Phosphorylation of Histones by Tissue Transglutaminase*

Suresh Mishra1, Ali Saleh‡, Paula S. Espino‡, James R. Davie§, and Liam J. Murphy1,2,3
From the Departments of1Physiology, 2Biochemistry and Medical Genetics & 3Internal Medicine, University of Manitoba, Winnipeg R3E 0W3, Canada

Tissue transglutaminase 2 (TG2)4 has recently been shown to have intrinsic serine/threonine kinase activity. Since histones are known to be cross-linked by TG2, we investigated whether histones are also substrates for TG2 kinase activity. TG2 was able to phosphorylate H1, H2A, H2B, H3, and H4 histones in vitro. Using peptide substrates and phosphospecific antibodies we demonstrated that TG2 phosphorylated Ser10 in H3 and that this phosphorylation was enhanced acetylation. Furthermore we demonstrated that exogenous TG2 phosphorylated H1 and H3 in nucleosome preparations. We examined the abundance of TG2 in DNA-associated proteins from MCF-7 cells treated with phorbol ester (TPA) and 17β-estradiol (E2). TG2 abundance was significantly reduced in E2-treated cells and enhanced in TPA-treated cells. In summary we have demonstrated that TG2 is able to phosphorylate purified histone proteins, and H3 and H1 in chromatin preparations, and it is associated with chromatin in breast cancer cells. These studies suggest a novel role for TG2 in the regulation of chromatin structure and function.

Tissue transglutaminase 2 (TG2) is a ubiquitously expressed, calcium-dependent trans-amidating acyltransferase that cross-links proteins resulting in polymerization (1). In addition, it has other less characterized functions including as a protein–disulfide isomerase (2), as a G protein–coupled membrane receptor (3) and as a serine/threonine kinase (4). It is localized to many compartments in the cell including the cell membrane, the cytoplasm, and the nucleus (1). TG2 is involved in a multitude of cellular processes of which the best studied is apoptosis where it is responsible for the formation of apoptotic bodies.

TG2 is translocated to the nucleus by a mechanism that involves importin–α3 (5, 6), where it can cross-link histones (7, 8). Cross-linking of the core histone subunits, H2A and H2B, by TG2 appears to involve glutamine and lysine residues at COOH-terminal domain (9). Histone H1, has also been shown to be a substrate for TG2 (9). Histones bind in a sequence-independent manner to DNA to form chromatin. They are subject to extensive post-translational modification that appears to be important in regulating chromatin function. For example, the amino-terminal tails of histones can be both phosphorylated and acetylated and these modifications are thought to regulate chromatin structure to facilitate transcription, DNA replication, mitosis, and DNA repair.

Histone cross-linking by TG2 may be responsible for the changes in DNA function such as transcription and replication (11), although the exact molecular mechanisms responsible have not been elucidated, and many apparently contradictory data exist. For example, it appears that TG2 can only cross-link histones when released from the nucleosome. Since cross-linking of histone by TG2 does not occur when the histones were organized in nucleosomes (9), it is not immediately obvious how this cross-linking activity of TG2 could modulate gene transcription.

We have recently demonstrated that TG2, in addition to its ability to cross-link proteins, also has intrinsic kinase activity (4). The core histones, H2A, H2B, H3, and H4, and histone H1 are known to be phosphorylated, and it has been suggested that phosphorylation of certain histones, for example H3 by kinases such as mitogen- and stress-induced kinase, MSK1, promotes gene transcription (12). Furthermore, rapid changes in histone phosphorylation patterns have also been documented after induction of apoptosis although the enzymes responsible remain unknown (13). TG2 is activated by a variety of agents that induce apoptosis (14, 15), and TG2 null cells are relatively resistant to apoptotic stimuli (16). However, TG2 can also protect against apoptosis under some circumstances (17, 18). It has been assumed that it is the TG2 cross-linking activity that is important in apoptosis, although there are few experimental data that directly test this hypothesis. The different functional roles of TG2 may be related to activation state of TG2, enzymes, or its different localization within the cell (19). In this report we investigated whether histones are substrates for TG2 kinase activity.

MATERIALS AND METHODS

Reagents—MCF-7 and COS-1 cells were obtained from the American Type Tissue Collection (Manassas, VA). Cell culture reagents were from Invitrogen (Burlington, Ontario, Canada). Recombinant human TG2, expressed in insect cells, was purchased from Roboscreen (Leipzig, Germany). All other reagents, unless otherwise stated, were obtained from Sigma Canada (Oakville, Ontario, Canada). Protein molecular weight markers were from Bio-Rad (Mississauga, Ontario, Canada).

In Vitro Phosphorylation Assay—Recombinant histone proteins or NH2-terminal peptides (obtained from Upstate Biotechnology) were incubated separately with 0.25 μg of human recombinant TG2 in kinase buffer (50 mM Tris-HCl, pH 7.5, 10 mM magnesium, 50 μM ATP, and [γ-32P]ATP (60 μCi/ml)) for 30 min at 30 °C. To study the effect of phosphorylation on acetylation only cold ATP was used, and at the end of the phosphorylation protocol, p300, histone acetyltransferase (HAT) domain, 0.4 μg. (Upstate Biotechnology) and 90 pmol of [3H]acetyl-CoA (1–10 Ci/mmol, PerkinElmer Life Sciences) were added to the tubes and further incubated for 30–45 min in a final 40 μl volume. Reaction was stopped by addition of SDS-PAGE sample buffer. Samples were boiled for 5 min and analyzed on SDS-PAGE. Subsequently, gels were dried and processed for autoradiography. In some cases proteins were transferred to nitrocellulose membranes and analyzed by Western.

1 Recipient of a Guardian Angel studentship.
2 Recipient of Canada Research Chair.
3 Recipient of the Henry G. Friesen Endowed Research Professorship in Endocrine and Metabolic Diseases. To whom correspondence should be addressed: Rm. 843, John Buhler Research Centre, University of Manitoba, 715 McDermot Ave., Winnipeg MB R3E 3P4, Canada. Tel: 204-789-3779; Fax: 204-789-3940; E-mail: jmurphy@cc.umanitoba.ca.
4 This work was supported in part by a grant from the Canadian Institutes of Health Research (to L. J. M.) and by the National Cancer Institute of Canada with funds from the Canadian Cancer Society (to J. R. D.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be indicated in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Histone Phosphorylation by TG2

TG2 Phosphorylates Histones—All four core histones and H1 were phosphorylated by TG2 under in vitro conditions (Fig. 1, A and C). Histone H2B was more highly phosphorylated by TG2 than H2A (Fig. 1A and Table 1). When equal molar amounts of H2A protein and the H2A1–21 fragment were analyzed the level of label incorporation was 4-fold greater in the protein compared with the NH2-terminal peptide suggesting that additional sites of the phosphate incorporation occurred throughout the H2A molecule (Fig. 1A and Table 1). In contrast, the H2B1–21 fragment was only lightly radiolabeled compared with the histone H2B protein indicating that the majority of the labeling of histone H2B was occurring elsewhere in the protein. The histone H31–21 fragment was phosphorylated by TG2, whereas the H321–44 peptide was not. The majority of the TG2-induced phosphorylation of H4 occurred in the H41–21 domain (Table 1). In the absence of TG2 none of the histone peptides were radiolabeled indicating that the incorporation of the phosphate group was due to TG2 and not a result of autophosphorylation or a contaminating kinase (Fig. 1, B and C). Although the histone H31–21 fragment was phosphorylated there was evidence that TG2 phosphorylated additional residues elsewhere in the H3 protein (Fig. 1B). Approximately one-third of the TG2-induced 32P incorporation into H3 occurred in the H321–44 domain (Table 1). A comparison of the histone fragments H2A1–21, H2B1–21, and H31–21 peptides is also shown in Fig. 1D. The H2A1–21 peptide was slightly more strongly labeled than...
H31–21, whereas the H2B1–21 peptide showed the lowest level of phosphate incorporation. When equivalent amounts of H3 protein and H31–21 peptide were incubated with TG2. In C, H1 and H4 proteins were incubated in the presence or absence of TG2 and [γ-32P]ATP as indicated and subsequently analyzed for radiolabeling as described above. In D, equimolar amounts of H2A1–21, H2B1–21, and H31–21 peptides were incubated with TG2 and 32P-γ-ATP.

TABLE 1
TG2 catalyzed incorporation of phosphate into core histones and histone N-terminal peptides

<table>
<thead>
<tr>
<th>Substrate</th>
<th>[32P]Phosphate incorporated pmol/pmol of substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 protein</td>
<td>1.42</td>
</tr>
<tr>
<td>H2A protein</td>
<td>1.31</td>
</tr>
<tr>
<td>H2A1–21 peptide</td>
<td>0.32</td>
</tr>
<tr>
<td>H2B protein</td>
<td>1.50</td>
</tr>
<tr>
<td>H2B1–21 peptide</td>
<td>0.03</td>
</tr>
<tr>
<td>H3 protein</td>
<td>0.94</td>
</tr>
<tr>
<td>H31–21 peptide</td>
<td>0.27</td>
</tr>
<tr>
<td>H321–44 peptide</td>
<td>0.01</td>
</tr>
<tr>
<td>H4 protein</td>
<td>1.08</td>
</tr>
<tr>
<td>H41–21 peptide</td>
<td>0.91</td>
</tr>
<tr>
<td>H1 in nucleosome</td>
<td>0.29</td>
</tr>
<tr>
<td>H2A in nucleosome</td>
<td>Not detected</td>
</tr>
<tr>
<td>H2B in nucleosome</td>
<td>Not detected</td>
</tr>
<tr>
<td>H3 in nucleosome</td>
<td>1.26</td>
</tr>
<tr>
<td>H4 in nucleosome</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

To identify other potential sites of TG2-mediated phosphorylation in H3, we examine another H3 peptide, H321–44, that contains Ser28 another residue where phosphorylation is thought to be functionally important. H321–44 was not phosphorylated by TG2 (Fig. 1A); however, when H3 was used as a substrate phosphorylation of Ser28 was detected with phosphospecific antibody (Fig. 3).

Effects of Acetylation on TG2-induced Phosphorylation—The effect of p300 HAT-induced acetylation of the histone peptides on TG2 phosphorylation was examined. Acetylation had no effect on TG2 phosphorylation of the H2A1–21 and H2B1–21 peptides but reduced radiolabeled phosphate incorporation into the H31–21 (Fig. 4A and Table 2). We next examined the effect of TG2-induced phosphorylation on HAT-induced labeling of the histone peptides using [3H]acetyl-CoA. The H2A1–21, H31–21, and the S10P-H31–21 peptides were acetylated (Fig. 4B). In contrast little incorporation of radiolabel was seen with the H2B1–21 peptide (Table 2). TG2-induced phosphorylation enhanced acetylation of the H31–21 peptide by ~2-fold (Table 2) but, as anticipated, had no effect on the acetylation of the S10P-H31–21 peptide.

TG2 Phosphorylates Histone H3 in Nucleosomes—Salt-soluble chromatin fragments from avian erythrocytes were incubated with TG2 in kinase buffer containing [γ-32P]ATP. The major histone bands were

FIGURE 1. TG2 phosphorylates core histones. In A, equimolar amounts of histones or peptides were incubated with TG2 and [γ-32P]ATP and subsequently analyzed by SDS-PAGE and autoradiography. Incorporation was also quantified (Table 1). In B, equimolar amounts of H3 protein and H31–21 peptide were incubated with TG2. In C, H1 and H4 proteins were incubated in the presence or absence of TG2 and [γ-32P]ATP as indicated and subsequently analyzed for radiolabeling as described above. In D, equimolar amounts of H2A1–21, H2B1–21, and H31–21 peptides were incubated with TG2 and 32P-γ-ATP.

FIGURE 2. TG2 phosphorylates H3 at Ser10. In A, equimolar amounts of H31–21 and S10P-H31–21 peptides were incubated with TG2 and [γ-32P]ATP and subsequently analyzed by SDS-PAGE and autoradiography. When quantified, incorporation of 32P was ~0.3 pmol/pmol of H31–21 peptide. Incorporation of 32P into the S10P-H31–21 peptide was unmeasurable. In B, the same membrane was probed with streptavidin-HRP to demonstrate equal loading.
separated on a 16% SDS-PAGE and identified by Coomassie Blue staining. The individual histone bands were excised and re-run on a similar gel transferred to nitrocellulose paper and identified by autoradiography and Ponceau S staining (Fig. 5A). Under these conditions histone H2A, H2B, and H4 were not phosphorylated (Table 1). However, histone H3 was intensely radiolabeled. A small amount of phosphate was also incorporated into histone H1 (Fig. 5A). In the absence of TG2 no histone phosphorylation was observed indicating that the phosphorylation of H3 and H1 was due to the added TG2 and not due to a contaminating kinase in the nucleosome preparation (Fig. 5B).

To determine which residues in H3 were phosphorylated in the nucleosome preparation we initially dephosphorylated the nucleosome preparation using immobilized alkaline phosphatase prior to incubation with TG2. Under these conditions Ser10 and Ser28 were identified using phosphospecific antibodies (Fig. 6).

TG2 Interacts with Histones—Biotinylated histone peptides were used to examine the interaction of TG2 with histones. COS-1 cell extracts that contain large amounts of TG2 were incubated with H2A, H2B, H3, and H4 NH2-terminal peptides. In this assay H3 peptide was the most efficient at pulling down TG2. H4 peptide was the least efficient (Fig. 7A). This was particularly apparent when the gel was re-probed with streptavidin-HRP, demonstrating that more H2A and H2B peptides were present in the pulled downs compared with H3 and H4 peptides (Fig. 7B). No interaction was apparent with myelin basic protein.

TG2 Is Associated with Chromatin in MCF-7 Cells—DNA associated proteins from control and E2- and TPA-treated MCF-7 cells were prepared by the formaldehyde cross-linking technique and analyzed by SDS-PAGE and immunoblotting. Probing with anti-H3 antibody identified H3 and H31–21 and H321–44 peptides were phosphorylated by TG2 in the presence of [γ-32P]ATP or ATP and subsequently analyzed by SDS-PAGE and autoradiography. Simultaneously run gels were analyzed by immunoblotting using antiphospho-Ser10 and antiphospho-Ser28 antibody.

FIGURE 3. TG2 phosphorylates H3 at Ser10 (S10) and Ser28 (S28). Equimolar amounts of recombinant H3 protein or H31–21 and H321–44 peptides were phosphorylated by TG2 in the presence of [γ-32P]ATP or ATP and subsequently analyzed by SDS-PAGE and autoradiography. Simultaneously run gels were analyzed by immunoblotting using antiphospho-Ser10 and antiphospho-Ser28 antibody.

FIGURE 4. The interaction of acetylation and TG2-induced phosphorylation. In A TG2-induced phosphorylation of non-acetylated and HAT-acetylated H2 and H3 peptides was examined. In B, equimolar amounts of the peptides were initially incubated with or without TG2 in the presence of unlabeled ATP prior to incubation with HAT and [3H]acetate-CoA. In each case the same filters were probed with streptavidin-HRP to demonstrate equal loading. Similar data were obtained in a separate experiment and has been quantified in Table 2.

TABLE 2

<table>
<thead>
<tr>
<th>Effect of acetylation on phosphorylation</th>
<th>Substrate</th>
<th>[32P]Phosphate incorporated pmol/pmol of substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A1–21 (NA)</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>H2A1–21 (A)</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>H2B1–21 (NA)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>H2B1–21 (A)</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>H31–21 (NA)</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>H31–21 (A)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>S10P H31–21 (NA)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>S10P H31–21 (A)</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Effect of phosphorylation on acetylation

<table>
<thead>
<tr>
<th>[3H]Acetate incorporated pmol/pmol of substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2A1–21 (NP)</td>
</tr>
<tr>
<td>H2A1–21 (P)</td>
</tr>
<tr>
<td>H2B1–21 (NP)</td>
</tr>
<tr>
<td>H2B1–21 (P)</td>
</tr>
<tr>
<td>H31–21 (NP)</td>
</tr>
<tr>
<td>H31–21 (P)</td>
</tr>
<tr>
<td>S10P H31–21 (NP)</td>
</tr>
<tr>
<td>S10P H31–21 (P)</td>
</tr>
</tbody>
</table>
cated similar abundance in all three experimental conditions (Fig. 8A).
However, TG2 abundance was significantly reduced in E2-treated cells
and enhanced in TPA-treated cells (Fig. 8B).

DISCUSSION

Here we extend our previous observations that TG2 has intrinsic
kinase activity (4) and demonstrate that histones, known substrates for
the cross-linking activity of TG2 (8, 9), are also substrates for TG2
kinase activity. We have previously shown that the \(K_m \) and \(V_{\text{max}} \) for the
TG2 kinase reaction are comparable with other kinases (4) and thus are
likely to physiologically relevant in vivo. The recombinant TG2 is
expressed in insect cells and is greater than 90% pure. The kinase activity
is not due to contamination, since it can be immunoprecipitated by anti-
TG2 antibody (4), kinase activity is also apparent with Escherichia coli
expressed human TG2 and the kinase activity co-migrates with TG2 in
an in gel kinase assay (data not shown). Under in vitro conditions TG2
was able to phosphorylate all four histones, and this phosphorylation
occurred at functionally important residues such as Ser\(^{10} \) and Ser\(^{28} \) in
H3 and serines resides in the NH\(_2\)-terminal region of H2A. Furthermore,
we demonstrate that TG2 is able to phosphorylate H3 and H1 in
nucleosome preparations.

Approximately 30% of the TG2-induced phosphorylation of H3
occurred at Ser\(^{10} \), a site that has previously been shown to be important
in expression of immediately early genes (22) and crucial for chromo-
some condensation and cell cycle progression (23). Several kinases
have been identified that have the potential to phosphorylate H3 at Ser\(^{10} \) in vivo (24), and our data suggest that TG2 can function in this manner in vitro. Acetylation at Lys\(^{14} \) and possibly Lys\(^{9} \) in H3 appear to be coupled
in some way to phosphorylation at Ser\(^{10} \) in vivo (23, 25). Consistent with
these previous reports we demonstrated that acetylation of the H3\(^{1-21} \)
peptide in vitro reduced TG2-induced phosphorylation at Ser\(^{10} \),
whereas TG-2 induced phosphorylation of the H3\(^{1-21} \) peptide
enhanced acetylation. Additional phosphorylation of H3 occurred at Ser28, which has also been shown to be functionally important in the regulation of gene expression (22). The H321–44 peptide did not appear to be a good substrate for TG2 kinase activity in vitro possibly because of secondary structure. Consequently it was not possible to determine what percentage of the total TG2-induced 32P incorporation occurred at this site.

The presence of TG2 in the nucleus has been reported in various cell lines (9, 26–28). In the nucleus TG2 appears to serve a variety of functions. It is involved both in histone cross-linking and chromatin condensation into apoptotic bodies (29). It is also involved in DNA degradation and may have a previously unrecognized DNA hydrolytic activity (30). In addition TG2 modulates expression of a variety of transcription factors such as NFκB (27) and Sp1 (31) and thereby indirectly modulates transcription of a multitude of genes. There has been a tendency to attribute the majority of TG2 actions to its known crosslinking activity. For example, Han and Park (31) demonstrated that purified TG2 can enhance the binding activity of Sp1 to the target DNA sequence by gel electrophoretic mobility shift assay and when co-transfected increased the activity of the human p21WAF1 promoter containing six Sp1 binding sites. They suggest that this effect was due to the ability of TG2 to cross-link Sp1, but this point was not directly addressed, and an alternative explanation is that TG2 could directly or indirectly alter the phosphorylation state Sp1 that has previously been shown to be important in Sp1 transcriptional activity (32). It is difficult to directly determine which of the various activities of TG2 are involved in the numerous physiological functions that TG2 has been implicated in. While the TG2 mutants have been described (33, 34), it has not been determined whether these mutants, which lack cross-linking activity, also lack other TG2 functions such as kinase activity, protein-disulfide isomerase activity, DNA hydrolytic activity, etc. Experiments where TG2 expression is increased by co-transfection or silenced by knockdown techniques (35, 36) are also difficult to interpret, since these perturbations may also affect activities of TG2 other than its crosslinking activity. Similarly, interpretations of experiments using monodansylcadaverine, an inhibitor of TG2 transamination, are problematic since this agent also inhibits TG2 kinase activity (4).

The functional activity of TG2 appears to be modulated by divalent cations and nucleotides (37–40). The cross-linking activity of TG2 requires Ca2+, whereas the DNA hydrolytic activity appears to be dependent on Mg2+ rather than Ca2+ (30). We have reported previously that TG2 kinase activity is abrogated by high Ca2+ concentrations and enhanced by ATP (4) whereas the cross-linking activity of TG2 is Ca2+-dependent and inhibited by ATP (1). Thus the possibility exists for the functional activities of TG2 to be modulated by the local milieu.

Consistent with previous reports of immunolocalization of TG2 to the nucleus (19), we clearly show that TG2 can phosphorylate H3 and to a lesser extent H1 in chromatin and that TG2 is associated with chromatin in situ in human breast cancer cells. We also demonstrated in pull-down experiments that TG2 has an affinity for histone proteins. The association of TG2 with chromatin was reduced by E2, a treatment known to enhance cell proliferation in MCF-7 cells, and enhanced by TPA, which inhibits cell proliferation under these conditions. In summary we have clearly demonstrated that TG2 is able to phosphorylate histones and is associated with chromatin in cells. Although it remains unclear the relative importance of TG2 kinase induced histone phosphorylation in modulation of gene transcription or apoptosis, our observations suggest that the numerous previous reports of TG2 modulation of transcription of various signaling molecules need to be reassessed in light of TG2 kinase activity. Further investigations with TG2 mutants that lack specific functional activities are required to determine the relative importance of TG2 transamination, TG2-induced phosphorylation, and other activities of this multifunction protein.

Acknowledgment—We thank Dr. Jian-Min Sun for providing the avian erythrocyte chromatin.

REFERENCES

10. Deleted in proof

FIGURE 8. Detection of TG2 in DNA-associated proteins from MCF-7 cells. DNA-associated proteins were prepared from MCF-7 cells treated with E2 or TPA using the formaldehyde cross-linking technique. The presence of TG2 and H3 were detected by immunoblotting. In the lower panel data from four separate experiments were quantified by densitometry.
Histone Phosphorylation by TG2

Phosphorylation of Histones by Tissue Transglutaminase
Suresh Mishra, Ali Saleh, Paula S. Espino, James R. Davie and Liam J. Murphy

doi: 10.1074/jbc.M506864200 originally published online January 4, 2006

Access the most updated version of this article at doi: 10.1074/jbc.M506864200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 39 references, 17 of which can be accessed free at
http://www.jbc.org/content/281/9/5532.full.html#ref-list-1