Global Transcriptional Programs Reveal a Carbon Source Foraging Strategy by *Escherichia coli*

Received for publication, December 14, 2004, and in revised form, January 26, 2005
Published, JBC Papers in Press, February 10, 2005, DOI 10.1074/jbc.M414050200

Mingzhu Liu, Tim Durfee, Julio E. Cabrera, Kai Zhao, Ding J. Jin, and Frederick R. Blattner

From the Department of Genetics and the McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706 and the Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, Center for Research, NCI at Frederick, National Institutes of Health, Frederick, Maryland 21702

By exploring global gene expression of *Escherichia coli* growing on six different carbon sources, we discovered a striking genome transcription pattern: as carbon substrate quality declines, cells systematically increase the number of genes expressed. Gene induction occurs in a hierarchical manner and includes many factors for uptake and metabolism of better but currently unavailable carbon sources. Concomitantly, cells also increase their motility. Thus, as the growth potential of the environment decreases, cells appear to devote progressively more energy on the mere possibility of improving conditions. This adaptation is not what would be predicted by classic regulatory models alone. We also observe an inverse correlation between gene activation and rRNA synthesis suggesting that reapportioning RNA polymerase (RNAP) contributes to the expanded genome activation. Significant differences in RNAP distribution *in vivo*, monitored using an RNAP-green fluorescent protein fusion, from energy-rich and energy-poor carbon source cultures support this hypothesis. Together, these findings represent the integration of both substrate-specific and global regulatory systems, and may be a bacterial approximation to metazoan risk-prone foraging behavior.

Jacob and Monod originally studied *Escherichia coli* gene regulation using carbon catabolism as the experimental system (specifically lactose). They elucidated that genes needed to metabolize lactose are specifically induced by that substrate (1). Over the ensuing 40 years this model has been refined and extended to many substrates and it is now generally accepted that virtually all carbohydrate catabolic genes can be regulated by substrate-specific induction (2). This mechanism is attractive because it promotes efficient use of cellular resources, and energy need not be wasted producing enzymes and transporters for substrates unless they are available.

In addition to these highly specific mechanisms, cells have several levels of global regulation. A prime example is carbon catabolite repression, a multifactorial system that blocks expression of alternative carbon utilization pathways when glucose is present (3). Relief from carbon catabolite repression, among other effects, activates the cyclic AMP receptor protein (CRP), a global transcription factor that positively regulates most carbon catabolic pathways including those for glucose (4). Such global mechanisms have the advantage of responding to many different conditions and can potentiate a spectrum of transcriptional outcomes.

While much is known about how individual substrate-specific and global systems regulate a limited set of operons under a defined condition, much less is known regarding how the two coordinate genome-wide transcription under a range of conditions. In this paper, we report the findings from a global gene expression study of *E. coli* growing on a series of six carbon sources. A transcription pattern emerges from these profiles that expands hierarchically as the growth rate declines. Inspection of the up-regulated genes suggests that, instead of maximizing energy conservation through strict adherence to substrate-specific induction, cells growing on poor substrates devote progressively more of their limited reserves to expand their genome transcription needed to broaden a search for alternative energy sources.

EXPERIMENTAL PROCEDURES

Bacterial Growth—MG1655 cells were grown overnight in MOPS minimal medium (5) supplemented with 0.1% glucose. Overnight cultures were then diluted 1:50 (or 1:100 for the deeper adapted experiments) into the same base medium with either glucose, glycerol, succinate, l-alanine, acetate, or l-proline as the carbon source and grown aerobically at 37 °C in shake flasks. The carbon compound concentration in each case was adjusted so that the number of carbon atoms was equivalent to that of 0.1% glucose.

Sample Preparation for Microarray Analysis—Detailed protocols for RNA preparation and labeling can be found at www.genome.wisc.edu/funional/protocols.htm. Briefly, at an A_{260} of 0.2 (~6 generations except for deeper adapted cultures, ~30), 15-ml samples were mixed with 30 ml of RNAProtect bacterial reagent (Qiagen), pelleted, and stored at ~80 °C. Total RNA was then isolated using MasterPure kits (Epicenter Technologies).

cDNA was synthesized and labeled using a protocol similar to that described by Rosenow et al. (6). Briefly, 10 μg of total RNA was reverse transcribed with 1,200 units of Superscript II (Invitrogen) using 500 ng of random hexamers at 42 °C for 90 min. The reaction buffer was used according to the manufacturer’s recommendations. Remaining RNA was removed with 2 units of RNase H and 1 μg of RNase A for 10 min at 37 °C. Synthesized cDNA was then purified with Qiagen (Qiagen) and fragmented to 50–100 bp with 0.2 unit of DNase I (Epicenter) for 10 min at 37 °C. The fragmented cDNA was 3’-end-labeled with 25 μM

* This work was supported by National Institutes of Health/NIGMS Grant GM35682-17S1 (to F. R. B.). Frederick R. Blattner has financial interest in NimbleGen Systems, Inc., DNASTAR, Inc. and Scarab Genomics, Inc. The costs of publication of this article were defrayed in part by the payment of page charges. The on-line version of this article (available at http://www.jbc.org) contains supplemental Table 1.

1 The abbreviations used are: CRP, cyclic AMP receptor protein; RT, reverse transcriptase; MOPS, 4-morpholinosulphate buffer; DAPI, 4',6-diamidino-2-phenylindole; AI-2, autoinducer-2; RNAP, RNA polymerase; GFP, green fluorescent protein.
Carbon Source Affects on Global Transcription

biont-Nβ-ddATP (Applied Biosystems, Foster City, CA) using 50 units of terminal transferase (New England Biolabs, Beverly, MA) at 37 °C for 2 h. The labeled cDNA was hybridized to Affymetrix GeneChip® E. coli antisense genome arrays as recommended by the manufacturer (www.affymetrix.com). Following a 16-h hybridization at 45 °C, the array was washed and stained with streptavidin-phycocerythrin (Molecular Probes) using an antibody intermediate to enhance the signal. The arrays were read at 570 nm with a resolution of 3 μm using a Gene-Array® confocal laser scanner (Affymetrix). Washing and scanning were automated by a GeneChip® Fluidics Station controlled by Affymetrix® Microarray Suite 5.0 software (Affymetrix). For each carbon source, two biological replicates were done except glucose which was replicated five times.

Image Processing and Data Analysis—Image analysis was carried out by Affymetrix® Microarray Suite 5.0 software. This calculates a detection call, detection p value and signal (background-subtracted and adjusted for noise) for each gene. Those values are then imported into a relational database, converted to log2, values, and averaged for each gene across replicates. The correlation coefficient of log2 values between any two replicates was greater than 0.95. Genes were considered up-regulated relative to glucose if they increased at least 3-fold in signal intensity and the signal intensity in experiment had a log2 value of at least 8.5. Conversely, genes with at least a 3-fold reduction in signal intensity in glucose were defined as down-regulated. The higher log2 intensity values were used to limit the analysis to those genes for which we have a high degree of confidence in their level of expression. Note, the use of “up-regulation” and “down-regulation” refers only to the change in measured RNA abundance and has no regulatory implication.

Real-time Quantitative RT-PCR—RNA was extracted from three biological replicates of each carbon source using the appropriate time points and lysed in 1 ml of 1/10× PBS. Before mounting the cell mixture on the slides, 15 μl of a 3% paraformaldehyde solution was added to each sample to fix and preserve the DNA. The slides were baked for 1 h at 100°C and stored at 4 °C until examined. Transcriptional Program—Affymetrix® GeneChip® E. coli Microarray as recommended by the manufacturer (www.affymetrix.com). Following a 16-h hybridization at 45 °C, the array was washed and stained with streptavidin-phycoerythrin (Molec-

RESULTS

Growth on Alternative Carbon Sources Elicits a Scalable Transcriptional Program—To investigate the effect of different carbon sources on E. coli global gene expression, we grew MG1655 cells aerobically in MOPS minimal medium (5) with either glucose, glycerol, succinate, l-alanine, acetate, or l-proline as the carbon source. These carbon sources are of differing quality as defined by the resulting log phase growth rates which range from 0.97 generation h⁻¹ in glucose to 0.13 generation h⁻¹ in proline (Fig. 1A). Samples were taken from each culture at mid-log phase (−six generations), and total RNA was purified, labeled, and hybridized to Affymetrix E. coli Anti-

Contrast Analysis of Nucleoids—Contrast analysis was carried out by a Zeiss microscope equipped with a Plan-Apo 100× objective, epifluorescence filters, and a 2.5 optovar. Images were captured with a CCD camera (Micromax) working at 2×2 binning. The images were processed with Adobe Photoshop.

Contrast Analysis of Nucleoids—Normalized contrast measurements were performed as described previously (12) to 100 cells per glucose or proline culture. Briefly, in each region of interest at each nucleoid, we measured the intensity of each pixel and its 8 neighbor pixels. The differences in intensities were used to feed a gray level co-occurrence matrix as described by Haralick (13). This gray level co-occurrence matrix is a representation of the gray level transitions within the region of interest, and the contrast textural feature can be calculated from it. As described previously, the normalized contrast was obtained by di-

Promoter Analysis—Contrast analysis was carried out by a Zeiss microscope equipped with a Plan-Apo 100× objective, epifluorescence filters, and a 2.5 optovar. Images were captured with a CCD camera (Micromax) working at 2×2 binning. The images were processed with Adobe Photoshop.

Transcriptional Program—To investigate the effect of different carbon sources on E. coli global gene expression, we grew MG1655 cells aerobically in MOPS minimal medium (5) with either glucose, glycerol, succinate, l-alanine, acetate, or l-proline as the carbon source. These carbon sources are of differing quality as defined by the resulting log phase growth rates which range from 0.97 generation h⁻¹ in glucose to 0.13 generation h⁻¹ in proline (Fig. 1A). Samples were taken from each culture at mid-log phase (−six generations), and total RNA was purified, labeled, and hybridized to Affymetrix E. coli Anti-

Contrast Analysis of Nucleoids—Contrast analysis was carried out by a Zeiss microscope equipped with a Plan-Apo 100× objective, epifluorescence filters, and a 2.5 optovar. Images were captured with a CCD camera (Micromax) working at 2×2 binning. The images were processed with Adobe Photoshop.

Transcriptional Program—To investigate the effect of different carbon sources on E. coli global gene expression, we grew MG1655 cells aerobically in MOPS minimal medium (5) with either glucose, glycerol, succinate, l-alanine, acetate, or l-proline as the carbon source. These carbon sources are of differing quality as defined by the resulting log phase growth rates which range from 0.97 generation h⁻¹ in glucose to 0.13 generation h⁻¹ in proline (Fig. 1A). Samples were taken from each culture at mid-log phase (−six generations), and total RNA was purified, labeled, and hybridized to Affymetrix E. coli Anti-

Contrast Analysis of Nucleoids—Contrast analysis was carried out by a Zeiss microscope equipped with a Plan-Apo 100× objective, epifluorescence filters, and a 2.5 optovar. Images were captured with a CCD camera (Micromax) working at 2×2 binning. The images were processed with Adobe Photoshop.
in each profile. Instead, a significant number of transport and
catabolic genes for carbon sources not present in the medium
are progressively induced in each set (Fig. 2). There is a
general, but not strict, trend toward activation of transport-
ers for compounds yielding growth rates comparable with or
better than the source present. While activation of pathways
for unavailable substrates has been seen previously in single
carbon source expression studies (14–16), the extent and
systematic nature of the phenomenon is striking. It appears
that as the substrate quality decreases, cells increase their
ability to rapidly switch to preferable compounds if they
become available.

Cell Motility Increases as Carbon Source Quality Decreases—
Induction of the ego-lsrCDBFG-tam operon was also observed
in the three slowest growing cultures. In *Salmonella typhi-
murium*, this operon is induced by the extracellular autoin-
ducer-2 (AI-2) and is required for AI-2 uptake and processing
(17). AI-2 has been proposed to be a universal signal for inter-
species communication in bacteria (18) and has different spe-
cies-specific signaling roles including enhancing motility in
E. coli (19). This observation led us to examine cell motility in
each culture using video microscopy. A gradient of activity
correlated with carbon quality was observed ranging from ba-
sically sessile cells in glucose to highly motile cells in acetate,
although motility declined in proline (movie files at www.
genome.wisc.edu/functional.htm). This observation, together
with the systematic up-regulation of transport genes, further
suggests that cells actively search for better conditions as the
quality of the available substrate(s) decreases. The possible
involvement of AI-2 further suggests this search may be an
aspect of group behavior as well.

**Accumulation of the Stress Response Sigma Factor, σ^s, and
Its Regulon**—Other genes in set 2 include carbon utilization
regulators and a subset of the σ^s-controlled regulon. The σ^s-
encoding gene, *rpoS*, is slightly up-regulated as is a second
alternative sigma factor gene, *rpoE* (Fig. 3A). More impor-
tantly, production of both proteins substantially increases in alanine, acetate, and proline (Fig. 3B). Accumulation of these two factors is critical for priming a variety of stress defense systems for cellular adaptation to changes in external environments (20–22). Set 3 enlarges the number and abundance of activated \(/H9268 \)S-dependent genes. Approximately 30% of the remaining up-regulated genes in the three sets is of unknown function.

Examination of CRP Involvement by in Silico Promoter Analysis—CRP is known to positively control most carbon catabolic pathways when the carbon source changes from glucose. To assess how pervasive CRP control may be over the shared 154 up-regulated operons, we built a binding consensus from 70 experimentally verified CRP-binding sites (9, 10) and scanned each promoter region using scanACE (11). We found that 24 operons contain consensus CRP-binding sites, 22 of which are known members of the regulon and two of which are new (paaXY and gatYZABCDR_2). Eleven of these 24 are in set 1 and 13 in set 2. That is, 15.6% of the operons are under known or putative CRP control.

Global Gene Activation Is Inversely Correlated with rRNAs Leader Sequence Abundance—The apparent coupling of growth rate and gene activation in these experiments prompted us to measure the rRNA synthesis rate in each culture, since this parameter is known to be correlated with growth rate (23, 24). rRNAs leader sequence abundance has been shown to accurately reflect the rRNAs synthesis rate (25) due to the fact that they are processed and degraded very rapidly in the cell. We used real-time RT-PCR to measure the rRNAs leader sequence abundance in cells grown in alternative carbon sources relative to that in glucose-grown cells. Results confirm that rRNAs synthesis decreases proportionately with reduced growth rate in these cultures, although a limit is reached in acetate and proline cultures (Fig. 4). This result indicates that the increased expression of the nested set is more correlated with decreased RNA gene activity than growth rate.

RNAP Distribution Is Significantly More Homogenous in Slow Growing Cells—We have previously shown, using a functional rpoC-gfp allele (rpoC encodes the \(/H9252 \) subunit of RNAP), that RNAP distribution is sensitive to environmental factors that affect growth rate and the synthesis of stable RNA (12). In rapidly dividing cells, RNAP is largely concentrated in transcription foci that likely represent sites of stable RNA transcription and rapidly dissipate under conditions that suppress growth and thereby rRNA synthesis, e.g. amino acid starvation, leading to more diffuse fluorescence throughout the nucleoid (12). To determine whether RNAP distribution is affected by different carbon sources, DJ2599 (MG1655 rpoC-gfp) cells were grown in both glucose and proline supplemented media to assess changes at the two growth rate extremes studied here. Cell morphology, RNAP-GFP distribution, and nucleoid compaction were assessed as described previously (12).

Glucose grown cells were significantly larger and more rod-
shaped than those grown in proline (compare Fig. 5, A and 5E).
The distribution of RNAP in glucose grown cells was relatively
heterogeneous compared with that in proline as evidenced by
the increased number of distinct foci in the former (compare
Fig. 5, B and F). In addition, visual inspection of the relative
cellular space occupied by the nucleoid suggests the chromo-
some may be more decondensed in proline-grown cells (com-
pare Fig. 5, C and D and G and H).

To measure the degree of homogeneity of the RNAP dis-
bution in nucleoids from different cells, we quantified the in-
tensity variations in the RNAP-GFP fluorescence signal within
individual nucleoids using texture analysis (13) as described
by Cabrera and Jin (12). This analysis has been used exten-
sively to analyze nuclear structure in eukaryotic cells (26–28).
Larger values of normalized contrast, a parameter that reflects
the variations in gray intensities within an image, indicate a more
heterogeneous distribution of RNAP within the nucleoids. The
normalized contrast parameter was measured from 200 nucle-
oids as described under “Experimental Procedures.” Statistics
test shows that glucose-grown cells have significant higher
values than proline-grown cells, indicating the distribution of
RNAP from glucose-grown cells is more heterogeneous in
nucleoids because of the presence of transcription foci, whereas
the distribution of RNAP proline cells is relatively homoge-
neous (Fig. 5I). These results demonstrate a clear difference in
RNAP distribution between the two cultures and suggest that
the expanded transcription pattern observed in proline-grown
cells may result from RNAP being diverted from the stable
RNA promoters to those of the up-regulated genes.

DISCUSSION

E. coli has multiple substrate-specific regulatory mechani-
isms that allow cells to fully activate pathways necessary for
utilizing a given carbon compound once it becomes available.
However, the global transcription profiles of E. coli grown on a
range of carbon sources presented here show that, as the qual-
ity of the available carbon source decreases, instead of predom-
nantly adapting to metabolize the available substrate, cells
also initiate a much broader transcription program including
up-regulating many genes for utilizing unavailable compounds.
This program expands in a manner inversely correlated with
the rRNA synthesis rate and primes the ability of cells to find
and utilize better carbon sources as well as respond quickly to
environmental stresses.

The majority of up-regulated genes are involved in different
aspects of metabolism. Among these are multiple pathways for
uptake and utilization of preferable carbon compounds. Trans-
porter activation in the absence of substrate has been seen in
other experiments where the growth rate was reduced either by
glucose limitation in a chemostat (29) or by growth in a single
alternative carbon source (14–16). The scope and systematic
nature of induction observed here, however, is unanticipated
and emphasizes that the profiles are not an ad hoc response to
individual substrates but instead a common graded response
to a series of compounds. That expression levels of individual
genes increase with declining growth rate is also consistent
with earlier studies that focused on a limited set of operons
(30–33) and demonstrates that the regulatory mechanisms
impart both qualitative and quantitative effects.

Coordinating transcription factor activity with growth rate is
one means of establishing a graded response. CRP, for exam-
ple, requires binding of cAMP for dimerization and activation
(34), and cAMP levels vary inversely with the growth rate in
the absence of glucose (3, 35, 36). This results in the progressive up-regulation of the CRP regulon in sets 1 and 2. Initial promoter analysis indicates that other global transcription factors, such as ArcA and Cra, whose activity can also be modulated across growth conditions, are involved in establishing the pattern (data not shown).

Increased expression of σ^54 and the resulting partial activation of its regulon in the three slowest growing alternative carbon sources also contribute to the pattern. σ^54 levels are normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.

While these transcription factors are important for specifying aspects of the pattern, they explain only a subset of the genes. The hierarchical nature of the gene induction across carbon sources suggests that an additional common global regulatory mechanism is involved. The inverse correlation between gene activation and decreased rRNA synthesis we observe is reminiscent of the stringent response wherein amino acid starvation down-regulates stable RNA synthesis and up-regulates amino acid biosynthesis genes (44). This is mediated by increased guanosine tetraphosphate (ppGpp) levels, which bind to RNAP changing the kinetic properties of the enzyme and thereby leading to the switch in transcription (12, 45, 46).

This is in line with early studies where the ratio of the rate of synthesis of mRNA to rRNA increases as the growth rate is decreased, suggesting the redistribution of the proportional synthesis of rRNA to mRNA in the cell (48). We hypothesize that the freed RNAP from rRNA promoters, which is normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.

While these transcription factors are important for specifying aspects of the pattern, they explain only a subset of the genes. The hierarchical nature of the gene induction across carbon sources suggests that an additional common global regulatory mechanism is involved. The inverse correlation between gene activation and decreased rRNA synthesis we observe is reminiscent of the stringent response wherein amino acid starvation down-regulates stable RNA synthesis and up-regulates amino acid biosynthesis genes (44). This is mediated by increased guanosine tetraphosphate (ppGpp) levels, which bind to RNAP changing the kinetic properties of the enzyme and thereby leading to the switch in transcription (12, 45, 46).

This is in line with early studies where the ratio of the rate of synthesis of mRNA to rRNA increases as the growth rate is decreased, suggesting the redistribution of the proportional synthesis of rRNA to mRNA in the cell (48). We hypothesize that the freed RNAP from rRNA promoters, which is normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.

While these transcription factors are important for specifying aspects of the pattern, they explain only a subset of the genes. The hierarchical nature of the gene induction across carbon sources suggests that an additional common global regulatory mechanism is involved. The inverse correlation between gene activation and decreased rRNA synthesis we observe is reminiscent of the stringent response wherein amino acid starvation down-regulates stable RNA synthesis and up-regulates amino acid biosynthesis genes (44). This is mediated by increased guanosine tetraphosphate (ppGpp) levels, which bind to RNAP changing the kinetic properties of the enzyme and thereby leading to the switch in transcription (12, 45, 46).

This is in line with early studies where the ratio of the rate of synthesis of mRNA to rRNA increases as the growth rate is decreased, suggesting the redistribution of the proportional synthesis of rRNA to mRNA in the cell (48). We hypothesize that the freed RNAP from rRNA promoters, which is normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.

While these transcription factors are important for specifying aspects of the pattern, they explain only a subset of the genes. The hierarchical nature of the gene induction across carbon sources suggests that an additional common global regulatory mechanism is involved. The inverse correlation between gene activation and decreased rRNA synthesis we observe is reminiscent of the stringent response wherein amino acid starvation down-regulates stable RNA synthesis and up-regulates amino acid biosynthesis genes (44). This is mediated by increased guanosine tetraphosphate (ppGpp) levels, which bind to RNAP changing the kinetic properties of the enzyme and thereby leading to the switch in transcription (12, 45, 46).

This is in line with early studies where the ratio of the rate of synthesis of mRNA to rRNA increases as the growth rate is decreased, suggesting the redistribution of the proportional synthesis of rRNA to mRNA in the cell (48). We hypothesize that the freed RNAP from rRNA promoters, which is normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.

While these transcription factors are important for specifying aspects of the pattern, they explain only a subset of the genes. The hierarchical nature of the gene induction across carbon sources suggests that an additional common global regulatory mechanism is involved. The inverse correlation between gene activation and decreased rRNA synthesis we observe is reminiscent of the stringent response wherein amino acid starvation down-regulates stable RNA synthesis and up-regulates amino acid biosynthesis genes (44). This is mediated by increased guanosine tetraphosphate (ppGpp) levels, which bind to RNAP changing the kinetic properties of the enzyme and thereby leading to the switch in transcription (12, 45, 46).

This is in line with early studies where the ratio of the rate of synthesis of mRNA to rRNA increases as the growth rate is decreased, suggesting the redistribution of the proportional synthesis of rRNA to mRNA in the cell (48). We hypothesize that the freed RNAP from rRNA promoters, which is normally kept low in log phase cells grown in rich media largely through rapid degradation by the ClpXP protease (37, 38) and the orphan response regulator, RssB (39, 40). However, consistent with our data, a significant elevation of σ^54 protein during exponential growth on acetate as the carbon supply in minimal medium was found in Salmonella typhimurium (41). Furthermore, σ^54 was recently shown to accumulate during log phase in mutants lacking the high-affinity inorganic phosphate (Pi) transporter, Pst (42). Similar to glucose, Pi is the preferred phosphate source for E. coli, and switching to other sources causes a severe reduction in growth rate (43).

This suggests an analogous or overlapping mechanism for σ^54 stabilization which is growth rate-dependent may be used in the presence of either alternative carbon or phosphate substrates.
Global Transcriptional Programs Reveal a Carbon Source Foraging Strategy by

Escherichia coli

Mingzhu Liu, Tim Durfee, Julio E. Cabrera, Kai Zhao, Ding J. Jin and Frederick R. Blattner

doi: 10.1074/jbc.M414050200 originally published online February 10, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M414050200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2005/03/03/M414050200.DC1

This article cites 51 references, 18 of which can be accessed free at
http://www.jbc.org/content/280/16/15921.full.html#ref-list-1