A WRKY Gene from Creosote Bush Encodes an Activator of the Abscisic Acid Signaling Pathway*

Xiaolu Zou‡, Jeffrey R. Seemann§, Dawn Neuman*, and Qingxi J. Shen‡‡

From the ²Department of Biological Sciences, University of Nevada, Las Vegas, Nevada 89154 and the §Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881

The creosote bush (Łarrea tridentata) is a xerophytic evergreen C3 shrub thriving in vast arid areas of North America. As the first step toward understanding the molecular mechanisms controlling the drought tolerance of this desert plant, we have isolated a dozen genes encoding transcription factors, including LtgwKY21 that encodes a protein of 314 amino acid residues. Transient expression studies with the GFP-LtgwKY21 fusion construct indicate that the LtgwKY21 protein is localized in the nucleus and is able to activate the promoter of an abscisic acid (ABA)-inducible gene, HVA22, in a dosage-dependent manner. The transactivating activity of LtgwKY21 relies on the C-terminal sequence containing the WRKY domain and a N-terminal motif that is essential for the repression activity of some regulators in ethylene signaling. LtgwKY21 interacts synergistically with ABA and transcriptional activators VP1 and ABI5 to control the expression of the HVA22 promoter. Co-expression of VP1, ABI5, and LtgwKY21 leads to a much higher expression of the HVA22 promoter than does the ABA treatment alone. In contrast, the LtgwKY21-mediated transactivation is inhibited by two known negative regulators of ABA signaling: 1-butanol, an inhibitor of phospholipase D, and abi1-1, a dominant negative mutant protein phosphatase. Interestingly, abi1-1 does not block the synergistic effect of LtgwKY21, VP1, and ABI5 co-expression, indicating that LtgwKY21, VP1, and ABI5 may form a complex that functions downstream of ABI1 to control ABA-regulated expression of genes.

The phytohormone abscisic acid (ABA) modulates plant developmental processes such as seed formation, dormancy, and germination, as well as plant responses to environmental stresses such as drought, cold, high salinity, pathogen attack, and UV radiation (1–6). Plant responses to ABA are mediated at several molecular levels including transcription, RNA processing, post-translational modification, and metabolism of the secondary messengers (reviewed in Refs. 7–9). Recent data indicate that the ABA signaling pathways appear to be conserved among higher plant species and even bryophytes (8, 9).

Both ABA-resistant and ABA-hypersensitive mutants have been extremely valuable in helping define ABA signaling pathways. Studies of mutants in several plant species suggest that the ABA signaling is mediated by a membrane-bound metal sensor (10, 11), type 2C serine/threonine protein phosphatases (12–14), a Ser/Thr protein kinase (15, 16), a protein farnesyl transferase (17), a steroid reductase (18), an inositol polyphosphate 1-phosphatase (19), and several transcription factors (19–26). In addition, the mutant studies also suggest that RNA processing plays an important role in the regulation of ABA signaling (27) because several ABA response mutants are impaired in a double-stranded RNA-binding protein (28), a mRNA CAP-binding protein (29), or a U6-related Sm-like small ribonucleoprotein (18). In line with these reports, an ABA-induced maize glycine-rich protein can bind to uridine- and guanosine-rich RNA fragments (30).

Several types of cis-acting elements are involved in ABA responses, such as the 10-bp element containing an ACGT core (ACGT box, also referred as G box or ABRE), CE, RY/Sph, AT-rich elements, and Myc and Myb-binding sites (reviewed in Refs. 6 and 7). In a series of mutational analyses of two ABA-responsive barley genes, HVA1 and HVA22, it was shown that in addition to the ACGT box (A3, GCCACGTTACA, or A2, CCTACGTTGCG), a coupling element (CE1, TGCCACCGCG, or CE3, ACGCGTGTCTC) is also necessary for the ABA response (31, 32). The combination of the ACGT box and the CE forms an ABA response complex, which has been shown to be the smallest ABA-responsive promoter unit (32). Recently, the ACGT box is further narrowed down to be ACGTTGCC, and CE1 and CE3 are narrowed down to be CCACC and GCGTGTC, respectively (33). ABREs and CE3 are bound by bZIP proteins (24, 34–43); CE1 is bound by ABI4 (44); RY/Sph elements are bound by those containing B3 domains (19, 20, 45–55); AT-rich elements are bound by homeodomain leucine zipper proteins (56, 57); MYC sites are bound by AtMYC (58); and MYB sites are bound by AtMYB (58, 59).

WRKY genes are known to be involved in biotic (bacterial and fungal diseases) and abiotic (heat, drought, wounding, and freezing) stress responses, anthocyanin and starch biosynthesis, senescence and trichome development, and hormone responses (60–72). WRKY genes have either one or two WRKY domains, each containing a 60-amino acid region with a core sequence, WRKYGGQK, at its N-terminal end and a novel zinc finger-like motif. The WRKY domain binds specifically to the DNA sequence motif (T/T)TGAC(C/T), which is known as the

*This work was supported by a University of Nevada, Las Vegas start-up grant, National Institutes of Health Biomedical Research Infrastructure Network Seed Grant P20 RR16464, and National Science Foundation Experimental Program to Stimulate Competitive Research (EPSCoR) Seed Grant EPS-9977809 (to Q. J. S.) and National Science Foundation EPScO IAAS Fellowship EPS-0132556 (to X. Z.). The costs of publication of this article were defrayed in part by the payment of page charges. This paper is available on line at http://www.jbc.org

†To whom correspondence should be addressed: Dept. of Biological Sciences, MS 4004, 4505 Maryland Parkway, Las Vegas, NV 89154. Tel.: 702-895-4704; Fax: 702-895-3956; E-mail: jeffery.shen@ccmail.nevada.edu.

‡ The abbreviations used are: ABA, abscisic acid; GFP, green fluorescent protein; ERF, ethylene-responsive element-binding factor; EAR, ERF-associated amphiphilic repression; PLD, phospholipase D.
W box. Despite the strong conservation of their DNA-binding domain, the overall structures of WRKY proteins are highly divergent and can be categorized into distinct groups, which might reflect their different functions (67).

In this work, we identified and characterized a WRKY family transcription factor, LtWRKY21, from creosote bush. We then co-expressed an ABA-regulated reporter construct with effector constructs encoding LtWRKY21 and other known ABA signaling regulators, such as ABI1, VP1, and ABI5, in barley aleurone layers to better define the signal transduction pathways mediating ABA signaling. Our results indicate that LtWRKY21 activates ABA-regulated transcription by interacting with VP1 and ABI5 and acting downstream of ABI1.

EXPERIMENTAL PROCEDURES

Construction of Creosote Bush cDNA Libraries—Total RNA was isolated from creosote bush leaves from the Nevada Desert research center (www.unlv.edu/Climate Change_Research) with the TRIzol® reagents (Invitrogen). The first strand cDNA was synthesized via priming of the poly(A) tail with the primer 5′-GACTAGTTG AGTCGCGG CGCG-CCGCT TTTTTTTTTTTTTTGCAGAG GGAGAAGAATAC. This primer contains four restriction sites (Bsal, XbaI, NruI, and NotI). Once the double-stranded cDNAs were synthesized, their ends were polished with Klenow. This was followed by digestion with NotI, leaving a sticky NotI site at the 3′ end and a blunt end at the 5′ end. The digested fragments were then cloned into EcoRV and NotI cut pCMVSPORT6 vector (Invitrogen). Sequencing of the expression sequence tags was done using Applied Biosystems Prism 3730 DNA analyzer at the Nevada Genomics Center (www.ag.unr.edu/genomics/).

RNA Gel Blot Analysis—Total RNA was isolated from creosote bush seeds with the LiCl precipitation method as described (72). Ten µg of total RNA was separated in a 1.2% polyacrylamide gel and transferred to nylon membrane as described (73). The gene-specific fragment of LtWRKY21 was amplified by PCR using two primers: CTCGGACATAA TC. The gene-specific fragment of the 18 S rRNA from barley was amplified by PCR using GTGGTGCATG GCCGT- TTTCGACGATATCCATCTTAATGA AGCTTCACC and CTCTTATCGTC TTTGTCGGT. A Novel Activator of ABA Signaling

RESULTS

Northern Blot Analysis of the LtWRKY21 Gene Expression in Response to ABA Treatment—In an effort to identify creosote bush stress response genes, 43 Arabidopsis stress-inducible genes (77) were collected and searched against the creosote bush expression sequence tag database. Ten creosote bush genes encoding putative stress-inducible transcription factors of different families were identified (data not shown). We focused on WRKY proteins because they regulate plant response to various stresses (60–70), hence likely also mediating ABA responses. One of these genes, LtWRKY21, was studied in more detail.

To study the expression pattern of the LtWRKY21 gene, RNA was isolated from creosote bush seeds without or with different ABA treatments for Northern analyses. The mRNA level of LtWRKY21 was abundant in the seeds at onset of the ABA treatment. ABA treatments for 12 or 24 h had little effect on the abundance of the LtWRKY21 mRNA level (Fig. 1), suggesting that ABA has little effect on regulating LtWRKY21 at the transcriptional or post-transcriptional levels.

Protein Sequence Alignment of LtWRKY21 with Its Homologues—To identify the open reading frame of LtWRKY21, both strands of the cDNA clone was sequenced. The full-length of this cDNA is 945-bp, encoding a protein of 314 amino acid residues with a hydrophilic N terminus. The deduced amino acid sequence of LtWRKY21 and its homologues, including Arabidopsis WRKY40 (accession number At1g80840) (67), parsley WRKY4 (accession number AF204925.1) (78), cotton
WRKY1 (accession number AY507929.2) (79), tobacco WIZZ (accession number AB028022.1) (69), and grapevine WRKY4 (accession number AY484579.1) were aligned with the ClustalW program at the default settings. LtWRKY21 shares 44–48% identity and 57–62% chemical similarity at the amino acid level with these WRKY proteins (Fig. 2). The WRKY, zinc finger motif, nucleus targeting signal sequence, and putative leucine zipper domain are highly conserved. Interestingly, among this group of homologues, only LtWRKY21 contains an EAR motif, with a consensus sequence of (L/F)DLN(L/F)X. In LtWRKY21, this motif is LDLNLNP (Fig. 2). EAR resides in the 59-amino acid ERF domain of ERFs (80). In Arabidopsis, there are five ERFs, all of which bind to the GCC box-dependent transcription in Arabidopsis leaves, whereas AtERF3 and AtERF4 act as repressors (81). Both AtERF3 and AtERF4 contain the EAR motif, which is also present in other unrelated proteins such as SUPERMAN that regulates flowering (82). A related motif, LXXLXX, is necessary for the activity of some Aux/IAA repressors mediating auxin signaling (83).

The GFP-LtWRKY21 Fusion Protein Was Localized in Nuclei—To examine the subcellular localization of the LtWRKY21 protein, we used GFP as a reporter and a red fluorescent nucleic acid stain, SYTO17, for nuclear localization. GFP was fused in frame to the 5′ end of the LtWRKY21 coding sequence.
UBI-GFP or UBI-GFP-LtWRKY21 plasmids were introduced into the barley aleurone cells by particle bombardment, and the GFP fluorescence was visualized using confocal microscopy. In control, GFP fluorescence was observed throughout the cells (Fig. 3A). In contrast, GFP-LtWRKY21 fusion proteins were localized exclusively in the nuclei (Fig. 3), as confirmed by SYTO17 staining (Fig. 3, B and D).

LtWRKY21 Transactivates the HVA22 Promoter—To test the function of LtWRKY21 on ABA signal transduction pathways, we used a reporter construct that contains the GUS reporter gene driven by the promoter of HVA22, an ABA-responsive gene in barley (32). The effector construct, UBI-LtWRKY21, was co-introduced to evaluate its effect on ABA signaling. As shown in Fig. 4, a very low level of GUS activity was observed in the absence of ABA. The exogenous ABA (20 μM) treatment resulted in a 30-fold enhancement of GUS activity over that found with the ABA-untreated control. Expression of UBI-LtWRKY21 resulted in a 7-fold induction in the absence of ABA. Interestingly, LtWRKY21 synergistically interacted with ABA to transactivate the expression of the HVA22 promoter, leading to a 47-fold induction.

The Activating Effect of LtWRKY21 on the Expression of the HVA22 Promoter Is Dosage-dependent—The activating effect of LtWRKY21 was further confirmed by a dosage experiment, in which the amount of reporter plasmid was always constant, whereas that of the effector varied from 0 to 100% (Fig. 5). As expected, when the HVA22-GUS construct was transformed alone, the treatment with 20 μM ABA led to a 31-fold induction of HVA22-GUS. The expression of the HVA22-GUS in response to ABA treatment increased gradually with the increment of the UBI-LtWRKY21 effector construct. When the relative amount of effector to reporter was 25 and 50%, the GUS expression, in reference to the control (no ABA, no effector), was induced by a factor of 57 and 62, respectively. The GUS activities increased to 74-fold and reached a plateau with the higher amounts of the effector construct (75 or 100%). These data indicated that under these conditions, LtWRKY21 is a transcriptional activator of ABA signaling. To our knowledge, this is the first report of such activity by a WRKY protein.

The EAR Motif at the N Terminus and the C-terminal Region Containing the WRKY Domain of LtWRKY21 Are Essential for Its Transactivating Activity—To further demonstrate the specificity of LtWRKY21 on activating ABA induction, mutagenesis experiments were carried out to try to change its activity. A stop codon was introduced at amino acid 165 (mutant 1), which is upstream from the WRKY domain. The purpose was to produce a truncated protein missing the WRKY domain and the rest of the C-terminal region. As shown in Fig. 6, the expression of the HVA22 promoter increased 35-fold after ABA treatment. The wild type LtWRKY21 gene alone activated the expression of the HVA22 promoter by 5-fold. ABA treatment along with LtWRKY21 expression resulted in a 60-fold induction. However, when the LtWRKY21 mutant 1 was co-expressed, the induction of GUS was 28-fold, which is comparable with that of the ABA treatment alone (35-fold; Fig. 6).

Interestingly, the EAR motif (Fig. 2) is reported to be present in transcriptional repressors only. The presence of such a motif in LtWRKY21 (a clear activator under the experimental conditions) is intriguing. Thus, the DLN residues at the 12th–14th positions were mutated to ARV (mutant 2; Fig. 6). In the presence of ABA, wild type LtWRKY21 activated HVA22-GUS expression by 60-fold. However, mutation of the EAR motif decreased the induction level to 21-fold (Fig. 6). In summary, the results presented in Fig. 6 suggested that the EAR domain and C-terminal region of LtWRKY21 are necessary for its transactivating activity in ABA signaling.

LtWRKY21 Interacts Synergistically with ABA and VP1 to...
Transactivate the Expression of the HVA22 Promoter—VP1 encodes a transcription activator that up-regulates ABA responsive genes (19). Fig. 7 shows the results of a functional interaction of LtWRKY21 with VP1 on regulating ABA responses. Expression of VP1 promoted a small induction (2-fold) of HVA22-GUS, in the absence of ABA. ABA treatment along with VP1 expression resulted in a 16-fold induction. Interestingly, expression of LtWRKY21 also led to a 2-fold induction. ABA treatment along with LtWRKY21 expression led to a 53-fold induction. Co-expression of LtWRKY21 and VP1 resulted in a 21-fold induction, which is even higher than ABA treatment along with VP1 expression (16-fold). ABA treatment along with LtWRKY21 co-expression gave a 62-fold induction (Fig. 7).

FIG. 5. The synergistic effect of LtWRKY21 is dosage-dependent. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. The annotations are the same as in Fig. 4. B, the effector construct, UBI-LtWRKY21, was co-bombarded into barley half-seeds along with the reporter construct, HVA22-GUS, and the internal control construct, UBI-luciferase. The amount of reporter and internal control plasmid DNA was always constant (1.43 µg/shot), whereas that of the effector varied with respect to the reporter as shown in the x axis. 100% means the same amount of effector and reporter DNA was used. GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarded half-seeds with (+) or without (−) 20 µM ABA. The data are the means ± S.E. of four replicates.

FIG. 6. The EAR motif and C-terminal region containing the WRKY domain of LtWRKY21 are essential for its transactivating activity. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. The mutant 1 was made by introducing a stop codon at amino acid 165, which is a tryptophan in the wild type protein. The mutant 2 was made by changing residues 12–14 from aspartate-leucine-asparagine to alanine-arginine-valine. B, the reporter construct, HVA22-GUS, and the internal construct, UBI-luciferase, were co-bombarded into barley half-seeds either with (+) or without (−) 20 µM ABA. The data are the means ± S.E. of four replicates.
teracted with ABA to induce the expression of HVA22-GUS. Co-expression of LtWRKY21 and ABI5 resulted in a 21-fold induction, which is similar to the ABA treatment (22-fold). The highest level of induction was achieved with the co-expression of LtWRKY21 and ABI5 in the presence of ABA (Fig. 8).

1-Butanol Blocks the Synergistic Effect of ABA and LtWRKY21—Plaspholipase D (PLD) is a phosphodiesterase that hydrolyzes phospholipids to produce phosphatidic acid. PLD has been demonstrated to be up-regulated by ABA (84). As reported (85), 1-butanol, a specific inhibitor of PLD, inhibits ABA-inducible gene expression. Indeed, ABA induction of HVA22-GUS dropped from 32- to 2-fold (Fig. 9). In this experiment, LtWRKY21 expression led to 4-fold induction in the absence of ABA. 1-Butanol treatment prevented the induction of the reporter by LtWRKY21. This chemical also blocks the synergistic interaction of ABA and LtWRKY21, decreasing the induction level from 61-fold to only 10-fold.

Interaction among LtWRKY21, VP1, ABI5, and ABI1—Because abi1-1 functions upstream of ABI5 and VP1 in modulation of the response, this interaction provides further evidence for the role of ABI1 in ABA signaling.

FIG. 7. LtWRKY21 interacts synergistically with ABA and VP1 to transactivate the expression of the HVA22 promoter. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. VP1 is the Viviparous 1 gene from maize. The 35S promoter is from the cauliflower mosaic virus. B, the reporter construct, HVA22-GUS, and the internal construct, UBI-luciferase, were co-bombarred into barley half-seeds either with (+) or without (−) the effector constructs (UBI-LtWRKY21 or 35S-VP1) by using the same amount of effector and reporter constructs (1.43 μg/shot). GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarred half-seeds with (+) or without (−) 20 μM ABA. The data are the means ± S.E. of four replicates.

FIG. 8. LtWRKY21 interacts synergistically with ABA and ABI5 to transactivate the expression of the HVA22 promoter. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. ABI5 is the ABA Inensitive 5 gene from barley. B, the reporter construct, HVA22-GUS, and the internal construct, UBI-luciferase, were co-bombarred into barley half-seeds either with (+) or without (−) the effector constructs (UBI-LtWRKY21 or UBI-ABI5) by using the same amount of effector and reporter constructs (1.43 μg/shot). GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarred half-seeds with (+) or without (−) 20 μM ABA. The data are the means ± S.E. of four replicates.

A Novel Activator of ABA Signaling

55775

by guest on September 30, 2017 http://www.jbc.org/ Downloaded from
ing the ABA signaling (43, 87), we studied the effect of co-expressing abi1-1, LtWRKY21, VP1, and ABI5 on regulating the HVA22 promoter. As shown in Fig. 11, co-expression of LtWRKY21, VP1, and ABI5 led to a 122-fold induction of HVA22-GUS, which is much higher than that of ABA treatment alone (33-fold in this experiment). ABA treatment did not further enhance the induction of the HVA22 promoter by co-expression of LtWRKY21, VP1, and ABI5. Interestingly, abi1-1 did not block the synergistic effect of LtWRKY21, VP1, and ABI5 on inducing the HVA22 promoter, either in the absence or in the presence of ABA (Fig. 11).

DISCUSSION

The creosote bush survives exceptionally well in the arid desert where rainfall events only occur a few times each year. Understanding the molecular mechanism underlying its resistance to drought is biologically and agriculturally important. Because transcription factors are master switches of gene regulation, alterations in their expression levels, activities, and/or functions, as opposed to those of structural genes, are more likely to have broader impacts on the resistance of plants to environmental stresses and hence on the speciation of creosote bush. Therefore, we focused on drought stress-induced transcription factors. In Arabidopsis, there are 43 stress-induced transcription factor genes that have been identified, corresponding to 11% of all stress-inducible genes (77). Among these stress-inducible proteins, there are six DREBs, two ERFs, ten zinc fingers, four WRKYs, three MYBs, two bHLHs, four bZIPs, five NACs, and three homeodomain transcription factors (77). The protein sequences of these 43 transcription factors were collected and searched against the translated creosote bush expression sequence tag database. This effort led to

Fig. 9. 1-Butanol blocks the synergistic effect of ABA and LtWRKY21. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. The annotations are the same as in Fig. 4, B. The reporter construct, HVA22-GUS, and the internal construct, UBI-luciferase, were co-bombarded into barley half-seeds either with (+) or without (−) the effector construct (UBI-LtWRKY21) by using the same amount of effector and reporter constructs (1.43 µg/shot). GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarded half-seed with (+) or without (−) 1% 1-butanol and 20 μM ABA. The data are the means ± S.E. of four replicates.

Fig. 10. ABI1 blocks the synergistic effect of ABA and LtWRKY21. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. The 35S promoter is from the cauliflower mosaic virus. abi1-1 is the dominant mutant gene of ABI1 from Arabidopsis. B, the reporter construct, HVA22-GUS, and the internal construct, UBI-luciferase, were co-bombarded into barley half-seeds either with (+) or without (−) the effector constructs (UBI-LtWRKY21 or UBI-abi1-1) by using the same amount of effector and reporter constructs (1.43 µg/shot). GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarded half-seed with (+) or without (−) 20 μM ABA. The data are the means ± S.E. of four replicates.
the identification of ten putative stress-inducible transcription factors of different families in creosote bush. One of the ten genes is *LtWRKY21*, which is highly expressed in creosote bush seeds (Fig. 1). *LtWRKY21* contains a WRKY motif, a zinc finger motif, two nucleus targeting signal sequences, and a putative leucine zipper domain (Fig. 2). Consistent with its role as a transcription factor, the GFP-*LtWRKY21* fusion proteins were targeted to nuclei (Fig. 3).

Fig. 11. Interaction among *LtWRKY21*, VP1, ABI5, and ABI1. A, schematic diagrams of the reporter and effector constructs used in the co-bombardment experiment. B, the reporter construct, *HVA22-GUS*, and the internal construct, *UBI-luciferase*, were co-bombarded into barley half-seeds either with (+) or without (−) the effector constructs (*UBI-LtWRKY21*, *UBI-ABI5*, *3SS-VP1*, or *3SS-abi1-1*) by using the same amount of effector and reporter constructs (1.43 μg/shot). GUS activity was normalized in every independent transformation relative to the luciferase activity. The bars indicate GUS activities ± S.E. after 24 h of incubation of the bombarded half-seeds with (+) or without (−) 20 μM ABA. The data are the means ± S.E. of four replicates.

The homologues of *LtWRKY21* are present in many other plant species such as *Arabidopsis*, parsley, cotton, tobacco, and grapevine and play a variety of roles. *AtWRKY40* is a drought and ABA response gene; *GaWRKY1*, *PsWRKY4*, and *VaWRKY4* are involved in pathogen defense, and *NwWIZZ* is a wounding-inducible gene. The goal of this study was to address the function of *LtWRKY21* in ABA responses. It has been demonstrated that the ABA signaling machinery is conserved among higher plant species and even bryophytes (8, 9). For example, the promoter of *Em*, a wheat ABA-responsive gene, responds to osmotic stress and ABA in moss, and the moss transcription factors can bind to the *Em* promoter (8). Transcription factors from maize and *Arabidopsis* function well in barley aleurone layer (87) or rice protoplasts (9) to regulate the expression of the wheat *Em*, *Arabidopsis AtEM6*, bean β-Phaseolin, and barley *HVA1* and *HVA22* promoters. Therefore, we studied the function of *LtWRKY21* in barley aleurone cells and demonstrated that it acted as an activator of ABA signaling (Figs. 4 and 5). Unlike *AtWRKY40*, *LtWRKY21* expression did not appear to be affected by external ABA applications in the seeds (Fig. 1). Similar results were observed for other genes involved in ABA signaling such as *VP1/ABI3* and *ABI4* genes (6, 88, 89). It is speculated that *LtWRKY21* activity may be regulated by post-translational modifications and/or interactions with other regulators in response to ABA.

Six classes of transcription factors have been demonstrated by genetic analyses to be essential for ABA responses: *VP1/ABI3*, *ABI4*, *ABI5*, LEC1, LEC2, and FUS3 (reviewed in Ref. 6). We studied the interactions of *LtWRKY21* with *VP1* and *ABI5*. Like *VP1* and its *Arabidopsis* orthologue *ABI3*, *ABI5* and other bZIP transcription factors function as activators of ABA signaling (19, 20, 24, 36, 43, 87, 90, 91). Excitingly, *LtWRKY21* synergistically interacted with *VP1* (Fig. 7) and *ABI5* (Fig. 8) in regulating ABA responses. *VP1* has been shown to potentiate ABA-inducible gene expression by forming a DNA-binding complex with bZIP, 14-3-3, ring (C3HC3-type) zinc finger proteins, and RNA polymerase II subunit RPB5 (91–94). Our data suggest that the WRKY protein might be a new component of this complex.

WRKY proteins can bind specifically to the W box that contains a TGAC core (72, 95, 96). The putative W box has been found in the promoter regions of *HVA22* (73) and *ABF* (36). However, the 49-bp promoter fragment in the reporter construct of this study does not include this W box. Similarly, this promoter does not contain the SpH1 element that is bound by the C-terminal B3 domain of *VP1* (48). Instead, only two elements are present in this promoter fragment: the ABRE that is bound by *ABI5* or its related bZIP proteins (24, 38, 43, 91) and CE1 that is bound by a APETALA2-domain-containing transcription factor *ABI4* (21, 44). It should be noted that the full-length *VP1* does not bind DNA specifically *in vivo*, suggesting that it interacts with other proteins that mediate DNA binding (48). Our preliminary data suggest that *LtWRKY21* does not bind to the promoter sequence of the *HVA22-GUS* reporter construct used in this study. Therefore, we suggest that *LtWRKY21* regulates the *HVA22* promoter as a non-DNA-binding component of the transcription complex mentioned above.

Deletion and substitution studies of *LtWRKY21* should lead to the identification of domains and residues that are essential for the interaction of *LtWRKY21* with the remaining components of the transcription complex. Fig. 6 shows that the C-terminal region, which contains the WRKY domain and zinc finger motif, was required for *LtWRKY21* transactivating the

\(^2\) X. Zou and J. Q. Shen, unpublished results.
ABA signaling (101, 104). The application of phosphatidic acid products of phospholipases act as secondary messengers in C and D produce inositol 1,4,5-trisphosphate and diacylglycerol lipases, protein kinases, and protein phosphatases are involved effect when ergistic effect of ABA and LtWRKY21 (Fig. 10), but it had little ing that abi1-1 acts upstream of ABI5 in the ABA up-regulatory (106), barley (87), and rice (85). The ABI1-1 inhibitory abi1-1 act as a negative regulator of ABA signaling in that the synergistic effect of LtWRKY21 and ABA was also suggest that PLD is involved in ABA signaling. Fig. 9 shows or ABI5 on ABA response promoters (85). Together, these data RAB protein (84). 1-Butanol inhibits the transactivation of VP1 expression of the ABA-responsive reporter and effector MO) for sending us the ABA-responsive reporter and effector thank Dr. John Cushman (University of Nevada, Reno) for providing us our lab for contributions to the improvement of this article. We also REFERENCES

Acknowledgments—We thank Dr. Andrew Andres and members of our lab for contributions to the improvement of this article. We also thank Dr. John Cushman (University of Nevada, Reno) for providing us with the Larrea cDNA clones and the sGFP construct and Drs. David Ho and Jose Casaretto (Washington University, St. Louis, MO) for sending us the ABA-responsive reporter and effecter constructs.

expression of the HVA22 promoter. Interestingly, LtWRKY21 also contains the EAR motif, which is necessary for the repression function of AtERF3, AtERF4, and their orthologues in ethylene signaling of Arabidopsis (81), wheat, and petunia plants (97). Yet the EAR motif was essential for the transcriptional activity of LtWRKY21. These data suggest that the same motif might play opposite roles in different hormonal signaling pathways, and it is possible that LtWRKY21 is also involved in ethylene signaling. Transcription factors with dual activities have been found in plants. For instance, maize VP1 promotes the ABA induction pathway yet inhibits the GA induction pathway (87, 98). Arabidopsis WRKY6 acts as a negative regulator of its own and WRKY2 expression; on the other hand, it positively influences the senescence- and pathogen defense-associated PRI promoter activity (99).

Several groups of proteins such as G proteins, phospholipases, protein kinases, and protein phosphatases are involved in the early events of ABA signaling (100–103). Phospholipases C and D produce inositol 1,4,5-trisphosphate and diacylglycerol or phosphatidic acid and the head group, respectively. These products of phospholipases act as secondary messengers in ABA signaling (101, 104). The application of phosphatidic acid to barley aleurone inactivates α-amylase production and induces an ABA-inducible α-amylase inhibitor and RAB (response to ABA) protein expression (84). On the other hand, 1-butanol, a specific inhibitor of PLD (105), inhibits the accumulation of the RAB protein (84). 1-Butanol inhibits the transactivation of VP1 or ABI5 on ABA response promoters (85). Together, these data suggest that PLD is involved in ABA signaling. Fig. 9 shows that the synergistic effect of LtWRKY21 and ABA was also inhibited by 1-butanol. ABI1 and its dominant negative mutant ab1-1 act as a negative regulator of ABA signaling in Arabidopsis (106), barley (87), and rice (85). The ABI1-1 inhibitory effect is able to overcome the transactivation effect of VP1 or ABI5 in ABA signaling (85, 87), but it does not decrease the synergistic effect of VP1 and ABI5 on ABA induction, indicatin that ab1-1 acts upstream of ABI5 in the ABA up-regulatory pathway (43). Here, we showed that ab1-1 inhibited the synergistic effect of ABA and LtWRKY21 (Fig. 10), but it had little effect when VP1, ABI5 and LtWRKY21 were co-expressed (Fig. 11). Therefore, we suggest that LtWRKY21 may form a complex with VP1, ABI4, and ABI5 to control ABA response, and this complex functions downstream of ABI1 in ABA signaling. Experiments are ongoing to further address this question.

expression of the HVA22 promoter. Interestingly, LtWRKY21 also contains the EAR motif, which is necessary for the repression function of AtERF3, AtERF4, and their orthologues in ethylene signaling of Arabidopsis (81), wheat, and petunia plants (97). Yet the EAR motif was essential for the transcriptional activity of LtWRKY21. These data suggest that the same motif might play opposite roles in different hormonal signaling pathways, and it is possible that LtWRKY21 is also involved in ethylene signaling. Transcription factors with dual activities have been found in plants. For instance, maize VP1 promotes the ABA induction pathway yet inhibits the GA induction pathway (87, 98). Arabidopsis WRKY6 acts as a negative regulator of its own and WRKY2 expression; on the other hand, it positively influences the senescence- and pathogen defense-associated PRI promoter activity (99).

Several groups of proteins such as G proteins, phospholipases, protein kinases, and protein phosphatases are involved in the early events of ABA signaling (100–103). Phospholipases C and D produce inositol 1,4,5-trisphosphate and diacylglycerol or phosphatidic acid and the head group, respectively. These products of phospholipases act as secondary messengers in ABA signaling (101, 104). The application of phosphatidic acid to barley aleurone inactivates α-amylase production and induces an ABA-inducible α-amylase inhibitor and RAB (response to ABA) protein expression (84). On the other hand, 1-butanol, a specific inhibitor of PLD (105), inhibits the accumulation of the RAB protein (84). 1-Butanol inhibits the transactivation of VP1 or ABI5 on ABA response promoters (85). Together, these data suggest that PLD is involved in ABA signaling. Fig. 9 shows that the synergistic effect of LtWRKY21 and ABA was also inhibited by 1-butanol. ABI1 and its dominant negative mutant ab1-1 act as a negative regulator of ABA signaling in Arabidopsis (106), barley (87), and rice (85). The ABI1-1 inhibitory effect is able to overcome the transactivation effect of VP1 or ABI5 in ABA signaling (85, 87), but it does not decrease the synergistic effect of VP1 and ABI5 on ABA induction, indicatin that ab1-1 acts upstream of ABI5 in the ABA up-regulatory pathway (43). Here, we showed that ab1-1 inhibited the synergistic effect of ABA and LtWRKY21 (Fig. 10), but it had little effect when VP1, ABI5 and LtWRKY21 were co-expressed (Fig. 11). Therefore, we suggest that LtWRKY21 may form a complex with VP1, ABI4, and ABI5 to control ABA response, and this complex functions downstream of ABI1 in ABA signaling. Experiments are ongoing to further address this question.

Acknowledgments—We thank Dr. Andrew Andres and members of our lab for contributions to the improvement of this article. We also thank Dr. John Cushman (University of Nevada, Reno) for providing us with the Larrea cDNA clones and the sGFP construct and Drs. David Ho and Jose Casaretto (Washington University, St. Louis, MO) for sending us the ABA-responsive reporter and effecter constructs.

REFERENCES

Acknowledgments—We thank Dr. Andrew Andres and members of our lab for contributions to the improvement of this article. We also thank Dr. John Cushman (University of Nevada, Reno) for providing us with the Larrea cDNA clones and the sGFP construct and Drs. David Ho and Jose Casaretto (Washington University, St. Louis, MO) for sending us the ABA-responsive reporter and effecter constructs.

REFERENCES

Acknowledgments—We thank Dr. Andrew Andres and members of our lab for contributions to the improvement of this article. We also thank Dr. John Cushman (University of Nevada, Reno) for providing us with the Larrea cDNA clones and the sGFP construct and Drs. David Ho and Jose Casaretto (Washington University, St. Louis, MO) for sending us the ABA-responsive reporter and effecter constructs.
A WRKY Gene from Creosote Bush Encodes an Activator of the Abscisic Acid Signaling Pathway
Xiaolu Zou, Jeffrey R. Seemann, Dawn Neuman and Qingxi J. Shen

doi: 10.1074/jbc.M408536200 originally published online October 25, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M408536200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 105 references, 57 of which can be accessed free at http://www.jbc.org/content/279/53/55770.full.html#ref-list-1