The *Leishmania* Surface Protease GP63 Cleaves Multiple Intracellular Proteins and Actively Participates in p38 Mitogen-activated Protein Kinase Inactivation

Maxime Halle†‡, Maria Adelaida Gomez‡, Matthew Stuible§,‡, Hidehisa Shimizu†, W. Robert McMaster§, Martin Olivier‡§, and Michel L. Tremblay††

From the †Rosalind and Morris Goodman Cancer Centre and the Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, the ‡Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, and the §Department of Medical Genetics, Jack Bell Research Centre, University of British Columbia and Immunity and Infection Research Centre, Vancouver Hospital, Vancouver, British Columbia V6H 3Z6, Canada

The *Leishmania* parasite is a widespread disease threat in tropical areas, causing symptoms ranging from skin lesions to death. *Leishmania* parasites typically invade macrophages but are also capable of infecting fibroblasts, which may serve as a reservoir for recurrent infection. Invasion by intracellular pathogens often involves exploitation of the host cell cytoskeletal and signaling machinery. Here we have observed a dramatic rearrangement of the actin cytoskeleton and marked modifications in the profile of protein tyrosine phosphorylation in fibroblasts infected with *Leishmania major*. Correspondingly, exposure to *L. major* resulted in degradation of the phosphorylated adaptor protein p130Cas and the protein-tyrosine phosphatase-PEST. Cellular and *in vitro* assays using pharmacological protease inhibitors, recombiant enzyme, and genetically modified strains of *L. major* identified the parasite protease GP63 as the principal catalyst of proteolysis during infection. A number of additional signaling proteins were screened for degradation during *L. major* infection as follows: a small subset was cleaved, including cortactin, T-cell protein-tyrosine phosphatase, and caspase-3, but the majority remained unaffected. Protein degradation occurred in cells incubated with *Leishmania* extracts in the absence of intact parasites, suggesting a mechanism permitting transfer of functional GP63 into the intracellular space. Finally, we evaluated the impact of *Leishmania* on MAPK signaling; unlike p44/42 and JNK, p38 was inactivated upon infection in a GP63- and protein degradation-dependent manner, which likely involves cleavage of the upstream adaptor TAB1. Our results establish that GP63 plays a central role in a number of host cell molecular events that likely contribute to the infectivity of *Leishmania*.

Protozoans of the genus *Leishmania* cause a complex disease called leishmaniasis, whose clinical manifestations have been divided into three principal types, cutaneous, mucocutaneous, and visceral, exhibiting different degrees of severity and mortality (1, 2). This disease threatens over 350 million people in 88 countries in tropical, subtropical, and temperate regions (4). The development, multiplication, and transmission of *Leishmania* in the form of promastigotes between mammalian hosts are achieved by the sandfly insect vector (4).

Following inoculation into a vertebrate host, promastigotes are typically phagocytosed by macrophages where they differentiate into and multiply as amastigotes (1, 5). Heavily infected macrophages lyse and liberate amastigotes that will colonize other cells. In addition, both promastigotes and amastigotes of *Leishmania major* can be internalized by fibroblast cells (6). Despite their capability to synthesize nitric oxide, fibroblasts produce a much lower quantity of this microbicidal compound than macrophages (6). The limited capacity of fibroblast to eliminate parasites implies that these cells could act as a reservoir for long term infection (6). Nevertheless, little is known regarding the molecular events occurring in fibroblast cells upon contact with *Leishmania* parasites.

Several intracellular parasites hijack the actin cytoskeletal machinery to infiltrate and traffic inside their host cells (7, 8). Cellular proteins such as cortactin, Wiskott-Aldrich syndrome protein (WASP), Crk, and Crk-associated substrate (p130Cas)

This work was supported by Canadian Institutes of Health Research Grant MOP-12466, National Cancer Institute of Canada Grant 015200, and operating grants (to M. L. T.). The M. O. laboratory is supported by Canadian Institutes of Health Research Grant MOP-12671. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. 1–8.
‡ Recipient of a Fonds de la Recherche en Santé du Québec doctoral award.
§ To whom correspondence may be addressed: Dept. of Microbiology and Immunology, McGill University, Duff Medical Bldg., 3775 University St., Rm. 600, Montréal, Québec H3A 2B4, Canada. Tel.: 514-398-5592; Fax: 514-398-7052; E-mail: martin.olivier@mccgill.ca.
§§ Recipient of the Jeanne et Jean-Louis Lévesque Chair in Cancer Research. To whom correspondence may be addressed: Rosalind and Morris Goodman Cancer Centre, McGill University, Cancer Pavilion, 1160 Avenue des Pins Ouest, Rm. 617, Montréal, Québec H3A 1A3, Canada. Tel.: 514-398-7290; Fax: 514-398-6769; E-mail: michel.tremblay@mcgill.ca.

5 The abbreviations used are: WASP, Wiskott-Aldrich syndrome protein; CHO, Chinese hamster ovary; p130Cas, Crk-associated substrate; P-MEFs, primary mouse embryonic fibroblast cells; PTP, protein-tyrosine phosphatase; PTK, protein-tyrosine kinase; TC-PTP, T-cell PTP; WT, wild type; DAPI, 4′,6-diamidino-2-phenylindole; DIMEM, Dulbecco’s modified Eagle’s medium; PBS, phosphate-buffered saline; FBS, fetal bovine serum; GST, glutathione S-transferase; Z, benzoxycarbonyl; fmk, fluoromethyl ketone; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; MKK, MAPK kinase; P-MEF, primary mouse embryonic fibroblast; MRp, myristoylated alanine-rich C kinase substrate-related protein; JNK, c-Jun N-terminal kinase; PEST, Pro-Glu-Ser-Thr.

© 2009 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
Leishmania GP63 Targets Host Cell Signaling Components

have been identified as targets of intracellular bacteria (9–12). Leishmania amastigotes induce activation of Cdc42 to re-organize the actin network and enter into Chinese hamster ovary (CHO) fibroblasts (13). Additionally, the activity of Cdc42 is involved in knitting a shell of actin around the internalized Leishmania parasite, a site at which other cytoskeletal regulators such as vinculin and WASP are also recruited (13, 14). Numerous biological processes, including those modulating the dynamics of actin cytoskeleton assembly, are controlled by the dual effects of protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPs). Leishmania can affect the state of tyrosine phosphorylation in macrophage cells by activating SHP-1 (Src homology-2 domain-containing phosphatase-1) (15, 16). However, the specific roles of other PTPs in this pathogenic process remain unclear. Interestingly, another nonreceptor PTP, PTP-PEST, has been extensively implicated in the regulation of WASP and p130Cas phosphorylation as well as in the modulation of vinculin-containing adhesion structure formation (17–20). These studies have established PTP-PEST as a critical regulator of actin remodeling and present this enzyme as a particularly interesting candidate target of Leishmania.

Downstream elements of cellular signal transduction such as members of the MAPKs have also been linked to the pathogenic outcome of Leishmania infection. The ability of promastigotes to manipulate and circumvent MAPK activation may represent a strategy to evade the macrophage-host cell defense mechanism. Incubation of macrophages with a p38 inhibitor prior to exposure to Leishmania donovani augmented their subsequent invasion by the parasite (21). Similarly, the anisomycin-mediated inhibition of L. donovani survival inside macrophages was dependent on p38 (21). Moreover, L. major down-regulates p38 to impair CD40-induced iNOS2 expression, inhibiting nitric oxide production and favoring survival within macrophages (22). By inhibiting p38, the parasite can also hijack another signal initiated by CD40 cross-linking, altering cytokine expression to its advantage; interleukin-12, a promoter of the host-protective T-helper type 1 (Th1) cell response, is reduced whereas interleukin-10, an inhibitor of Th1 cell and of NO production, is increased (23, 24). Although the interplay between p38 activity and Leishmania persistence is accepted, little is known regarding the parasitic elements involved in regulation of this MAPK.

Leishmania is coated by a characteristic glycocalyx, whose molecular components play a critical role in the initial contact between the parasite and its host environment. GP63, also referred to as major surface protease, leishmanolysin, or promastigote surface protease, is the most abundant protein covering Leishmania promastigotes (25, 26). Studies performed using different parasitic models demonstrated that GP63 plays a crucial role in complement fixation and processing, which protects Leishmania during its sojourn into mammalian hosts (27–29). Similarly, GP63 was recently shown to defend the parasite against antimicrobial peptides such as defensins and pexiganan (30). The abundance and diversity as well as the high catalytic activity at mammalian body temperature of this virulence factor (31–33) favor the dissemination of the parasite as it digests constituents of the extracellular matrix of the host such as collagen type IV, fibronectin, and laminin (34). Several species of Leishmania release proteolytically active GP63 in the surrounding milieu (35–38) presumably facilitating the propagation of the parasite. In addition, fragments from GP63-processed fibronectin can protect parasites within macrophages, as they attenuate production of reactive oxygen intermediates and favor amastigote proliferation (39). Furthermore, GP63 maximizes promastigote binding to and internalization in macrophages through its ability to interact with the α4/β1 integrin and to promote complement-dependent adhesion (40, 41). Moreover, similar to fibronectin, coating polystyrene surfaces with GP63 enhances in vitro spreading of fibroblasts (42). The expression of specific gp63 genes in the intracellular amastigote form (27, 43, 44) implies an intra-host cell function for this parasitic protease. Interestingly, the activity of GP63 was implicated in the protection of encapsulated proteins against phagolysosomal degradation as well as intra-macrophage survival of Leishmania mexicana amazonensis (45, 46). The identification of the myristoylated alanine-rich C kinase substrate-related protein (MRP), a cytosolic protein associated with the actin network of macrophages, as a substrate of GP63 reinforces the potential of this enzyme to modulate host cell activities within the intracellular space (47). Nonetheless, little else is known concerning its impact on host cell signal transduction or the existence of additional intracellular substrates for this parasitic protease.

Subverting normal cellular functions is a widespread strategy among intracellular parasites to take advantage of mammalian hosts. In this study, we describe distinctive effects of Leishmania infection on cell signaling in fibroblasts. During L. major infection, we found that the parasite manipulates cellular components, in part by altering the tyrosine phosphorylation state of several proteins. Upon contact with L. major, the adaptor Crk interacts with a truncated form of p130Cas, which further correlates with cleavage of two novel substrates, p130Cas and PTP-PEST, by GP63. Moreover, through GP63, L. major impacted the stability of additional proteins, including cortactin, TCT-PTP (T-cell PTP), and caspase-3. Additionally, L. major was found to down-regulate p38 in a GP63-dependent manner. Direct activators of p38 include the MAPK kinase MKK3, MKK6, and the adaptor molecule TAB1 (TAK-1-binding protein-1), which interacts directly with p38 (48, 49). Interestingly, the inhibition of p38 occurred in concert with the GP63-mediated proteolysis of TAB1. This study reveals diverse and novel mechanisms by which Leishmania can monopolize different constituents of the fibroblast signal transduction machinery.

EXPERIMENTAL PROCEDURES

Reagents, Antibodies, and Plasmids—Chemicals were purchased at BioShop Canada Inc., Fisher, and Sigma. The PTP-PEST polyclonal antibodies (2528 and 2530) were described previously (19). Monoclonal antibodies specific for Crk, p130Cas, integrin-β1, Shc, and paxillin were from BD Transduction Laboratories. Antibodies against IxBo, STAT5 (C17), and JNK1 were from Santa Cruz Biotechnology. TC-PTP monoclonal antibodies (3E2) were described previously (50). Polyclonal rabbit antibodies against PTP-1B and focal adhesion kinase as well as monoclonal anti-cortactin (4F11) and phosphotyrosine (4G10) were from Upstate. Antibodies spe-
cific for AKT, caspase-3, phospho-Thr-202/Tyr-204 p44/42 MAPKs, p44/42 MAPKs, phospho-Thr-183/Tyr-185 JNK, phospho-Thr-180/Tyr-182 p38 MAPK, p38 MAPK, TAB1, MKK3, and MKK6 were from Cell Signaling Technology. The vector encoding GST–PTP–PEST (pEBG–PTP–PEST) has been described (51). cDNAs encoding p38 (image ID 4195842) and TAB1 (image ID 5356886) were obtained from American Type Culture Collection (ATCC). pET-28(c)

Leishmania GP63 Targets Host Cell Signaling Components

Leishmania promastigotes (WT and H11002) were re-introduced, L. major

Cells and Parasites—Transient transfections were performed, and PTP–PEST clones (B14V, B15V, B11WT (wild type), and B118WT) were generated and maintained as described previously (51). Primary mouse embryonic fibroblasts (P–MEFs) were isolated from BALB/c embryos (The Jackson Laboratories) and grown as described (51). L. major A2 and gp63-null (L. majorGP63−/−) and rescued strains (in which gp63 gene 1 was re-introduced, L. majorGP63+/−rescued) (28) as well as L. donovani strain 2211, L. mexicana, Leishmania tarentolae, and Leishmania braziliensis 2249 promastigotes were all maintained at 25 °C in SDM-79 medium supplemented with 10% heat-inactivated FBS (Wisent) as described (52).

Cellular Treatment, Infection, and Immunoblotting—Stationary phase of Leishmania promastigotes was centrifuged at 2500 rpm (Allegra 6R Centrifuge, Beckman Coulter) for 5 min. Supernatant was removed, and pellets of parasites were washed with phosphate-buffered saline (PBS) and centrifuged at 2500 rpm for 5 min (Allegra 6R Centrifuge, Beckman Coulter). Parasites were resuspended in DMEM (containing the indicated concentration of heat-inactivated FBS) and added onto cells at the specified parasite:cell ratio and for the indicated duration. Cells were then rinsed on ice with PBS and lysed (100 mM Tris (pH 7.4), 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 50 mM NaF, 1 mM Na3VO4, Complete protease inhibitor (Roche Applied Science)). Cell extracts were cleared by centrifugation at 16,000 × g for 10 min at 4 °C, and the protein concentration of each sample was measured by the Bradford assay (Bio-Rad protein assay). Proteins were separated by SDS-PAGE, transferred to polyvinylidene difluoride membranes (Immobilon-P; Millipore), and immunoblotted as described (51).

The effect of pharmacological protease inhibitors on cellular protein degradation induced by L. major infection was determined as follows: caspase inhibitor (Z-VAD-fmk; Cedarlane), calpain inhibitor (PD150606; Calbiochem), proteasome inhibitor (lactacystin; Sigma), as well as calpain inhibitor and proteasome inhibitor combined together were added to cells 2 h prior to addition of parasites and co-incubated for an additional 15 min. Cells that were not exposed to any of the inhibitors were incubated with media containing DMSO as a vehicle control. Cells were harvested, lysed, and analyzed by immunoblotting as described above.

The effect on mammalian cells of parasite-conditioned medium and protein lysates prepared from cultured L. major was evaluated as follows. L. major cultures were centrifuged for 5 min at 2500 rpm (Allegra 6R Centrifuge, Beckman Coulter). Supernatants were carefully harvested, avoiding contact with the pellet and the wall of the tube. Conditioned SDM was centrifuged a second time for 10 min at 3500 rpm (Allegra 6R Centrifuge, Beckman Coulter) to remove any potentially residual parasites. Supernatant from cultured parasites was then diluted in normal parasite growth media to normalize the volume according to the parasite concentration in the original culture. Conditioned or fresh growth media were deposited on P–MEFs for 1 h, and cell lysates were prepared and analyzed as described above.

To prepare parasite lysates, L. major parasites were washed three times with PBS, resuspended in serum-free DMEM, and sonicated (Ultrasound Processor, Sonics & Materials Inc.) two times for 10 s at an intensity of 50% at 4 °C with a 30-s incubation on ice between sonication steps. Lysates were then cleared by centrifugation for 2 min at 16,000 × g at 4 °C, and protein concentration was determined by the Bradford assay. P–MEFs were then incubated with serum-free DMEM supplemented with 333 µg/ml L. major protein extract for 1 h. The absence of parasites in both the conditioned media and L. major lysates was confirmed by microscopic examination (data not shown). Following the incubation, protein lysates were prepared from treated cells and analyzed by immunoblotting according to the procedures described above.

Incubation of Cellular Extracts and Recombinant Proteins with Parasite Lysate—The procedure for preparation of parasite lysates from L. major promastigotes (WT and gp63−/−) was based on a previously published protocol (47). L. major stationary phase promastigotes were washed with PBS and with TNB (10 mM Tris-HCl (pH 7.4), 100 mM NaCl, 0.4 mg/ml bovine serum albumin (Invitrogen), 5 µg/ml pepstatin, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, 10 µg/ml aprotinin) before being resuspended in TNB. Parasites were then sonicated (Ultrasound Processor, Sonics & Materials Inc.) two times at 4 °C for 5 s at an intensity of 50% with a 5-s incubation on ice between each sonication step. Samples were then centrifuged for 2 min at 16,000 × g at 4 °C, and supernatants were kept to perform the cleavage assay. PTP–PEST−/−-WT expressing cells (clone B11WT) were rinsed with ice-cold PBS, collected in TNB, and lysed by three sonication steps of 15 s at an intensity of 50% at 4 °C, which were separated by 15–s incubations on ice. Samples were then centrifuged for 5 min at 16,000 × g at 4 °C; supernatants were collected, and protein concentrations were determined by the Bradford assay. Next, 200 µg of protein lysates from PTP–PEST−/−-WT expressing cells was incubated with lysates made from 20 × 106 promastigotes (either from WT or gp63−/− L. major) or with TNB (control) at 37 °C for the indicated time. Samples were immediately placed on ice, and SDS sample buffer was added. Sam-
Leishmania GP63 Targets Host Cell Signaling Components

ples were boiled for 4 min, separated by SDS-PAGE, and analyzed by immunoblotting.

To obtain purified GST-PTP-PEST, protein extracts from transfected fibroblasts (51) were prepared in lysis buffer (100 mM Tris (pH 7.4), 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, Complete protease inhibitor (Roche Applied Science)). Cell lysates were cleared by centrifugation for 10 min at 16,000 × g at 4 °C and then incubated for 1 h at 4 °C with glutathione-Sepharose beads (Amersham Biosciences). The beads were then washed three times with lysis buffer and two times with TNB. Next, the beads were resuspended in TNB, incubated with the indicated quantity of *L. major* lysates, and prepared as described above for 15 min at 37 °C. Samples were immediately placed on ice, rinsed twice with ice-cold lysis buffer, and resuspended in SDS sample buffer. Samples were boiled for 4 min, separated by SDS-PAGE, and analyzed by immunoblotting.

Incubation of Recombinant Proteins with Recombinant GP63—GST-PTP-PEST was purified as described above. To produce His-TAB1, *Escherichia coli* cells transformed with pET-28(c+)TAB1 were induced for 2 h at 37 °C with 1 mM isopropyl β-d-1-thiogalactopyranoside and harvested by centrifugation. Bacterial cells were lysed (50 mM Tris (pH 7.5), 500 mM NaCl, 40 mM imidazole, 1% Triton X-100, and EDTA-free complete protease inhibitor), and recombinant proteins were isolated on nickel-Sepharose beads (Ni-Sepharose 6 Fast Flow, GE Healthcare) according to the manufacturer’s instructions. Immobilized His-TAB1 was eluted in elution buffer (1 M imidazole, 50 mM NaCl, 50 mM Tris (pH 7.5), 1% Triton X-100, complete protease inhibitor) for 1 h at 4 °C, concentrated in storage buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 0.1 mM EGTA, 0.1 mM EDTA, 25% glycerol, 0.25 mM dithiothreitol, complete protease inhibitor) using Microcon filters (Millipore), and stored at −80 °C. Purified GST-PTP-PEST or His-TAB1 was incubated with recombinant GP63 (53) in TNB at 37 °C for 30 min. Samples were immediately placed on ice and resuspended in SDS sample buffer. Samples were boiled for 4 min, separated by SDS-PAGE, and analyzed by immunoblotting.

Immunofluorescence—Glass microscope coverslips were coated with 0.2% gelatin at 37 °C for 30 min and rinsed with PBS prior to seeding with P-MEFs. Infected P-MEFs were rinsed three times with PBS, fixed in 4% paraformaldehyde (diluted in PBS) for 20 min, treated with permeabilization solution (4% paraformaldehyde, 0.1% Triton X-100 in PBS) for 20 min at 4 °C, and incubated for 45 min with 2% bovine serum albumin/PBS. Cells were washed with PBS and stained with a mixture of rhodamine-conjugated phalloidin (Molecular Probes) and 4′,6-diamidino-2-phenylindole (DAPI) (Roche Applied Science). Cells were washed three times with PBS and rinsed once with water, and coverslips were deposited on slides using Vectashield mounting medium (Vector Laboratories, Inc.). Random field images were acquired by confocal microscopy (Zeiss LSM 510-NLO).

Immunoprecipitation and Protein Complex Analysis—To analyze Crk interactions, serum-starved and *L. major*-infected cells were rinsed with ice-cold PBS and lysed (100 mM Tris (pH 7.4), 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, 10 mM NaF, 1 mM Na₃VO₄, and Complete protease inhibitor (Roche Applied Science)). Cell extracts were centrifuged at 16,000 × g for 10 min at 4 °C, and the protein concentration of each sample was measured by the Bradford assay. Cleared protein lysates (2.4 mg) were then incubated at 4 °C for 2 h in the presence of 1.25 µg of anti-Crk monoclonal antibody (BD Transduction Laboratories), 25 µl of protein G-agarose beads (Invitrogen). Beads were then washed three times with lysis buffer, boiled in SDS-sample buffer, and analyzed by immunoblotting.

To analyze the interaction between p38 and TAB1, control and *L. major*-infected cells expressing FLAG-TAB1-Myc-Myc were rinsed with ice-cold PBS and lysed in interaction buffer (20 mM Tris (pH 7.5), 120 mM NaCl, 10% glycerol, 2 mM EDTA, 1% Triton X-100, 1 mM Na₃VO₄, 10 mM NaF, and Complete protease inhibitor (Roche Applied Science)). Cell extracts were centrifuged at 16,000 × g for 10 min at 4 °C, and the protein concentration of each sample was measured by the Bradford assay. Cleared protein lysates (2.4 mg) were then incubated at 4 °C for 2 h in presence of GST or GST-p38 immobilized on glutathione-Sepharose beads prepared as described below. Beads were then washed three times with interaction buffer, resuspended in SDS sample buffer, boiled, and analyzed by immunoblotting. To isolate GST fusion proteins (GST and GST-p38), transiently transfected HeLa cells (51) were rinsed with ice-cold PBS and lysed in interaction buffer, and protein extracts were cleared by centrifugation (10 min, 16,000 × g, 4 °C). Protein lysates were then incubated with glutathione-Sepharose beads for 1 h at 4 °C, washed three times with interaction buffer, then washed for 10 min in interaction buffer, and resuspended in interaction buffer.

RESULTS

L. major Is Capable of Infecting Primary Embryonic Fibroblasts in Culture—Fibroblasts have been observed to be an alternative cell type to macrophages as hosts for the parasite *Leishmania* in animal models (6). Additionally, genetically manipulated fibroblasts generated by our laboratory have proved to be valuable models to investigate molecular mechanisms of signal transduction (20, 51, 54). To observe the infection of cultured fibroblasts, P-MEFs were incubated with *L. major*, fixed and stained, and examined for the presence of parasites by confocal microscopy. Under these experimental conditions, actin staining illustrated cellular morphology, and DAPI allowed the detection of both mammalian and parasitic nuclei as well as the kinetoplast of the parasite. Following 12 h of incubation in the presence of parasites, most cells became infected. In several cases, we observed that spread cells became rounded and exclusively exhibited F-actin cortical as well as in retracting filipodia at the cell-substratum interface (Fig. 1, A, basal section and middle section, and B). These detaching cells contained numerous parasites as seen by three-dimensional reconstruction of the DAPI signal (Fig. 1A). Fig. 1B illustrates another sample treated under similar conditions. Intriguingly, nuclear condensation, which is characteristic of apoptosis, was not observed in the infected cells, even those harboring a heavy load of parasites. In addition, we failed to detect increased caspase activity in cells exposed to *L. major*, even following 24 h of incubation (supplemental Fig. 1). This indicates that despite the magnitude of the stress induced by the parasite in its host...
Interestingly, the phosphorylation of a prominent band between 100 and 150 kDa significantly decreases during infection. An abundant phosphoprotein of this size, p130Cas, is a substrate of PTP-PEST (supplemental Fig. 2) (17, 54) that plays a role in the invasion of host cells by other microorganisms such as *Salmonella typhimurium* (57). To gain insight into the possible regulation of p130Cas signaling during infection with *L. major*, we investigated its interaction with Crk, an important signaling adaptor that binds to tyrosine-phosphorylated p130Cas (58). It was previously observed that expression of PTP-PEST decreased the formation of the p130Cas-Crk complex (18). In our cell system, we observed the assembly of this complex only in the absence of PTP-PEST (Fig. 2B, PTP-PEST−/− cells, B14V noninfected). Exposure of these cells (B14V) to *L. major* resulted in the interaction of Crk with a smaller form of p130Cas as demonstrated by co-immunoprecipitation (Fig. 2B) as well as in vitro binding to purified Crk Src homology-2 domain (supplemental Fig. 3). Also, in both cell lines (B14V and B11WT), we observed that the total amount of full-length p130Cas was diminished, whereas a smaller form appeared during the infection with *Leishmania* (Fig. 2B, bottom). The cellular content of Crk remained unchanged. These results suggest that p130Cas/Crk-mediated signaling events are modulated during infection by *L. major*.

Cellular Exposure to Leishmania Leads to Proteolysis of p130Cas and PTP-PEST—The diminished amount of p130Cas and the binding of Crk to a smaller protein recognized by a p130Cas antibody were indicative of potential proteolysis of p130Cas in cells exposed to *L. major*. Therefore, we examined the consequence of incubating our PTP-PEST cell lines with *L. major* on p130Cas stability. Infection with *L. major* leads to cleavage of p130Cas in a time- and parasite concentration-dependent manner (Fig. 3, A and B). As infection progresses, p130Cas cleavage products accumulate at ~82, ~70, ~50, and ~29 kDa. To our surprise, we also found that PTP-PEST was cleaved during the infection, which yielded fragments of ~81, ~62, and ~40 kDa. However, *L. major* does not require PTP-PEST expression to promote the proteolysis of p130Cas because it occurs in both PTP-PEST-null and rescued clones (Fig. 3, A and C). Interestingly, in both primary and B11WT fibroblasts, p130Cas and PTP-PEST were degraded when cells were incubated with *L. major*, *L. donovani*, and *L. mexicana* but not with *L. tarentolae* nor *L. braziliensis* (Fig. 4 and data not shown). The absence of cleavage induced by *L. tarentolae* and *L. braziliensis* is not simply because of delayed kinetics, because...
Leishmania GP63 Targets Host Cell Signaling Components

Extended incubation of fibroblasts with these species did not increase p130Cas or PTP-PEST proteolysis (supplemental Fig. 4). These data identify p130Cas and PTP-PEST as novel signaling targets of specific Leishmania species. To our knowledge, these observations include the first example of p130Cas and PTP-PEST as novel signal-

ing targets of specific pathogens. Together, these results identify GP63 as a major surface metallopro-

tease, GP63, is the most abundant protein at the surface of the Leishmania parasite (25, 26). To determine whether GP63 plays a role in the degradation of p130Cas and PTP-PEST, we exam-

ined the consequence of incubating cells with parasites in which the genes encoding GP63 were ablated (28). In contrast to L. major WT, L. major gp63−/− parasites do not induce the cleavage of p130Cas and PTP-PEST (Fig. 5C). Importantly, re-introduc-

tion of gp63 into the −/− parasite (L. major gp63−/− rescued) rescued this phenomenon. Similar observations were also obtained from primary embryonic fibroblasts placed in the presence of these different genotypes of L. major (data not shown).

Part of the infection processes of several intracellular parasites, including Leishmania, consists of taking control of spec-

cific cytoskeletal, tyrosine phosphorylation, and apoptotic modulators (13–16, 61, 62). Interestingly, we found that another cytoskeletal regulator, cortactin, and classical PTP, TC-PTP, as well as the apoptotic executioner caspase-3 were all degraded as a result of L. major infection in a GP63-dependent manner (Fig. 5D). In contrast, Crk, integrinβ1, STAT5, the MAPks (ERK1/ERK2, INK, and p38), Shc, focal adhesion kinase, paxillin, IκB, AKT, and PTP1B remained stable in cells incubated with L. major (Fig. 2 and Fig. 8 and supplemental Fig. 5). This underscores that the action of GP63 is specific to a subset of substrates. Together, these results identify GP63 as a
novel regulator of p130Cas, PTP-PEST, cortactin, TC-PTP, and caspase-3 integrity.

To obtain further insight into the regulation of p130Cas and PTP-PEST protein stability by GP63, we incubated fibroblast lysates or purified GST-PTP-PEST with protein extracts prepared from different L. major genotypes. As shown in Fig. 6A, the addition of extracts from WT L. major parasites to a total cell lysate induced the degradation of p130Cas and PTP-PEST following 5 and 20 min of incubation. The profile of bands observed in this in vitro assay was quite similar to that obtained when fibroblast cells were exposed to live parasites (Fig. 3). In contrast, no significant cleavage was detected, neither after 5 nor 20 min of incubation, when proteins extracted from gp63/H11002 L. major were added to the total cell lysate. These observations imply that the integrity of both parasitic and host cells is not essential for the cleavage reaction to occur. Importantly, purified PTP-PEST incubated with L. major lysates was also degraded when GP63 was present (Fig. 6B), confirming

FIGURE 3. L. major infection induces proteolysis of p130Cas and PTP-PEST. A, fibroblasts positive and negative for PTP-PEST expression were starved for 16 h in 0.05% heat-inactivated FBS/DMEM and incubated in starvation medium without or with L. major at a ratio of 1:20 (cells:parasites) for the indicated duration. IB, immunoblot. B, PTP-PEST cells expressing WT PTP-PEST (clone B11WT) were exposed to different ratios (cells:parasites) of L. major for 10 min. C, PTP-PEST cells rescued with either empty vector (clones B14V and B15V) or with the WT enzyme (clones B11WT and B118WT) were maintained in starvation or regular media (nonstarved) 16 h prior to treatment. Indicated clones were incubated with or without L. major in the absence of serum or with media supplemented with 10% heat-inactivated-FBS. Cell lysates were prepared and analyzed by immunoblotting for p130Cas and PTP-PEST. Filled arrowheads identify intact proteins, and open arrowheads point to cleavage products. The values on the right correspond to molecular mass in kDa.

FIGURE 4. L. major, L. donovani, and L. mexicana, but neither L. tarentolae nor L. braziliensis, infections result in degradation of p130Cas and PTP-PEST. P-MEFs were exposed to the indicated species of Leishmania for 1 h at a ratio of 1:20. Protein lysates were harvested and analyzed by immunoblotting (IB) for p130Cas and PTP-PEST. Filled arrowheads identify intact proteins, and open arrowheads point to cleavage products. The values on the right correspond to molecular mass in kDa.

Leishmania GP63 Targets Host Cell Signaling Components

MARCH 13, 2009• VOLUME 284 • NUMBER 11 • JOURNAL OF BIOLOGICAL CHEMISTRY 6899
FIGURE 5. The parasitic protease GP63 is essential for L. major-induced degradation of p130Cas and PTP-PEST. A, to inhibit various endogenous cellular proteases, B11WT fibroblasts were preincubated with 100 µM Z-VAD-fmk, 100 µM PD150606, 10 µM lactacystin, or 100 µM PD150606 with 10 µM lactacystin for 2 h and subsequently exposed to L. major stationary promastigotes at a ratio of 1:20 (cells:parasites) in the presence of the same compounds for an additional 15 min. Lysates were then analyzed by immunoblotting (IB) for p130Cas and for PTP-PEST.

B, B11WT cells were either treated with 10 µg/ml tumor necrosis factor-α in the presence of 10 µg/ml cycloheximide or with L. major at a ratio of 1:20 (cells:parasites) for the indicated times. Control cells for the tumor necrosis factor-α in the presence of treatment were incubated with media supplemented with 10 µg/ml cycloheximide only.

C and D, B11WT cells were infected for the indicated times (C) or for 1 h 30 min (D) with L. major^{wt}, L. major^{gp63} or L. major^{gp63} rescue at a cell:parasite ratio of 1:20. Protein extracts were analyzed by immunoblotting for PTP-PEST (using 2530 or 2528 antibodies as indicated), p130Cas, caspase-3, cortactin, TC-PTP, and integrin-β1. Control, filled arrowheads identify intact proteins; the gray arrowhead points to a cleavage product specific to the lactacystin conditions, and open arrowheads point to other cleavage products. The values on the right correspond to molecular mass in kDa.
that cellular proteins are dispensable for the cleavage of PTP-PEST triggered by the parasite. Finally, recombinant GP63 efficiently cleaved purified GST-PTP-PEST (supplemental Fig. 6). These experiments point to GP63 as a prerequisite for p130Cas and PTP-PEST degradation and strongly suggest that these cellular signaling proteins are genuine substrates of GP63.

The cleavage of p130Cas and PTP-PEST occurs rapidly following the cellular exposure to the parasite. This suggests the existence of a mechanism facilitating entry of GP63 into target cells, before internalization of the protozoan commences. To test this hypothesis, we examined the impact of challenging P-MEFs with either live parasite, supernatant from promastigote cultures, or parasite lysates. As expected, incubation of P-MEFs with live parasites leads to the cleavage of both p130Cas and PTP-PEST. Interestingly, detectable levels of p130Cas cleavage products were present following exposure of the cells to media in which *L. major* was growing (Fig. 7, *SDM* supernatant). Importantly, incubation of cells with *Leishmania* lysates that do not contain intact parasites induced pronounced cellular p130Cas and PTP-PEST cleavage. Under all these conditions, the occurrence of cellular protein degradation was strictly dependent on the capacity of the protozoan to synthesize GP63. These findings imply a process that promotes the transfer of GP63 from the parasite to its target cells.

Leishmania Infection Modulates MAPKs and Causes GP63-dependent Inactivation of p38—The phosphorylation of p130Cas favors JNK (63) and p44/42 MAPK activation (64), whereas the...
FIGURE 8. *Leishmania* infection modulates MAPKs and depends on GP63 activity to down-regulate p38. P-MEFs were left uninfected or incubated with *L. major* WT (A, B, and C), with strains in which the GP63 gene was excised or re-introduced (*L. major*gp63−/− or *L. major*gp63−/− rescued) (A and B), or with *L. donovani*, *L. mexicana*, *L. tarentolae*, or *L. braziliensis* (C) for the indicated times. The activity of p44/42 (A), JNK (A), and p38 (B and C) MAPKs was measured by immunoblotting (IB) using phospho-specific antibodies for each protein. Total input of p44/42 (A), JNK (A), and p38 (B and C) as well as stability of p130Cas (C) was also measured. *B*, right panel, phosphorylated p38 levels were quantified and normalized to the total amount of p38 by densitometry. Values correspond to the means ± S.E. of three independent experiments. *C*, control.
expression of PTP-PEST in B-cells interferes with Ras-mediated p44/42 phosphorylation (65), and promotes the activation of p38 in fibroblasts stimulated with anisomycin (supplemental Fig. 7). To evaluate the impact of GP63 on the activity of host MAPKs, we measured the phosphorylation levels of three members of the MAPKs (p44/42, JNK, and p38) in P-MEFs exposed to different strains of L. major. Immunoblotting using a phospho-specific antibody shows an increase in p44/42 MAPK phosphorylation in cells incubated with L. major for 5 min, which is followed by a gradual decrease as the infection
Leishmania GP63 Targets Host Cell Signaling Components

progressed (Fig. 8A). This transient ERK activation occurred similarly in cells infected with parasites both positive and negative for GP63 (WT, gp63−/−, or gp63−/− rescued). Likewise, JNK was up- and down-regulated independently of gp63 genotype. In contrast, a dramatic dephosphorylation of p38 occurred following L. major infection (Fig. 8B). Interestingly, parasites lacking GP63 induced only a partial dephosphorylation of p38 (Fig. 8B). Noteworthy, re-introduction of gp63 in the L. major gp63−/− strain (rescued) was sufficient to restore its capacity to inactivate p38 (Fig. 8B). Because our results, presented in Fig. 4, revealed that the ability to provoke p130Cas and PTP-PEST cleavage is species-specific, we sought to verify the possible correlation between the proteolytic capacity of certain species and the modulation of p38 phosphorylation. Treatment of P-MEFs with L. major, L. donovani, and L. mexicana but not with L. tarentolae nor L. braziliensis caused the disappearance of the phosphorylated form of p38 (Fig. 8C). This inactivation of p38 correlated with the ability of the parasite to induce protein cleavage as detected by p130Cas degradation. The reduced level of phosphorylated p38 was not due to its degradation since the total amount of p38 remained constant throughout all tested infections (Fig. 8, B and C). Altogether, these results reveal a novel mechanism of p38 regulation dependent on protein cleavage in which GP63 appears to play a key role.

GP63 Cleaves the p38 Regulator TAB1 during L. major Infection, Generating Products Unable to Bind p38—The modulation of MAPKs observed during the infection with L. major prompted us to analyze molecules that lie upstream of p38. Even though PTP-PEST expression regulates p38 in certain contexts, we did not observe differences in p38 modulation between PTP-PEST−/− and re-expressing fibroblasts treated with L. major (data not shown). As direct regulators of p38, the MAPK kinase (MKK) MKK3 and MKK6 can phosphorylate its activation loop, whereas binding of the scaffolding protein TAB1 induces its autophosphorylation (48, 49). L. major infection induced a marked disappearance of cellular TAB1, whereas MKK3 and MKK6 levels remained constant (Fig. 9A). The diminished TAB1 levels correlated with the presence of GP63 on L. major and paralleled p130Cas degradation. Moreover, recombinant his-TAB1 is degraded by purified GP63 (Fig. 9B). These data identify TAB1 as a novel substrate of GP63.

To examine further the mode of TAB1 proteolysis, we exposed cells expressing different forms of TAB1 (WT or 1–418), flanked by FLAG (N terminus) and Myc (C terminus) epitopes, to L. major. Truncation of the C-terminal portion of TAB1 was previously found to generate a form of the protein (TAB1 1–418) that displays increased affinity for p38 and contains the residues essential for their interaction (49). Both versions of TAB1 were degraded in infected cells and produced the same N-terminal fragment (46 kDa) detected by antibodies against FLAG (Fig. 9C). The C-terminal cleavage products detected via the Myc tag were substantially less abundant and therefore appear only upon longer exposure (Fig. 9C, IB: myc). In addition, profile of these C-terminal fragments differed according to the version of TAB1 expressed (WT or 1–418) (Fig. 9C, IB: myc, bottom). In all cases, the efficient generation of cleavage products depended on the parasitic expression of GP63 (Fig. 9D). Thus, GP63-mediated TAB1 proteolysis generates a stable N-terminal fragment and other smaller C-terminal products, suggesting that GP63 cleaves TAB1 at multiple sites. Importantly, L. major infection impaired p38 binding to TAB1 (both WT and 1–418) (Fig. 9E). Specifically, none of the TAB1 cleavage products (FLAG- or Myc-tagged) generated during L. major infection were able to interact with GST-p38. Together, these results show that GP63 processes TAB1, which alters the formation of TAB1-p38 complexes and could thereby modulate p38 signaling.

DISCUSSION

Upon inoculation into a mammalian organism, Leishmania parasites must adapt to this foreign environment and take advantage of their immediate surrounding components and cells. During this process, molecules covering the parasite undoubtedly play a critical role as they are directly in contact with their extracellular milieu. Herein, we demonstrate that the modulation of multiple mammalian signaling molecules occurs early during infection by Leishmania. Importantly, GP63 appears to be a critical player in disrupting the state of several signaling proteins.

Even though macrophages are believed to be the primary target of Leishmania, this parasite is capable of colonizing other cell types (6, 66–69). Fibroblasts are abundant in the immediate environment where promastigotes are inoculated, can harbor parasites in animal models, and were proposed to play an important role for long term infection (6). Our data confirm that L. major is capable of infecting cultured fibroblasts isolated from mouse embryos. The accumulation of parasites within them gave rise to heavily infected spheroids similar to those typically observed in spleen biopsies from infected individuals (2). Interestingly, no nuclear condensation or caspase activation characteristic of apoptotic cells was detected in highly infected fibroblasts despite the intense stress undoubtedly induced by the presence of parasites. Correspondingly, Leishmania mediates a delay in programmed cell death induction in neutrophils and macrophages (70, 71). This implies that the parasite induces modifications in the cellular signaling machinery early during the infectious process to avoid activation of the apoptotic program. Besides the involvement of the mannose receptors in the attachment of Leishmania to fibroblasts and the implication of Cdc42 in parasitic internalization (13, 72), little else is known about the molecular events occurring within fibroblasts during Leishmania infection. Here we have shown that the interaction between Leishmania and fibroblasts induces several additional modifications of host signaling proteins.

Leishmania provoked important changes in the tyrosine phosphorylation level of several proteins (Fig. 2). The effect of inhibition of PTKs illustrates their requirement for the internalization of L. donovani by macrophages (73). On the other hand, the modulation of tyrosine phosphorylation content in macrophages infected with L. donovani was associated with the general activation of PTPs, including SHP-1 (15). Our results identify another PTP, PTP-PEST, that is proteolyzed in cells that encounter Leishmania. This post-translational modification of PTP-PEST could modulate its enzymatic properties, as the cleavage of PTP-PEST was shown to augment its catalytic
activity (51). Additionally, *Leishmania* induced GP63-dependent cleavage of TC-PTP likely near its C-terminal nuclear localization signal (supplemental Fig. 8). Removal of the nuclear localization signal could allow the phosphatase to access additional substrates and also enhance its catalytic activity (74–76). The altered tyrosine phosphorylation profile found in cells infected with *Leishmania* may also be due to the cleavage of highly phosphorylated proteins such as p130Cas. The phosphorylation of p130Cas fragments was likely maintained because they remained capable of binding Crk. Thus, the combined regulation of PTKs, PTPs, and protein stability is likely responsible for the dramatic changes in phosphoprotein levels in *Leishmania*-infected cells.

Proteolysis of cellular proteins, including p130Cas and PTP-PEST during the *Leishmania* infective process, could be a maneuver used by the parasite to take control of the cellular machinery. PTP-PEST and p130Cas cleavage occurred independently of growth conditions or the presence of various cellular protease inhibitors, which implies that the host cell proteolytic apparatus is not activated during *L. major* infection. In contrast, in *in vivo* and *in vitro* analysis, taking advantage of *L. major* strains positive or negative for *gp63* gene expression supports the identification of p130Cas and PTP-PEST as novel, genuine substrates of the parasite protease GP63. Additionally, the *in vitro* cleavage of PTP-PEST by recombinant GP63 indicates that it is directly responsible for this proteolytic event. Interestingly, cells exposed to *L. major*, *L. mexicana*, or *L. donovani* all exhibited p130Cas and PTP-PEST proteolysis, whereas those incubated with *L. braziliensis* or *L. tarentolae* did not. Genetic analysis based on *gp63* gene organization and sequences has grouped members of the *Viannia* subgenus (which includes *L. braziliensis*) in a separate cluster from other *Leishmania* species (77). Divergence in the composition of *L. braziliensis* *gp63* genes could limit their access to intracellular substrates or modify their specificity, thereby explaining the limited cleavage observed in our experiments. On the other hand, the lizard parasite *L. tarentolae* possesses a variant GP63 lacking enzymatic activity (78). Experiments using genetically modified strains of *L. major* led to the identification of additional substrates of GP63 as follows: cortactin, TC-PTP, caspase-3, and TAB1. Even though GP63 is targeting several substrates, we believe that this enzyme does not cause general protein degradation because the majority of signaling proteins tested were resistant to its presence. The specific contributions of each of these individual cleavage events to *Leishmania* pathology remain unresolved. Nonetheless, the GP63 substrates we have identified are implicated in multiple physiologic functions, including cytoskeletal rearrangement, cell proliferation, and apoptosis, pointing to several potential avenues by which the parasite may take advantage of its host.

The secretion and transfer of virulence factors into host cells is of paramount importance for the pathogenic processes of several microorganisms (79). Here we have provided evidence for the rapid cleavage of p130Cas and PTP-PEST upon initial contact between *L. major* and fibroblast cells, presumably before internalization of the parasite. The previously reported cleavage of the intracellular protein MRP (47) as well as the activity of GP63 found on amastigotes (39) are also indicative of an important role for GP63 inside mammalian cells. The capability of the parasite to induce protein degradation before it enters into its host cells implies a mechanism allowing the transfer of GP63 to the intracellular space of its host. Clinical isolates causing cutaneous (*Leishmania tropica*) or visceral (*Leishmania infantum*) leishmaniasis as well as *L. amazonensis*, *L. major*, *L. mexicana*, and *L. donovani* were observed to release proteolytically active GP63 in culture supernatants (36–38). Recent investigations performed with *Leishmania chagasi* indicated that incubation of stationary phase promastigotes under parameters reproducing the extracellular mammalian host environment (37 °C and Matrigel) stimulated the secretion of internal GP63 (35). Furthermore, in amastigotes, the majority of GP63 is localized in the flagellar pocket of the parasite, which is the principal site of exocytosis (44), indicating a role for the liberation of GP63 inside the host cell. During the course of our experiments, we noticed that throughout the initial contact between the protozoan and the fibroblasts, a large proportion of the microorganisms presented their flagellum (and flagellar pocket) toward the mammalian cells. This behavior could allow parasites to concentrate their secretion products, including GP63, in the direction of their targeted cell. Remarkably, incubation of fibroblasts with *L. major* culture supernatant and even parasite lysates led to the appearance of degradation products, which correlated with GP63 protein expression. These observations reveal that *L. major* secretes or contains all the components necessary for GP63 entry and that this phenomenon does not require parasitic integrity. Interestingly, a recent study on *L. donovani* reported the presence of microvesicles budding from the flagellar pocket and identified a set of 151 distinct proteins secreted by the parasite (80). We postulate that during the *Leishmania*/mammalian cell initial interaction, release of GP63 in close vicinity to the host cell surface, possibly with other secreted transport effectors, facilitates its entry into the cytosolic space, allowing it to reach additional substrates.

Reorganization of the actin cytoskeleton plays a central role in the internalization of many intracellular parasites. Interestingly, heat killing of *L. amazonensis* amastigotes, a process that also abrogates GP63 activity (45), prevent their internalization in CHO cells, supporting a unique property of live amastigotes to accomplish entry into cells (13). The small Rho-GTPase Cdc42 is also necessary for *Leishmania* entry into CHO cells (13). Cdc42 was previously shown to signal toward WASP and N-WASP to stimulate actin nucleation (81). During intracellular trafficking of *Leishmania*, WASP, vinculin, Arp2/3, and other cytoskeletal regulators gather with actin filaments around engulfed parasites to form an actin cup structure thought to protect the foreign parasite from phagolysosomal digestion (13, 14, 61). Cortactin, another actin regulator that interacts with Arp2/3 and N-WASP, is similarly recruited to actin-rich structures exploited by other intracellular microbes (9). The assembly of the PTP-PEST-PSTPIP-WASP complexes was previously shown to allow PTP-PEST to dephosphorylate WASP (19) and to inhibit WASP-induced actin polymerization (82). It was recently demonstrated that caspase-3-mediated cleavage of

6 M. Hallé, M. Olivier, and M. L. Tremblay, unpublished observations.
PTP-PEST dissociates its phosphatase domain from PSTPIP and was expected to prevent it from dephosphorylating and inhibiting WASP (51, 83). Importantly, we show that GP63 mediates the degradation of PTP-PEST during Leishmania infection, which could function to affect parasite-induced actin cytoskeleton remodeling. Moreover, we observed that p130Cas and cortactin were cleaved in cells exposed to parasites expressing GP63. MRp, another identified substrate of GP63, is associated with actin filaments in macrophages (47). GP63 was also shown to interact with fibronectin receptor (integrin) and to stimulate the internalization of Leishmania parasites (40). Thus, we propose that GP63 will act from both outside and inside the cell to alter the activity of host cell signaling molecules. This modulation may assist parasite engulfment through the formation of actin fibers and membrane protrusions. Future investigations will attempt to decipher the precise role of GP63 in modulating the dynamic remodeling of the cytoskeleton.

Some inconsistencies are present in the literature regarding the response of the p38 MAPK to Leishmania infection. Several reports suggest that the parasite either actively inhibits or avoids activating p38 (22, 23, 84), whereas others indicate that p38 is induced during infection (21, 85–87). Despite the discrepancy, most reports affirm that activation of p38 is detrimental to parasite survival. Here we report that activating phosphorylation of p38 is diminished following exposure of fibroblasts to L. major and correlates with the capability of GP63 to cleave intracellular substrates. Moreover, the ability to down-regulate p38 was specific to certain Leishmania species; L. major, L. mexicana, and L. donovani caused complete inactivation of p38, a task which L. tarentolae and L. brasilienensis failed to perform. These results underscore that Leishmania requires functional GP63 to achieve inactivation of p38. Importantly, this GP63-dependent cellular response was unique to p38. In contrast, the p44/42 and JNK MAPKs reacted similarly in response to infection, regardless of gp63 genotype. Leishmania did not entirely monopolize the host signaling machinery because infected cells maintained the ability to activate MAPKs (p44/42) and STAT-5 following growth hormone stimulation as well as MAPKs (p44/42) and AKT downstream of lysophosphatidic acid stimulation (data not shown). Interestingly, another pathogenic microorganism, Bacillus anthracis, also secretes a metalloproteinase termed lethal factor to inhibit MAPK signaling (88). In this case, lethal factor cleaves the MKKs, preventing efficient MAPK activation (88). Thus, we verified the integrity of p38 upstream regulators in cells submitted to L. major. Although we did not notice any effect on MKK3 nor MKK6, the adaptor molecule TAB1 was depleted upon infection. We then showed that TAB1 is cleaved in a GP63-dependent manner, generating fragments unable to interact with p38. As the p38/TAB1 interaction was previously shown to modulate p38 activity (49), we believe that alterations in the stability of this complex caused by GP63 could contribute to the decreased p38 phosphorylation occurring during Leishmania infection.

As the most abundant protein covering the surface of Leishmania (25, 26), GP63 undoubtedly plays fundamental roles in signals initiated upon contact with host cells. In the extracellular milieu within mammalian hosts, parasites are significantly protected from complement-mediated lysis by GP63 (27, 29, 89). Nevertheless, the vulnerability of GP63-deficient L. major to the effect of complement may not be solely responsible for their reduced infectivity in an animal model (28). Indeed, additional functions, including the promotion of host cell attachment and internalization, have been attributed to GP63 (40, 41). In addition, the GP63-mediated degradation of extracellular matrix components such as fibronectin facilitates parasite dissemination and inhibits the activation of the protective response of infected macrophages (34, 39). A limited number of intracellular functions have also been ascribed to GP63. For example, two intracellular substrates of GP63, MRp and NF-κB p65RelA, have been identified (47, 52). Also, expression and activity of GP63 are important to protect engulfed parasites during phagolysosomal transition (45, 46). Our results expand significantly the number of known targets of GP63 and emphasize its importance in the parasitic program that remolds intracellular signaling networks of host cells in its proximity.

The intrusion of virulence factors and the exploitation of cellular components are crucial strategies for host invasion by a wide array of pathogenic microorganisms. In this study, we have uncovered a series of intracellular effects of Leishmania in fibroblasts, a potentially important target cell of this parasite. Our results point to the importance of the metalloprotease GP63 in regulating several important signaling proteins, contributing to downstream changes in global protein tyrosine phosphorylation levels as well as a specific effect on p38 MAPK activation. In addition, proteins modulating apoptosis and the actin cytoskeleton are over-represented among the identified GP63 targets. Thus, our results suggest novel mechanisms by which GP63 could actively participate in the conditioning of host cells through the modulation of both signaling and structural regulators. If these changes are prerequisite for efficient infection by Leishmania, our results could contribute to the development of drugs that would impair host cell invasion by this virulent parasite.

Acknowledgments—We thank Dr. Greg Matlashewski, Dr. Laurent Lessard, and Karen Doody for critical reviews of the manuscript. We thank Jacynthe Laliberte for advice on confocal microscopy and Dr. Serge Hardy for help with apoptosis assays.

REFERENCES

3. Deleted in proof
Leishmania GP63 Targets Host Cell Signaling Components

649–676
The *Leishmania* Surface Protease GP63 Cleaves Multiple Intracellular Proteins and Actively Participates in p38 Mitogen-activated Protein Kinase Inactivation
Maxime Hallé, Maria Adelaida Gomez, Matthew Stuible, Hidehisa Shimizu, W. Robert McMaster, Martin Olivier and Michel L. Tremblay

doi: 10.1074/jbc.M805861200 originally published online December 8, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M805861200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/02/27/M805861200.DC1

This article cites 87 references, 41 of which can be accessed free at
http://www.jbc.org/content/284/11/6893.full.html#ref-list-1