprotein, and phosphorylation persists until cells enter anaphase. We demonstrate that the dual-specificity kinase Mps1p is essential for the mitosis-specific phosphorylation of Spc110p in vivo and that Mps1p phosphorylates Spc110p in vitro.

This paper is available on line at http://www.jbc.org
and phosphorylation of Spc110p at serine/threonine residues arises as cells form the mitotic spindle and disappears as cells enter anaphase (26, 27).

The dual-specificity kinase Mps1p is essential for SPB duplication and for mitotic checkpoint control in *S. cerevisiae* (6). Cells harboring the temperature-sensitive *mps1-1* allele fail to duplicate the SPB at the restrictive temperature yet proceed through a doomed mitosis with a monopolar spindle (5). Mps1p is also involved in the mitotic checkpoint (28). High levels of Mps1p cause cells to arrest in metaphase, and these arrested cells contain hyperphosphorylated Mad1p, which is also associated with activation of the mitotic checkpoint (29). *In vitro*, GST-Mps1p phosphorylates Mad1p (29) as well as Spc98p, a component of the Tub4p complex (30).

Despite the recent boon in centrosome component identification (for example, see Ref. 31) and the implication that several kinases are involved in centrosome function, direct evidence of specific phosphorylation of a centrosome component by a specific kinase in *in vivo* has been lacking. In this study, we demonstrate that the dual-specificity kinase Mps1p phosphorylates Spc110p *in vitro* and that these sites are important for the mitosis-specific phosphorylation of Spc110p *in vivo*. These phosphorylations occur within the N-terminal globular domain of Spc110p, which resides at the inner plaque of the SPB and interacts with components of the microtubule-organizing Tub4p complex. Mutating these phosphorylated residues to alanine (to prevent phosphorylation), but not to aspartate (to mimic phosphorylation), perturbs the function of Spc110p such that it can no longer support growth in the presence of mutant Spc110p alleles. Mps1p causes cells to arrest in metaphase, and these arrested cells contain hyperphosphorylated Mad1p, which is also associated with activation of the mitotic checkpoint (29). *In vitro*, GST-Mps1p phosphorylates Mad1p (29) as well as Spc98p, a component of the Tub4p complex (30).

EXPERIMENTAL PROCEDURES

Media, Strains, and Genetic Manipulations—SD complete, SD-uracil (34), SD-uracil low adenine (17), YPD and YPD low adenine, and LB (35) were described previously. SD-uracil+uracil is SD-uracil supplemented with 25 μg/ml uracil. LB amp is LB medium supplemented with 100 μg/ml ampicillin. LB amp kan is LB medium supplemented with 100 μg/ml ampicillin and 34 μg/ml kanamycin. Plasmid transformations were carried out by the LiOAc method essentially as described previously (36).

Strains were listed in Table I. The spc110-4A allele was integrated into *cry1* by a two step gene replacement (37) using plasmid pJK24 cut with *Sma*I, creating strain JKY1. The presence of the spc110-4A allele was confirmed by sequencing. Synthetic lethal interactions between *spc110-4A* and *spc97-114* were tested by crossing strain JKY1 (*spc110-4A*) with strain TNY64-5C (*spc97-114*). Neither single mutant confers a temperature-sensitive phenotype. The diploid was sporulated and the tetrads dissected giving 25 tetratypes (1:3 temperature-sensitive:non-temperature-sensitive), 4 non-parental ditypes (2:2), and 3 parental ditypes (0:4). Overall, 25.8% of the spore clones from these dissections could not form colonies at 37 °C.

Immunoblot Analysis, α-Factor Arrest, and Cytological Techniques—Immunoblot analysis, α-factor arrests, cell morphology characterization, and flow cytometry were performed as described (26).

Plasmids—Plasmids are listed in Table II. pCL5 expresses ArgU, an arginine-tRNA

Table I

<table>
<thead>
<tr>
<th>Strain name</th>
<th>Genotype</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wx241-2b</td>
<td>MATa ura3-52 his3Δ200 leu2-3,112 mps1-1</td>
<td>28</td>
</tr>
<tr>
<td>Wx178-3A</td>
<td>MATa trpl ura3-52 leu2-3,112 mps2-1</td>
<td>5</td>
</tr>
<tr>
<td>Wx209-8A</td>
<td>MATa/MATa ade2 ade2 trpl/trpl cdc31-2/cdc31-2</td>
<td>17</td>
</tr>
<tr>
<td>HSY2-12C</td>
<td>ade2-loc ade3 can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 spc110-1A : TRP1 ura3-1</td>
<td>This study</td>
</tr>
<tr>
<td>JKY1</td>
<td>ade2-loc can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 spc110-1A</td>
<td>Thu Nguyen</td>
</tr>
<tr>
<td>TNY137</td>
<td>ade2-loc ade3 can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 spc110-1A</td>
<td>Thu Nguyen</td>
</tr>
<tr>
<td>TNY155-26A</td>
<td>ade2-loc ade3 can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 ura3-1 spc110-221</td>
<td>Thu Nguyen</td>
</tr>
<tr>
<td>TNY113-2A</td>
<td>ade2-loc ade3 can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 ura3-1 spc110-221</td>
<td>Thu Nguyen</td>
</tr>
<tr>
<td>TNY76-1C</td>
<td>ade2-loc ade3 can-1-100 his3-11,15 leu2-3,112 trpl-1 lys2-3 : HIS3 ura3-1 spc110-221</td>
<td>Thu Nguyen</td>
</tr>
</tbody>
</table>

Production of Spc110p Fusion Proteins—Cultures of *E. coli* strain GM1 were transformed to ampicillin resistance with plasmids pDF47 or pDF48, which express 12xHIS-Spc110p fusion proteins, were constructed in several steps. First, a 6xHis tag was inserted at the initiator MET of Spc110p. Second, Spc110p-(1–225) (truncated at residue 225 of Spc110p) was expressed in *E. coli* in the presence of 1 μM isopropyl-1-thio-β-D-galactopyranoside for 5 h at 30 °C. Isopropyl-1-thio-β-D-galactopyranoside was added to a final concentration of 40 μg/ml, and cultures were incubated for an additional 1.5 h. Cells were then pelleted at 8000 × g for 10 min, and pellets were stored at −80 °C. Thawed pellets were suspended in 3 ml of cold lysis buffer (1× phosphate-buffered saline, 10 μl β-mercaptoethanol, 1 μl phenylmethylsulfonyl fluoride) and lysed using a French Pressure cell (3/8-inch piston diameter; Aminco) at 11,000 p.s.i. to near 100% lysis. Thawed pellets were resuspended in 1 ml of cold lysis buffer (1× phosphate-buffered saline, 10 μl β-mercaptoethanol, 1 μl phenylmethylsulfonyl fluoride) and lysed using a French Pressure cell as described above. Triton X-100 was added to

Production of Spc110p Fusion Proteins—Cultures of *E. coli* strain GM1 were transformed to ampicillin resistance with plasmids pDF47 or pDF48 expressing recombinant 12xHIS-Spc110p-201p(756Δ) or 12xHIS-Spc110p-201p(756Δ) (missing residues 267–543 within the central coiled-coil and truncated at residue 756 of Spc110p) and was constructed by cloning the NhsI-EcoRI fragment from pDV17 (25) into the Sma1 and EcoRI sites of pGEX-2T (Athersham. Pharmacia Biotech, Piscataway, NJ). Plasmids pJK2, pJK4, and pJK7 were made by site-directed mutagenesis of plasmid pDV29 using the USE kit (Athersham Pharmacia Biotech) according to the manufacturer's directions. All other plasmids were made by site-directed mutagenesis of the parent plasmid using the QuikChange kit (Stratagene, La Jolla, CA) according to the manufacturer's directions. Plasmid pJK21 carrying URA3, CEN, and an spc110 allele was converted to integrating plasmid pJK24 by replacing the AluI fragment containing part of bla, CEN, and part of URA3 with the AluI fragment from pRS306 containing part of bla and part of URA3 but no CEN. Plasmids pDF47 and pDF48, which express 12xHIS-Spc110p fusion proteins, were constructed in several steps. First, a 6xHis tag was inserted at the initiator MET of Spc110p. Second, Spc110p-(1–225) (missing residues 267–543 within the central coiled-coil and truncated at residue 756 of Spc110p) and was constructed by cloning the SphI-SspI fragment from pDF30 into the SphI and SmaI sites of the 6xHis bacterial expression vector pQE32. pDF48 expresses 12xHIS-Spc110p P-(1–225) (truncated at residue 225 of Spc110p) and was constructed by cloning the SphI-NsiI fragment from pDF30 into the SphI and Pmel7 vectors of pQE32.
a final concentration of 1%, and the lysate was incubated on ice for 15 min. Cleared lysates were mixed for 1 h with 100 μl of glutathione Sepharose 4B resin (Amersham Pharmacia Biotech). The supernatant was then discarded, and the beads were washed three times with 1 ml of lysis buffer. GST-Spc110p-(1–183) was eluted in 200 μl of elution buffer (10 mM glutathione, 50 mM Tris, pH 8.0) by gel filtration on Sepharose 4B resin (Amersham Pharmacia Biotech). The supernatant was then discarded, and the beads were washed three times with 1 ml of elution buffer containing 200 μl of glutathione, 50 mM Tris, pH 8.0, and 5% v/v glycerol, and stored at −80 °C.

RESULTS

Mps1p Activity Is Necessary for Mitosis-specific Phosphorylation of Spc110p in Vivo—Previously we have shown that the 110-kDa SpB component Spc110p undergoes serine/threonine phosphorylation in cells containing pre-anaphase mitotic spindles, which results in a slower-migrating isofrom (p120) during SDS-PAGE (26). We analyzed the Spc110p mobility shift in cells carrying the mps1-1 mutation at the restrictive temperature to determine whether the essential dual-specificity kinase Mps1p played a role in the mitosis-specific Spc110p phosphorylation. Mps1p-1p is a severely crippled conditional mutant kinase, both in *in vitro* and *in vivo* (38). Cells were first synchronized in G1 by the addition of the mating pheromone α-factor and then released into prewarmed 37 °C medium. At 37 °C, mps1-1 cells entered the cell cycle at the same time as the mps1-1 Mps1p control cells (as evidenced by bud emergence at 30 min after release for both cultures), but unlike the wild-type control, the slower migrating mitosis-specific isoform of Spc110p never accumulated in mps1-1 cells (Fig. 1). Thus, Mps1p is required for the mitosis-specific phosphorylation of Spc110p in *vivo*.

Mps1p has at least two previously identified execution points during the cell cycle, one that is essential for SBP duplication (5), and another that is involved in the mitotic spindle checkpoint (28). Because the mitosis-specific phosphorylation of Spc110p does not occur until after SBP duplication is complete (26), it is possible that the dependence for Spc110p phospho-
rylation on Mps1p function merely reflects a prerequisite for SPB duplication. To test this hypothesis, we performed similar analyses for Spc110p phosphorylation at the restrictive temperature in two additional mutant backgrounds that block SPB duplication, mps2-1 and cdc31-2. Both mutations cause cells to arrest with large buds and a G2 DNA content at the restrictive temperature. Cells carrying the mps2-1 mutation arrest at the restrictive temperature with a malformed duplicated SPB that fails to insert into the nuclear envelope and lacks both the inner plaque and nuclear microtubules (5). Cells carrying the cdc31-2 mutation fail completely in SPB duplication (39). The slower migrating mitosis-specific isoform of Spc110p is present in mps2-1 cells; lanes 1–7, mps2-1 cells; lanes 8–14, mps1-1 cells harboring plasmid pMPS1. B, DNA content. The time points taken just prior to release from G1 arrest (37°C G1 arrest (0)) were taken at the same time as the 0-min time points shown in A. Additional aliquots were taken during asynchronous growth at room temperature (RT asynch) and G1 arrest at room temperature (RT G1 arrest) to establish the distribution of cells containing haploid DNA content (1N) and diploid DNA content (2N). Peak height reflects cell number. By the last time point (180 min after release) cells carrying the pMPS1 plasmid had returned to G1, as assessed by DNA content, whereas the mps1-1 cells exhibited a wide range of DNA content, including below 1N and above 4N as observed previously (5).

We also tested if MPS1 expression could promote the production of the mitosis-specific Spc110p isoform in cells blocked in G1 by the addition of α-factor, a state where the mitosis-specific isoform is normally not present (26). Cells expressing MPS1 from a galactose-inducible promoter while held at this G1 arrest clearly produce the mitosis-specific Spc110p isoform (Fig. 3, lane 9), whereas similarly arrested cells harboring control plasmids do not (Fig. 3, lane 7). A non-phosphorylatable form of Spc110p (4A, described below) is not shifted in this experiment (Fig. 3, lane 10), demonstrating that the Spc110p mobility shift promoted by the expression of Mps1p during G1 arrest does not result from phosphorylation at inappropriate sites. Because other mitosis-specific functions would be turned off during this G1 arrest, it is likely that the production of the slower-migrating Spc110p isoform, which normally results from mitosis-specific phosphorylation, here results directly from the inappropriate expression of Mps1p.

Mps1p Phosphorylates Spc110p in Vitro at Sites within the N-terminal Globular Domain of Spc110p—We expressed different forms of recombinant Spc110p in E. coli, and the lysates were added to an in vitro GST-Mps1p kinase assay (6). GST-Mps1p (purified from yeast) phosphorylates 12xHIS-Spc110–201p(756A), which is missing residues 267–543 within the central coiled-coil region and the last 188 residues of the C-terminal globular domain (Fig. 4A, lane 1). 12xHIS-Spc110p–(1–225), which consists of the first 225 amino acids and encompasses the N-terminal globular domain of Spc110p, was also phosphorylated in vitro by GST-Mps1p (Fig. 4A, lane 3). A fusion containing a portion of the central coiled-coil (residues 265–755) was not phosphorylated by GST-Mps1p (Fig. 4A, lane 9). Phosphorylation of the various Spc110p substrates depended on the addition of GST-Mps1p and was distinct from any background phosphorylation from the E. coli extract (Fig. 4A, lane 1), or from any breakdown products resulting from Mps1p autophosphorylation (Fig. 4, A and C). Trypsin digestion followed by two-dimensional TLE/TLC phosphopeptide mapping was used to determine the complexity of Spc110p phosphorylation by GST-Mps1p. The two-dimensional phosphopeptide maps of 12xHIS-Spc110–201p(756A) and 12xHIS-Spc110p–(1–225) were nearly identical, exhibiting three major 32P-labeled phosphopeptides and varying only in weak background phosphorylation (Fig. 4, B and C). Thus, the major phosphorylation of Spc110p by GST-Mps1p resides in
mps2-1

cdc31-2

FIG. 2. Mitosis-specific Spc110p phosphorylation persists in the absence of SPB duplication. Western blot analysis using affinity-purified anti-Spc110p antibodies was performed as described previously (26). Strains Wx178-3A and Wx209-8A carrying the mutations mps2-1 or cdc31-2, respectively, were each grown at room temperature to mid-logarithmic phase (doubling times = 2.67 h and 3 h, respectively). Each culture was then shifted to the restrictive temperature of 37 °C for 4.5 h, after which total cell protein extracts were obtained from 1-ml aliquots by trichloroacetic acid precipitation as described (26). Separate cultures were treated with 6 μM α-factor at room temperature, and total cell protein extracts were obtained from 1-ml aliquots after 1.5 doublings (>96% shmoo morphology). The cultures were then washed with prewarmed YPD and released from the α-factor arrest in YPD at 37 °C, and total cell extracts were prepared from 1 ml of culture after the indicated time at 37 °C. Lanes 1–5, mps2-1 cells grown at room temperature for 4.5 h (lane 1), incubated at 37 °C for 4.5 h (lane 2), arrested with α-factor at room temperature (lane 3), and released from a α-factor arrest at 37 °C for 2 h or 3 h (lanes 4 or 5). Lanes 6–11, cdc31-2 cells grown at room temperature for 4.5 h (lane 6), incubated at 37 °C for 4.5 h (lane 7), arrested with α-factor at room temperature (lane 8), and released from α-factor arrest at 37 °C for 2, 3, or 4.5 h (lanes 9–11). DNA content was consistent with previously published findings for mps2-1 and cdc31-2 at the restrictive temperature (5, 59).

The N-terminal globular domain of Spc110p. This domain of Spc110p resides at the inner plaque of the SPB and associates with the microtubule-organizing Tub4p complex containing Spc97p, Spc98p, and Tub4p (23–25).

Ser60, Thr64, and Thr68 in Spc110p Are Phosphorylated by GST-Mps1p in Vitro—We used an E. coli-expressed GST-Spc110p (1–183) fusion protein containing the first 183 residues of Spc110p as a substrate for GST-Mps1p to determine the in vitro sites of phosphorylation by GST-Mps1p within the N-terminal globular domain of Spc110p. Stoichiometry of phosphorylation in three experiments ranged from 0.9 to 1.7 mol of phosphate per mol of GST-Spc110p-(1–183), and this phosphorylation produced a mobility shift of GST-Spc110p-(1–183) on SDS-PAGE (Fig. 5A).

The phosphorylated GST-Spc110p-(1–183) was digested with trypsin or endoLys-C, and the peptides were analyzed by MALDI-TOF and ESI-LC/MS mass spectrometry. This analysis accounted for every serine, threonine, and tyrosine residue within the first 183 residues of Spc110p, and identified four tryptic peptides and two endoLys-C peptides that appeared to be phosphopeptides based on mass increases of 80 Da (or multiples thereof) over the expected masses for these peptides. All candidate phosphopeptides encompassed the residues 65–85 of Spc110p (Fig. 5A), within the N-terminal globular domain of Spc110p. Two representative fragmentation spectra of these phosphopeptides are detailed below.

The tryptic fragment 65–85 of Spc110p was found to contain a single phosphopeptide. Sequencing this peptide by collision-induced dissociation during ESI-LC/MS/MS confirmed this assignment and mapped the site of phosphorylation to residue Thr64 (Fig. 5B). This peptide, containing phosphorylation at Thr64, was also identified from the lowest of the three spots in the two-dimensional phosphopeptide maps shown in Fig. 3 (data not shown). In the endoLys-C digest, mono- and di-phosphorylated forms of the peptide 56RQRRSIDDTIDSTRFLSEASQFDDSFPEIK (56–85) were observed. The fragmentation spectrum of the di-phosphorylated form of this peptide shows the loss of the di-phosphorylated residue Ser60, Thr64, and Thr68 (Fig. 5C and D). Several fragment ions indicated both phosphorylated (addition of HPO4 or neutral loss of H2PO4) as well as unmodified Ser60 (denoted by the asterisk in Fig. 5C and detailed in Fig. 5D). Fragment ions containing all three residues Ser60, Thr64, and Thr68 were found in the mono- or di-phosphorylated forms, but never at their expected, unmethylated masses. Thus, a mixture of di-phosphorylated forms of this peptide (phosphorylated at any two of these three sites) co-eluted from the reverse phase resin and were fragmented simultaneously during the LC/MS/MS experiment. A tri-phosphorylated form of K56–85 was not found.

Sites of in vitro Spc110p phosphorylation by Mps1p were confirmed by repeating the kinase assays using GST-Spc110p-(1–183) fusions containing combinations of alanine substitutions at residues Ser60, Thr64, and Thr68 (Fig. 6). The level of phosphate incorporation for each single mutant was decreased relative to the wild-type level (80–90%, 40%, and 50% that of the wild-type level for the single mutants S60A, T64A, and T68A, respectively). The level of phosphate incorporation into the T64A,T68A double mutant was 20% that of the wild-type level, and the level for the triple mutant S60A,T64A,T68A was reduced to near background levels (Fig. 6).

The kinase assays using mutant GST-Spc110p-(1–183) fusions as substrates confirmed phosphorylation at Thr64. The MS/MS spectrum for K56–85 does not clearly distinguish between phosphorylation at Ser67 and Thr68 (Fig. 5C and data not shown).
Mps1p phosphorylates Spc110p

Fig. 4. In vitro phosphorylation of Spc110p by Mps1p. A, GST-Mps1p in vitro kinase assays. Crude bacterial extract from cultures expressing recombinant 12xHIS-Spc110–201p(756Δ) (pDF47), 12xHIS-Spc110p–(1–225) (pDF48), or no fusion protein (pQE32) was used as substrates for phosphorylation by GST-Mps1p kinase (purified from yeast) in the presence of radiolabeled \(-[^32P]ATP\) as described under “Experimental Procedures.” Purified 6xHIS-Spc110p(265–755), containing residues 265–755 within the central coiled-coil (26), and myelin basic protein (MBP) were also used as substrates. Kinase assays were boiled for 4 min in SDS-PAGE buffer prior to separation on 12% SDS-polyacrylamide gels (42). The dried gels were exposed to autoradiography film or a PhosphorImager screen. Lane 1, 12xHIS-Spc110–201p(756Δ) expressed from plasmid pDF47 with no GST-Mps1p added to the reaction. Lane 2, 12xHIS-Spc110–201p(756Δ) expressed from plasmid pDF47 with GST-Mps1p added to the reaction. Lane 3, 12xHIS-Spc110p–(1–225) expressed from plasmid pDF48 with GST-Mps1p added to the reaction. Lane 4, expression plasmid pQE32 containing no fusion protein with GST-Mps1p added to the reaction. Lanes 5 and 6, Western blot analysis using anti-MRGS antibodies (Qiagen, Valencia, CA) as described previously (26) to determine the mobility of 12xHIS-Spc110–201p(756Δ) expressed from plasmid pDF47 (lane 5) and 12xHIS-Spc110p–(1–225) expressed from plasmid pDF48 (lane 6). Lane 7, no substrates added to the reaction. Lane 8, MBP added to the reaction. Lane 9, 6xHIS-Spc110p(265–755) added to the reaction. Lanes 10–12, Coomassie Brilliant Blue-stained gel shown for lanes 7–9. The relative mobilities of the kinase and substrates are indicated on the sides of the gels. Asterisks in lanes 2 and 3 mark positions of radiolabeled bands excised for phosphopeptide mapping. B and C, two-dimensional thin layer electrophoresis (1st), thin layer chromatography (2nd), two-dimensional TLE/TLC phosphopeptide mapping. Open arrowheads denote origins. Proteins in gels similar to A were electrophoretically transferred to nitrocellulose. Bands corresponding to full-length 12xHIS-Spc110p (42) and 12xHIS-Spc110p–(1–225) (asterisks in panel A) were excised from the nitrocellulose support after comparison to an autoradiogram of the same membrane. Phosphopeptides were then subjected to two-dimensional TLE/TLC after digestion of the proteins off of the nitrocellulose membrane using the protease trypsin as described in (43). Shown are the tryptic phosphopeptide maps of 12xHIS-Spc110–201p(756Δ) (B) and 12xHIS-Spc110p–(1–225) (C) after phosphorylation by GST-Mps1p. D, graphical representation of the recombinant proteins with respect to full-length Spc110p (containing 944 residues). The shaded area represents the central coiled-coil domain (residues 155–798 as predicted by PAIRCOIL). Fusions containing the C-terminal domain were insoluble and could not be tested. However, serine and threonine residues within the C-terminal 116 amino acids have been shown previously not to be involved in the mitosis-specific phosphorylation of Spc110p (26), leaving eight serines and/or threonines between residues 756 and 828 that have not been tested.

**S60A, T66A, or T68A Mutations, in Conjunction with an S36A Mutation, Are Synthetically Lethal with Mutations in SPC97—and SPC98—The spo110–221 allele, which contains mutations in the N-terminal globular domain of Spc110p (19), is synthetically lethal with alleles of SPC97 and SPC98 (25). We find that full-length Spc110p containing any of the S60A, T64A, or T68A mutations, in conjunction with an alanine substitution at Ser36, fails to complement the synthetic lethality between spo110–221 and spo97–62 or spo97–114 (Table III, lines 5–9). We have also found that Ser36 is phosphorylated in Spc110p when expressed in insect cells. The S36A substitution alone was still able to complement spo110–221 spo97–97 synthetic lethality, as was the triple Mps1p site substitution (Table III, lines 2–4). Full-length Spc110p containing aspartate substitution at Ser60, Ser64, Thr64, and Thr68 was also able to complement the

addition of one or two phosphates (P or neutral loss of H3PO4 (17964) consistent with a mixture of phosphorylated and unphosphorylated Ser60. Symbols indicate doubly charged ions shifted in m/z by the amino acid sequence by D in found in either the mono- or di-phosphorylated forms only. phosphorylation at Thr68 and not Ser67 were found but not labeled. signals being close to 2.5× background noise in this region. Charged y ions (y and y2) are displayed below (ø). Singly charged y1, y3, y4, and y5 ions were found at their expected masses based on the amino acid sequence (175.4, 362.8, 478.6, and 590.2 Da/e, respectively). y6, y7, and y8 ions were also found, but only with background noise are included in the summary above the spectrum. Weaker fragment ions indicating phosphorylation at Thr64 as the phosphorylated residue in this peptide. The expected mass of the unmodified doubly charged ion b7 (505.3, 514.2, and 554.2 Da/e) and neutral loss of H3PO4 (18 Da, representing the addition of one or two phosphates (P or PP) or the neutral loss of two H3PO4 groups (Δ and ΔΔ). Singly, doubly, or triply charged b ions (b, b2+, and b3+) are displayed above the sequence (ø), and singly or doubly charged y ions (y and y2+) are displayed below (ø). B, MS/MS spectrum of tryptic fragment "SIDDTIDSTR" + 80 Da (one phosphate; (M + 2H)2+ = 692.0 Da/e). This spectrum represents the summation of nine scans that were acquired as the phosphopeptide eluted from the HPLC column. Singly charged y1, y3, y4, and y5 ions were found at their expected masses based on the amino acid sequence (175.4, 362.8, 478.6, and 590.2 Da/e, respectively). y6, y7, and y8 ions were also found, but only with m/z shifts consistent with phosphorylation (Py3 = 888.2 Da/e; Py4 = 1002.8 Da/e) or neutral loss of H3PO4 (Δy6 = 675.4 Da/e; Δy7 = 788.8 Da/e; Δy8 = 904.6 Da/e). Ions consistent with phosphorylation appear in the y-ion series beginning with ion y6, indicating Thr64 as the phosphorylated residue in this peptide. C, MS/MS spectrum of endoLys-C peptide "56RQRRSIDDTIDSTRLFSEASQFDSSFEIKEIK" + 160 Da (two phosphates; (M + 4H)2+ = 931.0 Da/e). The m/z of the two H3PO4 neutral loss products of the parent ion are labeled (906.6 and 882.1 Da/e). For doubly charged fragment ions, symbols indicate ions shifted in m/z from that predicted by the amino acid sequence by +40, +80, −9, or −18 Da, representing the addition of one or two phosphates (P or PP) or the neutral loss of one or two H3PO4 groups (Δ or ΔΔ). The same changes in the triply charged fragment ions create m/z shifts of +26.7, +53.3, or −12 Da, representing the addition of one or two phosphates (P or PP) or the neutral loss of two H3PO4 groups (ΔΔ). Doubly and triply charged b ion cleavages past Thr68 are found in either the mono- or di-phosphorylated forms only. Asterisks indicate both phosphorylated and unmodified ions were observed, as detailed in D. Ion signals stronger than 2.5× background noise are included in the summary above the spectrum. Weaker fragment ions indicating phosphorylation at Thr64 and not Ser60 were found but not labeled. D, expansion of the spectrum shown in C from 400 to 800 Da/e detailing ions consistent with a mixture of phosphorylated and unphosphorylated Ser60. Symbols indicate doubly charged ions shifted in m/z from that predicted by the amino acid sequence by +40, +80, −9, or −18 Da, the addition of phosphate (P) or the neutral loss of one (Δ) or two (ΔΔ) H3PO4 groups. The expected mass of the unmodified doubly charged ion b7, b8 was found (496.5 Da/e) along with ions consistent with phosphorylation (Pb8, 496.9 Da/e) and neutral loss of H3PO4 (Δb7, 448.0 Da/e). The same pattern was found for b3+ ions (505.3, 514.2, and 554.2 Da/e for ions Δb3+, b4+, and Pb4+, respectively). Also shown are b7, b8 (398.9 Da/e) and Pb7, Pb8 (439.2 Da/e). Cleavages creating the b7, b8+, and Pb7 ions include both Ser60 and Thr64, and only the mono-phosphorylated forms are found for these ions (Pb8, Pb7 = 604.6 Da/e, Pb8, Pb7 = 718.8 Da/e, Δb13, Δb14 = 670.1 Da/e). Shown is the double-neutral loss ion Δb13 at 755.0 Da/e. Nearly every peak is accounted for despite ion signals being close to 2.5× background noise in this region.
synthetic lethality (Table III, lines 10–11), suggesting that the effects due to the alanine substitutions were not due to an overall perturbation of protein structure. In contrast, the synthetic lethality between spc110-221 and an allele of Spc98p (spc98-63) was still suppressed by the quadruple alanine substitution Spc110p (Table III, line 9).

These results were confirmed by integrating the spc110-4A allele containing the S36A, S60A, T64A, and T68A mutations and testing directly for synthetic lethal interactions with spc97-114 (“Experimental Procedures”). The double mutant (spc110-4A and spc97-114) was not viable at 32 °C, whereas neither allele alone (spc110-4A or spc97-114) conferred a temperature-sensitive phenotype.

These mutant proteins were assayed by Western blot analysis when expressed in strain HSY2-12C to assess their effect on the Spc110p mitosis-specific SDS-PAGE mobility shift. An asynonymous wild-type culture exhibits both Spc110p isoforms (Fig. 2, lanes 1 and 6; Fig. 3, lane 1; Fig. 7 lane 1), whereas the mitosis-specific mobility shift of Spc110p containing alanine substitutions at the three Mps1p phosphorylation sites (S60A, T64A, T68A) was abolished (Fig. 7, lane 4). The complete loss of the slower-migrating mitosis-specific isoform was dependent upon simultaneous mutation of all three Mps1p phosphorylation sites (Fig. 7, lanes 4 and 5 and data not shown) and was independent of alanine substitution at Ser36. The mobility shift of the quadruple alanine substitution mutant S36A,S60A,T64A,T68A Spc110p was similarly abolished (Fig. 7, lane 3, and Fig. 3, lane 2), and alanine substitution at only Ser36 did not markedly affect the slower-migrating mitosis-specific isoform (Fig. 7, lane 6). Simultaneous aspartate substitution at these same four residues resulted in the complete shift of Spc110p into a slower-migrating form (Fig. 7, lane 2), but otherwise did not affect Spc110p function.

DISCUSSION

We have shown previously that the mitosis-specific serine/threonine phosphorylation of Spc110p occurs after SPB duplication is completed as the mitotic spindle first forms, and persists up to the metaphase/anaphase transition (26). We show here that the dual-specificity kinase Mps1p phosphorylates Spc110p and that this phosphorylation is necessary for the production of the mitosis-specific Spc110p isoform in vivo. Mitosis-specific Spc110p phosphorylation can occur in the absence of proper SPB duplication but cannot occur in the absence of Mps1p activity, and Mps1p production during G1 arrest can drive formation of the mitosis-specific Spc110p isoform. Spc110p is phosphorylated at residues Ser60, Thr64, and Thr68.

TABLE III

Complementation of synthetic lethal interactions

Plasmids containing mutations in the phosphorylated residues of Spc110p were transformed into the indicated strains and plated on SD-uracil low adenine medium at 30 °C and 37 °C. The requirement for uracil maintains selection on the plasmids carrying alleles of SPC110. If the mutant alleles are not functional, then these cells require the presence of plasmid pH326 (expressing wild-type SPC110) and form solid red colonies. However, if these mutant alleles are functional, then the cells form red colonies with white sectors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 WT</td>
<td>pHS31</td>
<td>Functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>2 S36A</td>
<td>pJK8</td>
<td>Functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>3 T64A/T68A</td>
<td>pJK12</td>
<td>Functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>4 S60A/T64A/T68A</td>
<td>pJK22</td>
<td>Not functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>6 S36A/T64A</td>
<td>pJK33</td>
<td>Not functional</td>
<td>Not functional</td>
<td>Not functional</td>
</tr>
<tr>
<td>8 S36A/T64A/T68A</td>
<td>pJK11</td>
<td>Not functional</td>
<td>Not functional</td>
<td>Not functional</td>
</tr>
<tr>
<td>9 S36A/S60A/T64A/T68A</td>
<td>pJK21</td>
<td>Not functional</td>
<td>Not functional</td>
<td>Functional</td>
</tr>
<tr>
<td>10 S36D/T64D/T68D</td>
<td>pJK16</td>
<td>Functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>11 S36D/S60D/T64D/T68D</td>
<td>pJK29</td>
<td>Functional</td>
<td>Functional</td>
<td>Functional</td>
</tr>
</tbody>
</table>

FIG. 6. Mutation of Spc110p phosphorylation sites abolishes phosphorylation by Mps1p in vitro. GST-Spc110p(1–183) containing alanine substitutions at the indicated residues were constructed and purified as described under “Experimental Procedures.” Approximately 0.2 μg were used as substrates for in vitro GST-Mps1p kinase assays as described under “Experimental Procedures,” after which reactions were boiled for 4 min in SDS-PAGE buffer prior to separation through a 10% SDS-polyacrylamide gel (42). The gel was stained with Coomassie Brilliant Blue (A), dried, and exposed to a PhosphorImager screen (B). Arrows indicate the mobility of full-length GST-Spc110p(1–183). Lane 1, wild-type GST-Spc110p(1–183) (pDV29) without GST-Mps1p. Lanes 2–6: GST-Mps1p kinase assay using as substrate wild-type GST-Spc110p(1–183) (pDV29, lane 2), GST-Spc110p(1–183) containing the T64A mutation (pJK4, lane 3), the T68A mutation (pJK2, lane 4), the T64A,T68A double mutation (pJK7, lane 5), or the triple S60A,T64A,T68A mutation (pJK20, lane 6).

FIG. 7. Mutation of phosphorylation sites in full-length Spc110p abolishes the mitosis-specific mobility shift in vivo. Western blot analysis using affinity-purified anti-Spc110p antibodies and preparation of total cell protein extracts was performed as in Fig. 1. Plasmids expressing full-length spc110 alleles encoding the indicated mutations of serine and threonine residues to alanine or aspartate were transformed into yeast strain HSY2-12C using a red/white plasmid shuffle scheme (17). Thus plasmid-encoded Spc110p is the only source of Spc110p in HSY2-12C cells. Lane 1, plasmid pH31 (WT). Lane 2, plasmid pJK29 (S36D,S60D,T64D,T68D). Lane 3, plasmid pJK21 (S36A,S60A,T64A,T68A). Lane 4, plasmid pJK22 (S60A,T64A,T68A). Lane 5, plasmid pJK12 (T64A,T68A). Lane 6, plasmid pJK8 (S36A). 120- and 112-kDa (p120) and 112-kDa (p112) Spc110p isoforms are indicated.
by GST-Mps1p in vitro, and alanine substitution at these sites abolishes the mitosis-specific phosphorylation in vitro. These sites of phosphorylation are in the N-terminal globular domain of Spc110p, which resides at the inner plaque of the SPB and interacts with members of the microtubule-nucleating Tub4p complex (19, 23–25).

In vivo, alanine substitution at the Mps1p phosphorylation sites in Spc110p is synthetically lethal with alleles of SPC97, which encodes a component of the Tub4p complex. This synthetic lethality also requires an additional alanine substitution at residue Ser36. Ser36 falls within an (S/T/P)XX/R/K consensus sequence for phosphorylation by cdc2p/Cdc28p cyclin-dependent kinase (32, 33), and Ser36 is phosphorylated when Spc110p is purified from insect cells.2 We have shown previously that Ser36 does not contribute to the mitosis-specific Spc110p isoform (26), and those findings are reiterated in this study (Fig. 7, lane 6). However, the S36A mutation is required for synthetic lethality with alleles of SPC97, and, in the presence of the S36A mutation, alanine substitution at any one of the three Mps1p sites is all that is required to produce the synthetic lethal phenotype.

Simultaneous aspartate substitution at Ser36 and the Mps1p sites does not interfere with Spc110p function, including the ability to complement synthetic lethality between alleles of spc110 and spc97. Whereas alanine substitution at serine and threonine residues is thought to prohibit side-chain phosphorylation without perturbing overall protein structure, aspartate substitutions at these residues are thought to mimic phosphorylation owing to the bulky, negatively charged aspartic acid group and to disfavor side-chain phosphorylation. Thus the phenotype associated with the alanine substitution Spc110p is not due simply to an overall perturbation of protein structure, but more likely to a specific defect due to the loss of phosphorylation at these residues.

The mitosis-specific phosphorylation of Spc110p occurs at a time when spindles first form (26), and alleles containing alanine substitutions at Ser36 and the Mps1p sites perturb the interaction between Spc110p and Spc97p. It is tantamount to suggest that Spc110p phosphorylation is important for proper interaction with the Tub4p complex. However, it is important to note that the spc97-114 allele exhibits a number of genetic interactions both with mutations in SPC110 and with genes encoding components of the Tub4p complex (25). Thus the synthetic lethality between spc110-4A and spc97-114 reflects a defect in Spc110p function but does not specify which function of Spc110p is compromised. In contrast, the spc110-4A allele was still able to complement synthetic lethality between spc110-221 and spc98-63 (Table III, line 9). The fact that the spc98-63 allele tested here was unperturbed by the spc110-4A allele is not surprising, because spc98-63 has defects that are specific to the spc110-221 and spc110-222 alleles and exhibits no genetic interactions with other mutations in SPC110 or with mutations in the Tub4p complex components (25).

Mps1p has a demonstrated role in both SPB duplication and the mitotic spindle checkpoint (6, 28, 29). A role for Mps1p during mitotic spindle formation has been suggested by genetic interactions with the CIN8-encoded kinesin-like protein (40), and the spindle component encoded by DAM1 (41). Our results here confirm a third role for Mps1p activity during spindle formation and suggest that it is important for Spc110p function. Consistent with this third Mps1p role demonstrated herein, Mps1p kinase isolated from synchronized cycling cells exhibits a peak of activity at the same time Spc110p phosphorylation occurs as the mitotic spindle forms.3

3 T. Nguyen and T. N. Davis, unpublished results.
4 E. Steiner and M. Winey, unpublished observations.

Mps1p phosphorylation of the Spc110p N-terminal globular domain may modulate the interaction between the microtubule-nucleating Tub4p complex and the SPB. The regions encompassing sites of Spc110p phosphorylation may form a docking site for the Tub4p complex and provide access to the docking site when phosphorylated. Another possible role for this phosphorylation is modulation of microtubule dynamics during mitotic spindle formation, which may also occur through additional phosphorylation of Tub4p complex components by Mps1p. Indeed, the Tub4p complex component Spc98p is also a phosphoprotein that exhibits mitosis-specific phosphorylation similar to that seen for Spc110p, and GST-Mps1p can phosphorylate Spc98p in vitro (30). Phosphorylation of Spc98p may complement the phosphorylation of Spc110p in the binding of the Tub4p complex such that mutations in the phosphorylation sites of both of these binding partners would have catastrophic consequences. Overall, Mps1p phosphorylation of proteins involved in microtubule nucleation during mitosis may be a mechanism by which Mps1p contributes to the assembly and stability of the SPB and the mitotic spindle that it forms.

Acknowledgments—We thank Ken Winter, Nancy Cyrus, Julian Watts, and Reudi Aebersold for technical advice and assistance.

REFERENCES
Mps1p phosphorylates Spc110p

Yeast Mps1p Phosphorylates the Spindle Pole Component Spc110p in the N-terminal Domain

doi: 10.1074/jbc.M010461200 originally published online March 6, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M010461200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 44 references, 33 of which can be accessed free at
http://www.jbc.org/content/276/21/17958.full.html#ref-list-1