Crystal Structure and Biological Implications of a Bacterial Albumin Binding Module in Complex with Human Serum Albumin

Received for publication, June 22, 2004, and in revised form, July 20, 2004
Published, JBC Papers in Press, July 21, 2004, DOI 10.1074/jbc.M406957200

Sara Lejon‡§, Inga-Maria Frick‡, Lars Björcøk¶, Mats Wikström‡, and Stefan Svensson¶

From the ‡Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden, the §Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, University of Lund, SE-221 00 Lund, Sweden, and the ¶Department of Structural Chemistry, Biovitrum, SE-112 76 Stockholm, Sweden

Many bactericide species express surface proteins that interact with human serum albumin (HSA). Protein PAB from the anaerobic bacterium* Finegoldia magna (formerly Peptostreptococcus magnus) represents one of these proteins. Protein PAB contains a domain of 53 amino acid residues known as the GA module. GA homologs are also found in protein G of group C and G streptococci. Here we report the crystal structure of HSA in complex with the GA module of protein PAB. The model of the complex was refined to a resolution of 2.7 Å and reveals a novel binding epitope located in domain II of the albumin molecule. The GA module is composed of a left-handed three-helix bundle, and residues from the second helix and the loops surrounding it were found to be involved in HSA binding. Furthermore, the presence of HSA-bound fatty acids seems to influence HSA-GA complex formation. F. magna has a much more restricted host specificity compared with C and G streptococci, which is also reflected in the binding of different animal albumins by proteins PAB and G. The structure of the HSA-GA complex offers a molecular explanation to this unusually clear example of bacterial adaptation.

Numerous Gram-positive bacterial species, including human pathogens, express surface proteins that interact with host proteins like human serum albumin (HSA) and IgG with high specificity and affinity (1). Among IgG-binding bacterial proteins, protein A of Staphylococcus aureus (2) and protein G of group C and G streptococci (3, 4) are the most well known; both interact with the constant region (Fc) of IgG. Protein G also interacts with HSA, and the regions responsible for IgG and HSA binding have been found to be separately located on the molecule (5).

The anaerobic bacterium Finegoldia magna (formerly Peptostreptococcus magnus) is present in the indigenous flora of the skin, the oral cavity, and the gastrointestinal and urogenital tracts. However, these bacteria are also important human pathogens connected with conditions such as soft tissue abscesses and deep wound infections (6). Some isolates of F. magna bind HSA to their surface, and the molecule responsible for this is called protein PAB (7). Protein PAB contains a domain showing high sequence homology (60%) to the albumin binding domains (ABDs) of protein G. This ABD, the GA module, was found to have been transferred from protein G into the gene-encoding protein PAB through a recombination event including a conjugational plasmid. Although the biological function(s) of the GA module is not known in detail, the acquisition of the GA module seems to add selective advantages to the bacterium in terms of growth and also increases its virulence (8, 9).

HSA is the most abundant protein in plasma, where it acts as a transporter of an exceptionally broad spectrum of compounds that are predominantly fatty acids but also amino acids, bile acids, and steroids (10). It is also capable of binding and transporting a wide range of therapeutic substances. Its binding abilities have been probed in a number of studies, and crystal structures are available for HSA in complex with fatty acids (11, 12), hemin (13, 14), and local anesthetics (15). In this paper we present the first crystal structure for a protein-protein complex of HSA, the HSA-GA complex. This complex is formed when the GA module of protein PAB binds to HSA. The data provide insights into factors influencing the affinity and specificity of the interactions between albumins from different animal species and bacterial albumin-binding proteins, with interesting evolutionary implications. The structure might also prove useful in the study of HSA in the context of structure-aided drug design.

MATERIALS AND METHODS

Purification and Complex Formation—HSA was purchased from Octapharma AG (Sweden) and purified according to the protocol of Curry et al. (11) to remove dimers and multimers. The protein was concentrated to 100 mg/ml with a Millipore spin filter (10,000 Da cutoff) in 50 mM potassium phosphate, pH 7.5, and 150 mM NaCl and subsequently frozen in aliquots at −85 °C. Purified and lyophilized GA module protein (residues 213–265 of protein PAB) was purified as described (16).

For crystallization, a mixture of HSA and GA module (molar ratio 1:1) was incubated for at least 30 min at room temperature.

Crystallization of the HSA-GA Complex—Crystallization was achieved by vapor diffusion at 18 °C using the hanging drop method with a crystallization solution consisting of 2.2 M (NH4)2SO4 and 0.1 M citrate, pH 6. The crystals belong to space group C2221, with unit cell dimensions of a = 96.3 Å, b = 134.8 Å, c = 122.5 Å, and α = β = γ = 90° and one complex per asymmetric unit. Crystals were frozen in liquid nitrogen using mineral oil as a cryoprotectant.

Crystallographic Data Collection and Structure Determination—Data statistics are summarized in Table I. The data were indexed using Denzo and XdisplayF and scaled with Scalepack (17). A molecular replacement search in MOLREP (18) using chain A of the apo form of HSA (Protein Data Bank entry 1A06) as a search model gave the solution for the albumin part of the complex with an R-factor of 48.9 and
a correlation coefficient of 56.2. After cycles of rigid body refinement in REFMAC5 (19), maps were generated using xdlMAPMAN (20). Manual inspection of normalized positive difference density maps (REFMAC5 (19), maps were generated using xdlMAPMAN (20). Manual a correlation coefficient of 56.2. After cycles of rigid body refinement in replacement, and the resulting model of the complex was re-

The GA module binds to HSA at a site in domain II of the GA module (Protein Data Bank entry 1PRB) was manually built into the three-helix bundle. The minimized average NMR structure of the GA module (Protein Data Bank entry 1PRB) was manually built into the orthorhombic space group C2221, a crystal form previously repotted for HSA. The structure was solved by molecular graphics illustrations were generated with PyMol (25).

An additional map calculation was performed using ARP/wARP (23). Model validation was carried out using PROCHECK (24). Molecular graphics illustrations were generated with PyMol (25). Overall Structure of the HSA-GA Complex—Fig. 1 shows the structure of the 1:1 complex formed between the GA module of complex crystallizes in the centered orthorhombic space group C2221, a crystal form previously unreported for HSA. The structure was solved by molecular replacement, and the resulting model of the complex was refined using TLS and restrained refinement to a resolution of 2.7 Å. TLS refinement of the complex proved to be beneficial and was carried out using four TLS groups, with HSA residues 1–197 in the first, residues 198–385 in the second, residues 386 to 569 in the third, and GA residues 198–385 in the second, residues 386–569 in the third, and GA residues 1–53 in the fourth TLS group. The HSA chain is disordered between residues 77 and 88 and beyond residue 573. These regions have been omitted from the model. The protein has satisfactory bond angles and 87.9% of the residues in the complex fall be more flexible and disordered than the rest of the complex.

The Structure of the GA Module—No significant conformational changes in GA occur upon HSA binding, as judged by comparison of the present crystal structure and the previously reported solution structure (27). The three helices of the GA module form a tight three-helix bundle with a distinct hydrophobic core. Both the N and C terminus of the GA module are well ordered in the crystal. The N-terminal residue Thr-1 is hydrogen bonded to the side chain of a symmetry-related Lys-536, whereas the penultimate residue at the C-terminal end, His-52, is stabilized by a hydrogen bond to the main chain oxygen of Ala-21 in the GA module.

The main chain of GA helix 1 was corrected, and side chain orientations throughout the entire chain also had to be amended. The rebuilding resulted in that almost 90% of the GA residues in the crystal structure came within core regions in the Ramachandran plot, compared with 64% in the NMR solution structure.

The HSA-GA Interface—The interface is a predominantly flat surface of ~700 Å² involving one-fourth of the total GA surface area (Fig. 2B). The binding surface consists of a hydrophobic core flanked by two hydrogen bond networks. The hydrophobic core of the interface is lined with residues Phe-228, Ala-229, Ala-322, Val-325, Phe-326, and Met-329 from HSA and residues Phe-27, Ala-31, Leu-44, and Ile-48 from the HSA-GA complex. The GA module is shown in pink. The same color code is used for all figures in this paper.
The GA binding site. A, the GA helices pack at almost right angles to helices 3, 4, and 7 (h3, h4, and h7) in HSA domain II. B, surface representation of the rather flat GA binding site on albumin, where the main interaction area on albumin is shown in white. Residues (represented as single-letter amino acid abbreviations with position numbers) from the GA module participating in binding surface interactions are shown as sticks.

C, in the hydrophobic core of the interface, Phe-27 (F27) is buried the hydrophobic pocket formed by Met-329 (M329), Phe-309 (F309), and Phe-326 (F326) in HSA. The 2|F| - |F| map is shown at a σ level of 1.

Fig. 4. A fatty acid at the HSA-GA interface. A, the fatty acid protrudes from its binding pocket toward the GA binding site. B, the carboxylate head of the fatty acid is ligated by Ser-232 (S232). The GA module is anchored by a hydrogen bond between Lys-212 (K212) of HSA and Glu-47 (E47) of the GA module. The 2|F| - |F| map is shown at a σ level of 1.

The hydrogen bond networks of the interface. A, the complex is stabilized by a hydrogen bond network between residues (represented as single-letter amino acid abbreviations with position numbers) at the loop between the first and the second GA helix and HSA residues in helix 7 (h7) of domain IIB. B, the second hydrogen bond network involves residues at the loop between the second and third GA helix and HSA residues in helices 2 and 3 of domain IIA.

At the opposite end of the binding interface, a second hydrogen bond network is formed between residues in the loop connecting helices 2 and 3 in GA and residues in helices 2 and 3 in HSA domain IIA (Fig. 3B). Here, HSA residues Glu-230 and Asn-267 form hydrogen bonds to the main chain nitrogen and the side chain hydroxyl group of Thr-37, respectively. Glu-230 also interacts with the main chain oxygen of Ala-35.

A Fatty Acid at the Binding Interface—An additional hydrogen bond at the HSA-GA interface occurs between GA residue Glu-47 in helix 3 and HSA residue Lys-212. Adjacent to this region, in the tunnel-shaped cavity previously described as fatty acid binding site 6, we observed density compatible with a medium-length fatty acid. Two molecules of the saturated ten-carbon fatty acid decanoate were built into the model in a linear tail-to-tail orientation. In the final model, the carboxylate head of one of the fatty acids is stabilized by a hydrogen bond with Ser-232 (Fig. 4A). The fatty acid is thereby brought within 4.5 Å from the side chain of Glu-47 in GA. Local side chain rotations occur in HSA upon binding of the fatty acid molecules and the GA module simultaneously. The side chain of Lys-212, which in defatted HSA forms a 3.6-Å salt bridge with the carboxyl group of Glu-208, rotates slightly, pushed by the fatty acid so that its terminal amine group forms a tighter, 2.6-Å ion pair bond to the glutamic acid side chain (Fig. 4B). One molecule of decanoate was also built in fatty acid site 7. To account for density in Sudlow site I, one molecule of citrate was built into this site.

DISCUSSION

Comparison with Previous Binding Experiments—Residues adjacent to the hydrogen bond network at the loop between GA helices 2 and 3 were implicated in albumin binding in the previously reported NMR experiment on an HSA-complexed GA module. The same NMR experiment also suggested that the N terminus of the GA module was involved in binding, which is not visible in the crystal structure. However, because the N terminus of the GA module can be seen participating in crystal packing interactions, a transient association between the GA module and HSA might explain the observed interaction.

A Fatty Acid at the Binding Interface—The presence of fatty acid in the HSA-GA binding interface might influence complex formation, although its precise role in that case is not evident because it is not within hydrogen bonding distance from any of the GA module side chains. However, binding of GA might be influenced indirectly, because the binding of the fatty acid causes the side chain of Lys-212 to be pushed aside slightly into a position that allows it to form a hydrogen bond to GA.
Whether completely defatted HSA would be able to bind GA is not known. Therefore, it is uncertain whether the presence of a fatty acid is required for or only tolerated in the binding of GA.

Structural Basis for Species Specificity—The GA module in this study is homologous to an ABD of protein G of group G streptococci as a result of it being transferred by exon shuffling from protein G to protein PAB. The binding site for protein G on HSA has been suggested to be located on the second and third domain of HSA and involves a single site consisting of a segment spanning residues 330 to 548 (28). This study demonstrates that HSA residues 212, 309, 318, 321, 326, and 329 are important for GA binding, indicating that there is at least partial overlap between the two sites.

Despite the high sequence homology between the two domains, the wide species affinity displayed by ABD is not retained in the GA module. Whereas affinities for human and rhesus monkey albumin are similar in GA and ABD, the affinity of GA for mouse albumin is more than a hundred times lower than that of ABD (29).

Considering that the interaction in the hydrophobic core of the interface between Phe-27 in the GA module and Met-329 in HSA is crucial, we suggest a structural basis for the difference in species selectivity between ABD and the GA module. A superposition of the α carbons in the structures of ABD (Protein Data Bank entry 1GJS) and GA shows that the phenylalanine in GA position 27 corresponds to Tyr-39 in the ABD (not shown). Furthermore, a sequence alignment of albumins of different species shows that the methionine in HSA position 329 corresponds to polar or charged side chains such as serine and lysine in albumins of other species (Fig. 5). As other interactions at the surface seem to be conserved across species, the bootstrapped hydrophobic Met-Phe interaction emerges as a crucial interaction at the HSA-GA interface, and we stipulate that it plays a major part in the species selectivity between ABD and the GA module. Whereas affinities for human and rhesus monkey albumin are similar in GA and ABD, the affinity of GA for mouse albumin is more than a hundred times lower than that of ABD (29).

In vivo, the protein G gene by the action of a conjugal plasmid from a third bacterial species, Enterococcus faecalis (7). This finding represents the first described case of contemporary module shuffling, and the fact that PAB-expressing strains of F. magna are tetracycline resistant suggests that antibiotics provide the selective pressure behind the evolution of this novel HSA-binding protein. As mentioned above, F. magna is part of the normal human bacterial flora, but strains that express protein PAB are mostly isolated from patients with localized suppurative infections, suggesting that the binding of HSA to the bacterial surface increases the pathogenic potential of F. magna. The study by de Château et al. (8) did indeed show that HSA enhances the growth rate of streptococcal and F. magna strains expressing HSA-binding surface proteins, and the structural data of the present work indicate that the binding of HSA to the GA module could provide growing bacteria with fatty acids and, possibly, other nutrients transported by HSA.

The study by de Chaâteau et al. (8) did indeed show that HSA enhances the growth rate of streptococcal and F. magna strains expressing HSA-binding surface proteins, and the structural data of the present work indicate that the binding of HSA to the GA module could provide growing bacteria with fatty acids and, possibly, other nutrients transported by HSA.

Implications for the Rational Design of Albumin Ligands—In this study we have obtained reasonably well diffracting crystals of HSA that endure cryoconditions during data collection. This might prove useful, especially in the context of minimizing the HSA affinity of drug molecules by structure-based design. We speculate that the readily available, cryo-enduring HSA-GA complex could be an entry point to enabling high throughput structure determination in the study of HSA-drug interactions. Further studies will be performed to investigate the consistency of HSA binding ligands in the presence of the GA module.

Based on the molecular interactions in the HSA-GA interface, it might be possible to design and screen for compounds that will interfere with the binding of HSA to bacterial surfaces in vivo. Several observations have shown that the binding of HSA adds selective advantages to the bacteria and increases their virulence, suggesting that such compounds could be used to treat infections caused by HSA binding bacterial pathogens.

Acknowledgments—We are very grateful to the European Synchrotron Radiation Facility at Grenoble for access to synchrotron radiation and to the beamline staff at ID14 for help. We also thank Dr. Karin Välegård and Prof. Janos Hajdu for valuable discussions and help.

REFERENCES

Crystal Structure and Biological Implications of a Bacterial Albumin Binding Module in Complex with Human Serum Albumin
Sara Lejon, Inga-Maria Frick, Lars Björck, Mats Wikström and Stefan Svensson

doi: 10.1074/jbc.M406957200 originally published online July 21, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M406957200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 28 references, 12 of which can be accessed free at
http://www.jbc.org/content/279/41/42924.full.html#ref-list-1