Prostaglandin E₂ (PGE₂) behaves as a mitogen in epithelial tumor cells as well as in many other cell types. We investigated the actions of PGE₂ on microvascular endothelial cells (capillary venular endothelial cells) with the purpose of delineating the signaling pathway leading to the acquisition of the angiogenic phenotype and to new vessel formation. PGE₂ (100 nM) produced activation of the fibroblast growth factor receptor 1 (FGFR-1), as measured by its phosphorylation, but not of vascular endothelial growth factor receptor 2. PGE₂ stimulated the EP3 subtype receptor, as deduced by abrogation of EP3 G protein receptor, PGE₂ initiated an autocrine/paracrine signaling cascade that through a complex array of intermediate steps (c-Src, PKC, Pyk2), leads to the extracellular release of peptide ligands stimulating growth factor receptors and producing tumor growth (5). In parallel, PGE₂ transactivates the EGF receptor (EGFR) via an intracellular phosphorylation cascade involving the protooncogene c-Src, which magnifies the EGF tumorigenic drive (6–8).

Complementing its tumor promoting activity, PGE₂ has been found to activate tumor angiogenesis, thus providing for the blood supply needs of proliferating tumors (1). Experimental evidence shows that the overexpression of cyclooxygenase-2, which characterizes many epithelial tumors as well as their endothelial population, is accompanied by enhanced expression and production of angiogenic factors such as vascular endothelial growth factors (VEGF), fibroblast growth factor-2 (FGF-2), hypoxia-inducible factor-1, matrix-degrading enzymes (e.g. matrix metalloproteinases (MMPs)), vascular remodeling ligands (i.e. angiopoietins), and adhesion receptors of the integrin families (9–15). Indeed, it appears that in experimental breast tumors, characterized by high output of PGE₂ through forced expression of cyclooxygenase-2, angiogenesis proceeds tumor development (16). Thus, the concept that PGE₂ is capable to drive tumor angiogenesis is now firmly grounded. Numerous clinical investigations conducted either as population studies or specific investigations on nonsteroidal anti-inflammatory drugs, which produce a decrease of PGE₂ tissue level through blockade of cyclooxygenase-2, have further established the crucial role of prostanoid in angiogenesis, since most angiogenic markers examined were definitely down-regulated, and tumor progression was halted (1).

Although the action of PGE₂ on tumor-associated angiogenesis appears well documented, much less is known about the typical mediator of inflammation, is now regarded as a promoter of neoplastic growth and of tumor angiogenesis. This notion has been established by experimental studies which show increased expression of cyclooxygenase isoforms (COX-1 and COX-2) as well as enhanced levels of PGE₂, the major product of their enzyme activity, in several tumor tissues (i.e. colon and breast tumors) (1–4).

A wealth of experimental studies has delineated the molecular mechanisms utilized by PGE₂ to induce tumor proliferation. PGE₂ upon binding to its membrane receptor, belonging to the classical G protein-coupled receptor family, activates a signal cascade that through hypoxia-inducible factor-1, matrix-degrading enzymes (e.g. matrix metalloproteinases (MMPs)), vascular remodeling ligands (i.e. angiopoietins), and adhesion receptors of the integrin families (9–15). Indeed, it appears that in experimental breast tumors, characterized by high output of PGE₂ through forced expression of cyclooxygenase-2, angiogenesis proceeds tumor development (16). Thus, the concept that PGE₂ is capable to drive tumor angiogenesis is now firmly grounded. Numerous clinical investigations conducted either as population studies or specific investigations on nonsteroidal anti-inflammatory drugs, which produce a decrease of PGE₂ tissue level through blockade of cyclooxygenase-2, have further established the crucial role of prostanoid in angiogenesis, since most angiogenic markers examined were definitely down-regulated, and tumor progression was halted (1).
activity of the prostanoid on the angiogenic process outside of the context of tumor growth. Previous reports indicated that PGE₂ induces directly endothelial cell proliferation, migration, and tube formation (17, 18). In particular it has been demonstrated that PGE₂ induces angiogenesis after activation of EP2 and EP4 receptors in human vascular endothelial cells (17, 18). EP2 or EP4 activation induces an increase of intracellular levels of cAMP and ERK1/2, linked to different signaling pathways. Recently, Kamoshita et al. (18) demonstrated that EP4 receptor plays a critical role in PGE₂-dependent in vitro migration and tubulogenesis that is mediated by activation of ERK1/2 pathway. Moreover, Mohseni et al. (19) indicated in EP3 receptor the subtype involved in wound healing and angiogenesis. Finally, Namkoong et al. (17) demonstrated that pharmacological inhibition of endothelial nitric-oxide synthase (eNOS) pathway inhibits PGE₂-induced proliferation in vitro cultured endothelial cells and that in eNOS-deficient mice the formation of capillary-like structure on aortic rings is abolished.

Moreover, FGF-2 and VEGF, two effective pro-angiogenic growth factors, induce angiogenesis through increasing expression of cyclooxygenases and PGE₂ production (20, 21). However, the functional and molecular mechanisms necessary for PGE₂-induced angiogenesis are not completely understood.

In this work we have investigated the action of PGE₂ on microvascular endothelial cells examining both their functional properties relevant for angiogenesis (migration and ability to form pseudocapillaries) and signals involved in producing the angiogenic phenotype, such as activation of ERK1/2 and of the growth factor receptor, FGFR-1.

Experimental Procedures

Cell Line and Culture Conditions—Post-capillary venular endothelial cells (CVEC) were obtained and cultured as previously described (22). Cardiac-derived human microvascular endothelial cells (HMVEC-C) and human umbilical venular endothelial cells were purchased from Cambrex and maintained in Endothelial Cell Basal Medium-2 with growth supplements. Chinese hamster ovary cells transfected with FGFR-1 (CHO/FGFR-1) were provided by Prof. M. Presta (University of Brescia, Brescia, Italy) and cultured as previously described (23).

Cell Migration—Chemotaxis experiments were performed with the Boyden chamber technique as previously described (24). Endothelial cells were treated for 30 min with U0126 (10 µM), PP1 (500 nM), GM6001 (25 µM), or SU5402 (10 µM), and then 1.25 × 10⁵ cells were added to the upper wells of the chamber. PGE₂ (100 nM) was used as chemoattractant.

Western Blot—Cells (3 × 10⁵) were seeded in 60-mm-diameter dishes. Cells were stimulated with 100 nM PGE₂. To assess the effects of FGFR1 and c-Src inhibitors on ERK1/2 phosphorylation, cells were pretreated with SU5402 (10 µM) or PP1 (500 nM). To evaluate the expression of EP receptors in CHO-FGFR1 transfected with EPs, 8 × 10⁵ cells were seeded in 100-mm-diameter dishes, and after 24 h cells were analyzed by Western blotting. Western blot was performed as previously described (25).

Immunoprecipitation—Cells were stimulated with PGE₂ (100 nM) or FGF-2 (20 ng/ml) for 15 min. Where indicated, cells were pretreated with the anti-FGF-2 neutralizing antibody (6 µg/ml), PP1 (500 nM), GM6001 (25 µM), or MMP-2 inhibitor (25 µM) for 30 min and with pertussis toxin (300 ng/ml) for 18 h. EP receptor agonists (100 nM), adenosine 3',5'-cyclic monophosphate, NO₃O₂ dibutyryl-sodium salt (cAMP analogue, 10 µM), or A23187 (50 ng/ml) were added to the cells for 15 min. Anti-FGFR-1 or anti VEGF-R2 antibody were added to the pre-cleared lysates (100 µl, Sigma). Western blot was performed as previously described (25).

Gelatin Zymography—6 × 10³ cells/well were cultured in 96-well cell culture plates in 10% fetal calf serum medium. After adhesion, cells were washed with and incubated in serum-free medium for 18 h. 100 nM PGE₂ were added in 50 µl of fresh serum-free medium. After 18 h of incubation, the conditioned medium was collected, clarified by centrifugation, and assayed for zymography as described (25).

Immunohistochemistry—25 × 10³ CVEC cells were seeded on cover slides in a 24-multwell plate. Cells were starved for 24 h and then stimulated with FGF-2 20 ng/ml or PGE₂ 100 nM for 15 min. After the stimulation the cells were fixed in paraformaldehyde for 5 min and then washed in PBS with Ca²⁺ and Mg²⁺. Cells were then permeabilized in 0.25% Tween 20 in PBS for 10 min. After the blocking of unspecific bindings in 3% bovine serum albumin (BSA) for 30 min, the cells were incubated with a monoclonal mouse anti FGFRI antibody (Upstate) diluted 1:25 in 0.5% BSA in PBS for 18 h at 4 °C. Cells were then washed and incubated with a goat fluorescein isothiocyanate anti-mouse Ig G (Sigma) diluted 1:100 for 1 h. The cells counterstained with propidium iodide (1.5 mM) were also pretreated with 100 µg/ml RNase-free RNase.

Heparin Binding—10 µl of heparin-acrylic beads were incubated with increasing concentration of PGE₂ (100 nM to 10 µM) in 40 µl of PBS for 1 h at 37 °C. Then 25 ng of FGF-2 was added and incubated for 2 h at 37 °C. Beads were then washed with PBS, and bound FGF-2 was removed by boiling with sample buffer. The solution was analyzed by SDS, 8% polyacrylamide gel. Western blots for FGF-2 were performed as described (26).

Cell Transfection—Subconfluent CHO-FGFR-1 were incubated in Dulbecco’s modified Eagle’s medium, 1% fetal calf serum with 6 µg of prostaglandin E receptor 1, 2, 3, or 4 subtype encoding plasmids or empty plasmid (pcDNA3.1) and 6 µl of Lipofectamine for 18 h and then cultured in fresh medium for 24 h before use in experiments.

Endothelial Tube Formation from Aortic Rings—Pseudocapillary sprouting from vessel rings was evaluated as previously described (25). Stimuli were tested at 20 ng/ml FGF-2 or 100 nM PGE₂. In experiments aimed at evaluating the role of FGFR-1, the selective inhibitor SU5402 (10 µM) was added together with PGE₂. The area occupied by pseudocapillary structures was quantified by an inverted microscope at a magnification of 200× using an ocular grid. The area is expressed as the number of grid units required to cover the entire pseudocapillary surface.

Reagents—Reagents for cell cultures, PGE₂, misoprostol, heparin-acrylic beads, pertussis toxin, A23187, and heparinase were obtained from Sigma; U0126, SU5402, SU5614, PP1 GM6001, and MMP-2 inhibitor-I were from Calbiochem-Novabiochem; FGF-2 was from Peprotech. Anti-phospho-
ERK1/2, anti-ERK1/2, and anti-phosphotyrosine antibodies were purchased from Cell Signaling; anti-FGF-2 neutralizing, anti-FGFR-1, or anti-VEGFR-2, and anti-FGF-2 antibodies were from Upstate; anti-β-actin was from Sigma. Plasmids encoding for EP1, EP2, EP3, or EP4 receptors (PTGER1, PTGER2, PTGER3, and PTGER4) were from UMR cDNA Resource Center, University of Missouri-Rolla.

Statistics—Statistical analysis was performed using Student’s t test for unpaired data or by analysis of variance; p < 0.05 was considered statistically significant.

RESULTS

Prostaglandin E2 Induces Endothelial Cell Migration and New Vessel Formation through FGFR-1 Activation—The proangiogenic properties of PGE2 have been documented in several reports describing its effects either on the in vivo formation of new vessels or on cultured endothelial cells measuring functional responses (proliferation, migration) (17, 18, 20, 27, 28). This work focuses on signaling mechanisms underlying the angiogenic actions exerted by PGE2 on cultured microvascular endothelial cells. First, we analyzed the chemotactic activity of PGE2 by measuring cell migration after incubation of quiescent endothelial cells with increasing concentrations of the prostanoïd (1–1000 nM for 4 h). The observed response to PGE2 was concentration-related, maximal effect being reached at 100 nM (a concentration used throughout this work). Misoprostol, a metabolically stable PGE2 analogue, reproduced the effect of the natural ligand, suggesting that PGE2 is stable under the conditions used, and its effects may not be attributed to its derivative products (Fig. 1A). In light of these results we wondered whether PGE2 activity might involve canonical pathways of angiogenesis such as those elicited by the FGF-2 or the VEGF. We, therefore, measured PGE2-induced cell migration in the presence of antagonists of their respective receptors (FGF-1 and VEGF-2). Indeed, FGFR-1 blockade by SU5402 (10 μM) abolished cell migration, whereas application of SU5614 (10 μM), a blocker of VEGFR-2, did not modify PGE2 action (Fig. 1B).

The PGE2 pro-angiogenic activity was also analyzed in mouse aorta explants, a vascular organ culture representing an integrated system for assessing angiogenesis. As shown in Fig. 2, PGE2 produced the formation of a rich network of capillary-like structures in mouse aorta explants. The magnitude of the PGE2 response was comparable with that promoted by the angiogenic factor FGF-2 (Fig. 2, A, B, C, and F). SU5402, (10 μM), the selective FGFR-1 tyrosine kinase inhibitor, abolished PGE2-induced capillary sprouting (Fig. 2, D–F), whereas SU5614, the VEGFR-2 inhibitor, was devoid of any effect (not shown). To investigate the selectivity of FGFR-1 activation by PGE2, mouse aortic explants were pretreated with SU5402 and stimulated with selective thromboxane-A and PGI2 agonists (U4699 and Iloprost at 100 nM, respectively). Iloprost induced the formation of capillary-like structures, which were unaffected by FGFR-1 inhibition, whereasU4699 was not able to promote neovessel growth in this experimental model (data not shown). Collectively, these findings clearly indicate that FGFR-1 activation selectively conveys PGE2 mitogenic signals in the vascular endothelium, promoting its activation and migratory behavior.

PGE2 Promotes FGFR-1 Activation—To determine the direct involvement of FGFR-1 in the above described responses, we examined whether PGE2 could stimulate its phosphorylation. Activation of FGFR-1 was evaluated by the immunoprecipitation of the receptor followed by Western blotting analysis with phosphotyrosine-specific antibody. PGE2 treatment of endothelial cells induced rapid FGFR-1 phosphorylation (2-fold increase over basal), detectable within 10 min (not shown) and sustained through 15 min of incubation (Fig. 3A). FGF-2 at a fully competent concentration of 20 ng/ml produced a slightly more intense FGFR-1 phosphorylation (3-fold over basal).
We confirmed this finding by using a different approach. We studied the perinuclear translocation of FGFR-1 in response to PGE$_2$, a known mechanism linked to tyrosine kinase receptor activation (29). The addition of PGE$_2$ to the medium promoted within minutes (15 min) translocation of FGFR-1 from the membrane/cytoplasm to the perinuclear area (Fig. 3C), thus reproducing the receptor internalization observed with the natural ligand FGF-2 (Fig. 3D). To better analyze this phenomenon we used confocal microscopy using a nuclear marker (propium iodide). As shown in Fig. 3E, PGE$_2$ or FGF-2 resulted in internalization of FGFR-1 in perinuclear area (see panel 3 versus 6 and 9). FGFR-1 activation was clearly specific, as the prostanoid failed to promote VEGFR-2 phosphorylation (Fig. 3F).

Phosphorylation of FGFR-1 by PGE$_2$ Requires the Activation of c-Src—To delineate the mechanism of FGFR-1 activation, we first investigated whether PGE$_2$ would directly bind to the receptor by using CHO cells overexpressing FGFR-1 but lacking EP receptors. Exposure of CHO/FGFR-1 to PGE$_2$ failed to induce FGFR-1 phosphorylation (Fig. 4A). Because PGE$_2$ has been reported to activate c-Src in tumor cells and c-Src has been shown to serve as a signaling mediator both downstream and upstream of growth factor receptor activation (7, 30), we determined whether PGE$_2$ activates c-Src in endothelial cells and whether its activation lies upstream of the FGFR-1. PGE$_2$ promoted a robust (nearly 4-fold increase over basal) c-Src phosphorylation (Fig. 4B). We then evaluated the influence of c-Src on the PGE$_2$-induced FGFR-1 activation by measuring its phosphorylation in the presence of PP1, a known c-Src inhibitor, in comparison to that of SU5402. Because both compounds inhibited FGFR-1 phosphorylation to a similar extent, we conclude that PGE$_2$ activates FGFR-1 through a c-Src-dependent mechanism that appears to be upstream to the growth factor receptor activation (Fig. 4C).

PGE$_2$ Activates FGFR-1 through an FGF-2 Mobilization Mechanism—We then examined the possibility that the prostanoid might act through the extracellular shedding of FGF-2 by the sequential stimulation of c-Src and matrix metalloproteinases.

![FIGURE 3. PGE$_2$ induces FGFR-1 phosphorylation and nuclear translocation. A, 100 nM PGE$_2$ induced FGFR1 phosphorylation in endothelial cells (CVEC). FGFR-1 was immunoprecipitated (IP), and its activation has been investigated by anti-Tyr antibody. Results were normalized with FGFR-1. The gels shown are representative of three obtained with similar results. Cont, control. IB, immunoblot. B, immunofluorescence analysis of FGFR-1 localization in endothelial cells (CVEC). C and D, effect of PGE$_2$ (100 nM) and or FGF-2 (20 ng/ml) stimulation on FGFR-1/FGF-2 translocation in the perinuclear membrane. Original magnification, 100×. E, confocal microscopy of FGFR-1 localization in endothelial cells (CVEC). In control (1, 2, and 3) or PGE$_2$ (4, 5, and 6)- and FGF-2 (7, 8, and 9)-treated cells immunohistochemical analysis for FGFR-1 localization was performed (1, 4, and 7). Nuclei were counterstained with propidium iodide (2, 5, and 8). F, PGE$_2$ doesn’t induce VEGFR-2 phosphorylation. VEGFR-2 was immunoprecipitated, and its activation has been investigated by anti-Tyr antibody. Results were normalized with anti-VEGFR-2 antibody.](http://www.jbc.org/content/journal/jbc/283/4/2142/F3.large.jpg)
To determine whether FGF-2 might have a role in the activation of FGFR-1 by PGE2, we used a non-permeant neutralizing antibody for FGF-2 and measured the phosphorylation of FGFR-1 in response to PGE2. Application of the antibody to endothelial cells 30 min before challenge with PGE2 (15 min) fully prevented its ability to phosphorylate FGFR-1 (Fig. 5A). The observation that FGF-2 binding to heparin-coated beads is unperturbed by the presence of PGE2 indicates that PGE2 does not directly affect the FGF-2 binding to its intermediate storage site.

To reveal the mechanistic effect of PGE2 on FGF-2 shedding, we examined whether the prostaglandin induced FGF-2 mobilization by MMP activation. The relevance of MMP activity in the process of FGFR-1 phosphorylation was investigated by using a potent MMP inhibitor (GM6001 25 μM, 30 min) before PGE2 challenge (15 min). Because GM6001 suppressed FGFR-1 phosphorylation (Fig. 5C), we deduce that PGE2 induces MMP activation to promote the mobilization of FGF-2 from membrane stores. Thus, mobilized-FGF-2 promotes FGFR-1 phosphorylation through an autocrine/paracrine system.

We also identified the MMP involved in FGF-2 shedding. Zymography analysis indicated that PGE2 promotes MMP-2 production/activation (Fig. 5D). Consistent with this result, MMP-2 inhibition (25 μM, 30 min of pretreatment) significantly reduced FGFR-1 phosphorylation (Fig. 5E), suggesting that this metalloproteinase is the major player in FGF-2 shedding.

EP3 Receptor Subtype Promotes FGFR-1 Phosphorylation

We also studied the receptor subtype involved in PGE2-induced Angiogenesis.
FGFR-1 Regulates PGE$_2$-induced Angiogenesis

FIGURE 6. EP3 receptors mediate FGFR1 activation. A, FGFR-1 phosphorylation induced by agonists of the EP receptor subtypes (EP1/3, 17-phenyl tri-nor prostaglandin E-2; EP2, Butaprost; EP3/1, sulprostone; EP4/3, prostaglandin E-1 alcohol, all used at 1 μM) after 15 min stimulation. The gel is representative of two with similar results. IP, immunoprecipitate; IB, immunoblot. B, CVEC were pretreated with pertussis toxin (PTX, 300 ng/ml) for 18 h and then stimulated with PGE$_2$ (100 nM), cAMP analogue (10 μM), or calcium ionophore A23187 (50 ng/ml) for 15 min. FGFR-1 was immunoprecipitated, and its activation was investigated by anti-Tyr antibody. Results were normalized with FGFR-1. The gels shown are representative of two obtained with similar results. C, human umbilical venular endothelial cells were treated with 100 nM PGE$_2$ or 20 ng/ml FGF-2 for 15 min. FGFR-1 was immunoprecipitated, and its activation was investigated by anti-Tyr antibody. Results were normalized with FGFR-1. The gels shown are representative of four obtained with similar results. Cont, control.

FGFR-1 phosphorylation. We examined whether agonists for the individual subtype were able to phosphorylate FGFR-1. Stimulation with 100 nM EP1/3, EP3/1, and EP3/4 agonists produced consistent phosphorylation of FGFR-1 (Fig. 6A), whereas EP2 agonist was devoid of effect. The extent of phosphorylation was clearly more marked for agonists activating EP3 receptor. Given the limited discriminative ability of EP agonists, we targeted downstream secondary messengers which are specific for each subtype receptors. Accordingly, we used pertussis toxin (300 ng/ml) to block G$_\alpha_0$ protein downstream EP3, cAMP analogue (10 μM) to mimic the EP2 and EP4 activation, and A23187, a calcium ionophore (50 ng/ml), to mimic the EP1/3 activation. Although the cAMP analogue or calcium ionophore was unable to produce FGFR1 phosphorylation, pertussis toxin suppressed PGE$_2$ phosphorylating ability, indicating that EP3 receptor is the predominant subtype involved in PGE$_2$-induced phosphorylation of FGFR-1. Transfection of all EP receptor subtypes in CHO-FGFR-1 resulted in EPs overexpression but did not allow monitoring of FGFR-1 transactivation in response to PGE$_2$ for the absence of FGF-2 expression in this cell model (see supplemental Figs. S1 and S2). Thus, to address more specifically the role of EP3 in FGFR-1 activation in response to PGE$_2$, human umbilical venular endothelial cells were selected, since this cell model has the capability of expressing c-Src and FGF-2 but does not express the EP3 receptor (32). Stimulation of human umbilical venular endothelial cells with 100 nM PGE$_2$ did not affect FGFR-1 phosphorylation (Fig. 6C), demonstrating that the EP3 receptor is responsible for FGFR-1 phosphorylation in endothelium.

Phosphorylation of ERK1/2 by PGE2—We next examined the effect of PGE$_2$ on ERK1/2 activity, a kinase representing the terminal molecule of the membrane to nucleus signaling elicited by growth factors such as FGF-2; hence, being closely associated with functional events in endothelial cells. PGE$_2$ promoted ERK1/2 phosphorylation as early as 5 min after its application to endothelial cells (both from bovine and human origin), reaching maximal stimulation (2-fold increase over basal) after 15 min of incubation. PGE$_2$-induced phosphorylation of ERK1/2 was sensitive to inhibitors of signals described above such as SU5402 (FGFR-1) or PP1 (c-Src) (Fig. 7, A and B), establishing that both c-Src and FGFR-1 lie upstream to ERK1/2 phosphorylation. Conversely, the VEGFR-2 inhibitor, SU5614, exhibited no effect on ERK1/2 activation (Fig. 7C). Note also the detection of intense ERK1/2 phosphorylation in HMVEC-C (Fig. 7D) in response to PGE$_2$ and its dependence on FGFR-1, as shown by its reduced phosphorylation after receptor blockade, indicating the existence of a FGFR-1 mechanism in endothelial cells belonging to a diverse lineage and of human origin.

Furthermore, incubation of EC with inhibitors of the signaling cascade delineated above, such as GM6001 (MMPs), PP1 (c-Src), or U0126 (ERK1/2), severely reduced their ability to migrate in response to PGE$_2$ (not shown), indicating the functional relevance of the c-Src/MMP/FGFR-1 signaling pathway for the expression of prostanoid activity.

DISCUSSION

This study describes the signaling pathway involved in the action of PGE$_2$ as a pro-angiogenic molecule in the vascular endothelium. We demonstrated that PGE$_2$, through the rapid activation and phosphorylation of the tyrosine kinase receptor for the fibroblast growth factor-2, FGFR-1, induces endothelial
FGFR-1 Regulates PGE₂-induced Angiogenesis

The lack of VEGF involvement in the pro-angiogenic action of PGE₂ in cultured endothelial cells represents an interesting finding. Clearly, the angiogenic pathway of PGE₂, which for the concentrations used in this study pertains to the inflammatory process, and that of VEGF have distinct signaling patterns. In particular, PGE₂ selectively promotes angiogenesis through an endogenous signal transduction pathway, FGF-2/FGFR-1, which operates in an autocrine/paracrine manner to control vascular proliferation. On the contrary, the VEGF/VEGFR-2 system operates in a paracrine manner as its activation is independent of VEGF release from stromal components. However, both pathways share c-Src as a common requirement, which for VEGF is limited to its vascular permeability effects (36). Conceivably, c-Src might be an appropriate target for pharmacological interventions aimed at reducing pathological angiogenesis caused by either inflammation or excess output of VEGF as it occurs in several tumors. In this context the current strategy of targeting single mediators (e.g. VEGF with antibodies) has recorded the emergence of resistance or escape from these interventions, reinforcing the concept that multiple independent pathways contribute to pathological angiogenesis, particularly in malignancy often characterized by the coexistence of inflammation and tumor progression. In conclusion, PGE₂ exerts its pro-angiogenic action by recruiting the paracrine-autocrine mechanism characteristic of endothelial cells, i.e. stimulation of FGFR-1 through endogenous FGF-2, which supports vascular remodeling.

Acknowledgment—We thank the University of Missouri-Rolla (UMR), cDNA Resource Center for the prostaglandin E receptor encoding plasmids.

REFERENCES

FGFR-1 Regulates PGE$_2$-induced Angiogenesis

Prostaglandin E$_2$ Regulates Angiogenesis via Activation of Fibroblast Growth Factor Receptor-1
Federica Finetti, Raffaella Solito, Lucia Morbidelli, Antonio Giachetti, Marina Ziche and Sandra Donnini

doi: 10.1074/jbc.M703090200 originally published online November 26, 2007

Access the most updated version of this article at doi: 10.1074/jbc.M703090200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2007/11/28/M703090200.DC1

This article cites 36 references, 14 of which can be accessed free at http://www.jbc.org/content/283/4/2139.full.html#ref-list-1