Sequences at the Interface of the Fifth Immunoglobulin Domain and First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Are Critical for Its Polysialylation*\[5\]

Matthew G. Thompson, Deirdre A. Foley, Kristin G. Swartzentruber, and Karen J. Colley

From the Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607

Polysialic acid is an anti-adhesive glycan that modifies a select group of mammalian proteins. The primary substrate of the polysialyltransferases (polySTs) is the neural cell adhesion molecule (NCAM). Polysialic acid negatively regulates cell adhesion, is required for proper brain development, and is expressed in specific areas of the adult brain where it promotes on-going cell migration and synaptic plasticity. The first fibronectin type III repeat (FN1) of NCAM is required for polysialylation of the N-glycans on the adjacent immunoglobulin-like domain (Ig5), and acidic residues on the surface of FN1 play a role in polyST recognition. Recent work demonstrated that the FN1 domain from the unpolyssialylated olfactory cell adhesion molecule (OCAM) was able to partially replace NCAM FN1 (Foley, D. A., Swartzentruber, K. G., Thompson, M. G., Mendiratta, S. S., and Colley, K. J. (2010) J. Biol. Chem. 285, 35056–35067). Here we demonstrate that individually replacing three identical regions shared by NCAM and OCAM (285, 35056–35067). Here we demonstrate that individually replacing three identical regions shared by NCAM and OCAM

The neural cell adhesion molecule (NCAM)\[2\] is a member of the immunoglobulin superfamily of proteins (1). It engages in both heterophilic and homophilic interactions that allow cell-cell adhesion and signal transduction (for review, see Refs. 2 and 3). NCAM is also the primary substrate for the two polysialyltransferases (polySTs) ST8SiaIV/PST (PST) and ST8SiaII/STX (4–8). These two enzymes are capable of attaching long chains of α2,8-linked sialic acid residues to N-glycans in the fifth immunoglobulin-like domain (Ig5) of NCAM (9). These long chains of negatively charged sialic acid attenuate the interactions of NCAM and other cell surface adhesion molecules (10, 11, 16), and this is critical in developing embryos and neonates for proper neuronal cell migration and differentiation and brain development (for review, see Refs. 12 and 13).

Mice null for NCAM show mild defects such as a reduced olfactory bulb size, decreased mossy fiber fasciculation, and deficits in spatial learning (14). In contrast, mice lacking the two polySTs show severe defects in brain architecture, hydrocephaly, and most die within 4 weeks of birth (15). A triple knock-out of NCAM and the polySTs rescues the lethal phenotype, indicating that polysialic acid is needed to prevent early and inappropriate cell adhesion and differentiation (15). In mammals, polyST expression decreases soon after birth, and in the adult animal NCAM is mostly unpolysialylated except in a few specific areas of the brain that require on-going cell migration and synaptic plasticity, such as the hippocampus, hypothalamus, and olfactory bulb (13, 17–20). In addition, polysialic acid is aberrantly expressed in several pediatric and adult cancers, such as neuroblastoma, small and non-small cell lung carcinoma, and Wilms’ tumor (21–26). Polysialic acid re-expression in cancer cells has been suggested to increase tumor invasiveness and to promote tumor growth by down-regulating NCAM signaling that activates tumor suppression pathways (27).

Polysialic acid is expressed on a very small subset of mammalian proteins with NCAM being the major substrate for the polySTs. Polysialic acid is found on the O-glycans of dendritic cell neuropilin-2 (28) and the scavenger receptor, CD-36, in milk (29). It is also found on the N-glycans of the α subunit of the voltage-dependent sodium channel (30) and a small population of the synaptic cell adhesion molecule, SynCAM1, expressed in NG2 glia cells (31). In addition, the two polySTs are capable of autopolysialylation (32, 33). This limited number of polyST substrates as well as the observation that polysialic acid is added preferentially to glycans linked to NCAM as compared with free glycans (34, 35) led to the hypothesis that polysialylation is a protein-specific modification event requir-

* This work was supported, in whole or in part, by National Institutes of Health Grant RO1 GM063843 (to K. J. C.).

\[1\] The on-line version of this article (available at http://www.jbc.org) contains supplemental Table 1 and Fig. 1.

\[2\] To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 S. Ashland Ave., M/C 669, Chicago, IL 60607. Tel.: 312-996-7756; Fax: 312-413-0533; E-mail: karenc@uic.edu.

\[3\] The abbreviations used are: NCAM, neural cell adhesion molecule; polyST, polysialyltransferase; FN1, first fibronectin type III repeat of NCAM; FN2, second fibronectin type III repeat of NCAM; OCAM, olfactory cell adhesion molecule; TM, transmembrane region; tail, cytosolic tail; AP, acidic patch; N-O, NCAM-OCAM chimera; PST, ST8SiaIV/PST; QVQ, 516QVQ\[18\]; PSSP, 500PSSP503; GGVP, 526GGVP530; NGKG, 580NGKG583; PST-myc, soluble, myc-tagged PST; sNCAM7-V5, soluble, V5-tagged NCAM7.
glycan polysialylation of the truncated NCAM7 protein O-glycans led to a dramatic decrease in, or even eliminated, the polysialylation. Replacing the acidic patch residues with alanines, the polySTs are able to bind FN1 and polysialylate Ig5-FN1-transmembrane (TM)-cytoplasmic tail (tail) (NCAM4, Fig. 1) can be polysialylated, but proteins containing only Ig5-TM-tail or lacking the FN1 domain (∆FN1, Fig. 1) are not (38, 39). In addition, a truncated NCAM protein consisting of Ig5-FN1-TM-tail (NCAM7, Fig. 1) is weakly polysialylated on FN1 O-glycans. These results suggest that the minimal domains required for NCAM N-glycan polysialylation are Ig5-FN1 and suggest a model in which the recognition and binding of the FN1 domain by the polyST positions it to polysialylate N-glycans on Ig5, whereas in the absence of Ig5 the polySTs are able to bind FN1 and polysialylate O-glycans on FN1 (38–40). To investigate this model, a closer examination of NCAM FN1 was required. Fibronectin type III repeats are present in up to 2% of all human proteins (41), yet very few proteins are polysialylated, implying that NCAM FN1 is intrinsically unique, or in the context of NCAM, it allows for specific protein interaction with the polySTs. Molecular modeling and structural analysis of NCAM FN1 showed two novel features not seen in other fibronectin type III repeats, a surface acidic patch composed of Asp506, Asp520, Glu521, and Glu523 and an α-helix linking strands 4 and 5 of the FN1 β sandwich (39, 40). Two other unique FN1 sequences, 510PYS512 and 516QVQ518 (QVQ), were also identified (42). The role of all four sequences in NCAM polysialylation was analyzed by mutagenesis and the creation of chimeric proteins. Although the PQS sequence was shown to be required for the maintenance of a conformation of the FN1 domain that enhanced the biosynthesis of sialylated O-glycans and promoted O-glycan polysialylation, the acidic surface patch, α-helix, and PQS sequence were shown to play roles in polyST recognition and positioning (39, 40, 42).

We found that when either the FN1 α-helix or PQS sequence of NCAM was replaced with alanines, the polySTs continued to recognize the mutant proteins but added polysialic acid to O-glycans on FN1 rather than N-glycans on Ig5 (39, 42), suggesting that these sequences play a role in positioning the polySTs for N-glycan polysialylation. The importance of the FN1 acidic patch varies in N-glycan and O-glycan polysialylation. Replacing the acidic patch residues with alanine led to a dramatic decrease in, or even eliminated, the O-glycan polysialylation of the truncated NCAM7 protein (FN1-FN2-TM-tail) (Ref. 42; see also Figs. 1 and 4C). In contrast, replacing these residues with alanine only slightly decreased NCAM N-glycan polysialylation in WT NCAM (Ref. 39; see Fig. 4B). However, replacing these residues with arginine dramatically decreased NCAM N-glycan polysialylation and suggested that additional FN1 residues are likely to function together with the acidic patch to allow the polySTs to modify Ig5 N-glycans (Ref. 39; see Fig. 4B).

In the course of investigating the requirements for NCAM polysialylation, we found that the FN1 domain from the unpolysialylated olfactory cell adhesion molecule, OCAM, could partially replace the FN1 domain of NCAM to allow N-glycan polysialylation (42). This result led us to consider the possibility that sequences common to NCAM and OCAM FN1 domains are critical for polyST recognition and polysialylation.

In this study we evaluate three identical regions shared by NCAM and OCAM FN1 domains and their role in NCAM polysialylation and polyST binding. General requirements for polyST-NCAM binding are also investigated. Our results show that all three regions are critical for NCAM polysialylation and suggest that two sequences which form loops flanking the Ig5-FN1 linker function to stabilize this region, whereas the third sequence, which is adjacent to the Ig5-FN1 junction, may play a dual role maintaining both the Ig5-FN1 interface and a polyST binding surface.

EXPERIMENTAL PROCEDURES

Tissue culture reagents, oligonucleotides, restriction enzymes, PCR supermix, and anti-V5 epitope tag antibody were purchased from Invitrogen. Anti-myc epitope tag antibody was purchased from Abcam. The cDNA for human NCAM140 was a gift from Dr. Nancy Kedersha (Brigham and Women’s Hospital, Boston, MA). The cDNA for human ST8Sia IV/PST was obtained from Dr. Minoru Fukuda (Sandford Burnham Medical Research Institute, La Jolla, CA). The QuikChange™ site-directed mutagenesis kit and Pfu DNA polymerase were purchased from Stratagene. DNA purification kits were purchased from Qiagen. Protein A-Sepharose was purchased from GE Healthcare. Peptide N-glycosidase F and T4 DNA ligase were obtained from New England Biolabs. Precision Plus Protein™ Standard was purchased from Bio-Rad. Nitrocellulose membranes were purchased from Schleicher & Schuell. Horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained from Jackson ImmunoResearch. Supersignal West Pico chemiluminescence reagent was obtained from Pierce. Other chemicals and reagents were purchased from Sigma and Fisher.

Mutagenesis of NCAM and NCAM7—NCAM and NCAM7 mutants were constructed using the Stratagene QuikChange™ site-directed mutagenesis kit. DNA sequencing performed by the DNA Sequencing Facility of the Research Resources Center at the University of Illinois at Chicago confirmed the mutations. All primers used are listed in [supplemental Table 1](http://www.jbc.org/).
was amplified from a previously generated soluble NCAM-V5 construct (38) using primers A and B in supplemental Table 1. This DNA was digested with HindIII and EcoRV and ligated into pcDNA3.1/Myc-HisB vector with a stop codon inserted before the His6 tag to generate an expression vector including the signal peptide at the amino terminus and myc tag at the carboxyl terminus but no His6 tag. The coding sequences for the ST8Sial/PST tail and TM were excised from the wild type ST8Sial/PST using primers C and D in supplemental Table 1. This fragment was digested with EcoRV and Xba1 and ligated into the modified signal peptide/myc tag vector.

Transfection of Cos-1 Cells with NCAM and PST cDNAs—Cos-1 cells maintained in Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS) were plated on 100-mm tissue culture plates and grown at 37 °C, 5% CO2 until 50–70% confluent. Cells were transfected using 30 μl of Lipofectin in 3 ml of Opti-MEM and 10 μg each of V5-tagged NCAM or NCAM mutant and PST-myc cDNA according to the manufacturer’s protocol. The NCAM cDNAs were cloned upstream of the V5 epitope tag in the pcDNA3.1 V5/HisB vector. PST cDNA was cloned upstream of the myc tag in the pcDNA3.1 Myc/HisB vector. A stop codon was inserted before the His6 coding sequence in the pcDNA3.1 Myc/HisB vector. Cells were incubated with transfection mixture for 6 h, and then 7 ml of DMEM, 10% FBS was added to bring the media containing 5%

Immunoprecipitation of NCAM Proteins—Sixteen hours post-transfection, cells were washed with 10 ml of phosphate-buffered saline (PBS) and lysed in 1 ml of immunoprecipitation buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 0.1% SDS). Lysates were pre-cleared with 50 μl of protein-A-Sepharose beads (50% suspension in PBS) for 1 h at 4 °C. NCAM proteins were immunoprecipitated with 3 μl of anti-V5 epitope tag antibody for 2 h at 4 °C followed by incubation for 1 h with 50 μl of protein-A-Sepharose beads (50% suspension in PBS). Beads were washed four times with immunoprecipitation buffer and once with immunoprecipitation buffer containing 1% SDS. Samples were then resuspended with 50 μl of Laemmli sample buffer containing 5% β-mercaptoethanol, heated at 65 °C for 10 min, and separated on a 3% stacking, 5% resolving SDS-polyacrylamide gel. To evaluate relative NCAM protein expression levels, an aliquot of cell lysate was removed before immunoprecipitation, and an equal volume of Laemmli sample buffer, 5% β-mercaptoethanol was added. Samples were heated at 100 °C for 10 min, separated by SDS-polyacrylamide gel electrophoresis, as described above, and subjected to immunoblotting as described below. To quantify changes in polyST-NCAM mutants we used NIH ImageJ software and compared the ratio of precipitated to load control for the mutants versus wild type NCAM (set to 100%). In the event that nonspecific binding was detected, this was subtracted from the final value (relative co-precipitation).

Co-immunoprecipitation of Soluble NCAM7 with Soluble PST—A soluble form of NCAM7-V5 (sNCAM7-V5) lacking the tail and TM regions was constructed previously (38). The construction of sPST-myc is described above. Lec2 CHO cells maintained in F-12 medium supplemented with 10% FBS were co-transfected with 10 μg of sNCAM-V5 CDNA and 10 μg of sPST-myc or the empty pcDNA3.1 Myc/HisB vector. After a 6-h incubation, the precipitation media were removed, and the cells were allowed to grow overnight. The next day, cell media were collected, and debris was removed by centrifugation. PST-myc was immunoprecipitated from the cell media using 5 μl of anti-myc tag antibody. Samples were rotated at 4 °C for 2 h followed by rotation for 1.5 h with 75 μl of protein A-Sepharose beads (50% suspension in PBS). The samples were processed for and subjected to SDS-polyacrylamide gel electrophoresis as described above and then subjected to immunoblotting as described below. Glycosidase Treatment of NCAM Proteins—To evaluate the type of glycans (N-linked or O-linked) that are polysialylated on the various NCAM proteins, COS-1 cell transfections were performed in duplicate, and after immunoprecipitation and washing, identical samples were resuspended in 77 μl of H2O, 10 μl of Nonidet P-40, 10 μl of G7 buffer (0.5 μM sodium phosphate, pH 7.5) with or without 3 μl of N-glycosidase F (500 units/μl) and incubated with rotation at 37 °C overnight. Fifty microliters of Laemmli sample buffer containing 5% β-mercaptoethanol was added to each sample, which was heated at 65 °C for 10 min. Proteins were separated on a 3% stacking, 5% resolving SDS-polyacrylamide gel followed by immunoblotting with the OL.28 anti-polysialic acid antibody as described below.
Immunoblot Analysis of NCAM Proteins—After SDS-PAGE, proteins were transferred to a nitrocellulose membrane at 500 mA overnight. Membranes were blocked for 1 h at room temperature in blocking buffer (5% nonfat dry milk in Tris-buffered saline, pH 8.0, 0.1% Tween 20). To detect polySialic acid, membranes were incubated overnight with a 1:100 dilution of the OL.28 anti-polysialic acid antibody (43) in 2% nonfat dry milk in Tris-buffered saline, pH 8.0, and for 1 h with HRP-conjugated goat anti-mouse IgM, diluted 1:4000 in blocking buffer. To test for NCAM protein co-immunoprecipitation with PST-myc or relative NCAM protein levels, nitrocellulose membranes were incubated for 2 h overnight with a 1:5000 dilution of anti-V5 epitope tag antibody (Invitrogen) diluted in blocking buffer and for 1 h with HRP-conjugated goat anti-mouse IgG diluted 1:4000 in blocking buffer. Membranes were washed 2 times with Tris-buffered saline, pH 8.0, 0.1% Tween 20 for 15 min before and 4 times after secondary antibody incubation. Immunoblots were developed using the SuperSignal West Pico chemiluminescence kit and BioExpress Blue Ultra Autorad film.

RESULTS

OCAM FN1 Can Replace NCAM FN1 to Allow Ig5 N-Glycan Polysialylation—Prior work has shown the importance of NCAM FN1 for the polysialylation of the N-glycans found on the adjacent Ig5 domain (38–40, 42). To identify additional polyST recognition sequences, we sought to reconstitute polysialylation in an unpolysialylated NCAM chimera that contained a FN1 domain from a related but unpolysialylated protein. OCAM has the same domain structure as NCAM, and their Ig5 and FN1 domains share 47 and 37% identity, respectively (Fig. 1) (44). Despite having Ig5 N-glycans in the same locations as those in NCAM that are polysialylated and being expressed in a similar spatiotemporal manner as NCAM, OCAM is not polysialylated (44). We expected that an NCAM-OCAM (N-O) chimera possessing the OCAM FN1 domain would not be polysialylated. It was, therefore, surprising when the OCAM FN1 domain allowed polysialylation of the Ig5 N-glycans in the N-O chimera (Ref. 42 and Fig. 2). This unexpected result led us to ask whether sequences common to both NCAM and OCAM FN1 domains play a role in polyST recognition.

Sequences Common to NCAM and OCAM FN1 Are Required for NCAM Polysialylation—Inspection of the NCAM and OCAM FN1 sequences revealed three common regions of 4–5 amino acids: 500PSSP503 (PSSP), 526GGVPI530 (GGVPI), and 580NGKG583 (NGKG) (Fig. 1). Interestingly, when these common sequences are mapped onto the structure of NCAM Ig5-FN1 (PDB ID 3MTR (45)) as shown in Fig. 3A, we find that all were located at or near the Ig-FN1 interface. GGVPI and NGKG comprise the two loops connecting strands 2 and 3 and strands 6 and 7 of the FN1/β-helix, respectively. These loops flank the Ig5-FN1 linker region (Fig. 3A, GGVPI...
in green and NGKG in purple). PSSP is two amino acids away from the Ig5-FN1 junction (Fig. 3A, PSSP in red). We also noticed that the PSSP sequence lies next to the core residues of the acidic patch (Asp520, Glu521, and Glu523) (Fig. 3A, compare the location of acidic patch in orange and PSSP in red).

To evaluate the role of these three common regions in NCAM polysialylation, we replaced each sequence and co-expressed the mutant NCAM proteins with PST in COS-1 cells (Fig. 4A). Polysialylation was analyzed by immunoprecipitating the NCAM proteins and subjecting them to immunoblotting with the OL.28 anti-polysialic acid antibody. We found that replacing the amino acids in these three sequences with either alanines (Fig. 4A) or glycines (not shown) eliminated NCAM polysialylation. Replacing a fourth region of homology, 532KYK534, located on the opposite face of the FN1/H9252 sandwich and at a greater distance from the Ig5-FN1 interface, led to little decrease in NCAM polysialylation.

The outcome of replacing these common sequences was similar to that observed when we replaced the acidic patch residues with arginine but contrasted with the maintenance of polysialylation when the acidic patch (AP-AAA), /H9251-H9252-helix (H9004-helix-AAA), and QVQ (QVQ-AAA) sequences were replaced with alanines (Fig. 4B).

One possibility is that the PSSP, GGVPI, and NGKG mutant proteins are misfolded and retained in the endoplasmic reticulum by the quality control system of the cell (46). To test this, we localized these mutant proteins using immunofluorescence microscopy and found that each mutant protein trafficked from the endoplasmic reticulum through the Golgi.
and to the cell surface like wild type NCAM (supplemental Fig. 1). Taken together, these results suggest that the PSSP, GGVPI, and NGKG sequences in the FN1 domain are critical for NCAM polysialylation.

The GGVPI and NGKG Sequences Do Not Play Roles in NCAM7 O-Glycan Polysialylation—We previously found that inserting three amino acids (ALD, GGG, or AAA) at the Ig5-FN1 junction eliminated Ig5 N-glycan polysialylation of both full-length NCAM and the N-O chimera (42). These results suggested that the Ig5-FN1 relationship is critical for Ig5 N-glycan polysialylation and led us to consider the possibility that replacing PSSP, GGVPI, and NGKG may destabilize the Ig5-FN1 interface and alter the Ig5-FN1 interdomain relationship. Alternatively, or in addition, any or all of these three sequences may form part of a polyST recognition region.

We reasoned that if PSSP, GGVPI, and NGKG were important for maintaining the Ig5-FN1 relationship, then replacing these sequences in the truncated NCAM7 protein (FN1-FN2-TM-tail) that lacks the Ig5 domain and is polysialylated on FN1 O-glycans (38) would not impact its polysialylation. Conversely, if they formed part of a polyST recognition site, their replacement may reduce or eliminate NCAM7 polysialylation. We found that replacing GGVPI or NGKG with alanine residues did not reduce NCAM7 polysialylation, whereas replacing PSSP with alanine residues decreased but did not eliminate NCAM7 polysialylation (Fig. 4C). Quantifying the differences in the polysialylation of NCAM7 and its mutants in this experiment, we found that the PSSP mutant was polysialylated to 57% that of the level of NCAM7, whereas the GGVPI and NGKG mutants were polysialylated to 102 and 122% that of the level of NCAM7. These results contrasted with the complete elimination of NCAM7 polysialylation when the acidic patch was replaced with alanine residues (Fig. 4C, AP-AAA). Additional experiments suggested that a single O-glycan attached to a serine residue at the very N terminus of NCAM7 possesses the bulk of the polysialic acid on this protein.3 With this in mind, replacing NGKG with alanines may have made this glycan more accessible to the polySTs and enhanced polysialylation. More importantly, the observation that replacing PSSP eliminated NCAM N-glycan polysialylation, although only reducing NCAM7 O-glycan polysialylation, suggests that this sequence may play a dual role in NCAM polysialylation. PSSP may not only function to maintain the structure of the Ig5-FN1 linker region in full-length NCAM but also may be important for the integrity of the polyST recognition surface and polyST binding.

The FN1 Domain Is Essential for PolyST-NCAM Binding—To test the hypothesis that the PSSP sequence plays a role in polyST binding, we first had to establish that the polySTs bind to NCAM and that the FN1 domain is essential for this binding. To do this we took a co-immunoprecipitation approach and analyzed the binding of PST to NCAM and truncated NCAM proteins that had previously been shown to be polysialylated (38). NCAM proteins tagged with a V5 epitope tag were co-expressed with PST-myc. To avoid the possibility that polysialic acid on NCAM would decrease this interaction, we co-expressed these proteins in Lec2 CHO cells. These cells lack a functional CMP-sialic acid transporter and are incapable of sialylating glycopolypeptides and glycolipids (47). PST was immunoprecipitated using an anti-myc antibody, and co-precipitating NCAM proteins were detected by immunoblotting with an anti-V5 epitope tag antibody as described under “Experimental Procedures” (Fig. 5, top panels). The relative expression levels of NCAM proteins were determined by immunoblotting one-tenth of the total cell lysate with the anti-V5

3 M. Thompson, unpublished data.
antibody (Fig. 5, bottom panels). We found that full-length NCAM, NCAM3 (Ig5-FN1-FN2-TM-tail), and NCAM4 (Ig5-FN1-TM-tail) were all specifically co-immunoprecipitated with PST-myc (Fig. 1 and Fig. 5, left panels, +PST-myc) with little or none of these proteins non-specifically precipitated from cell lysates when PST-myc was not present (Fig. 5, left panels, −PST-myc).

To determine whether Ig5 or the TM region is involved in this interaction, we tested the ability of sNCAM7 consisting of only FN1-FN2 to bind to a sPST-myc lacking the TM and tail sequences. Both of these proteins are expressed with the canine pancreatic pre-pro-insulin signal peptide for entry into the secretory pathway and are secreted into the cell media (38). sPST-myc and sNCAM7-V5 were co-expressed in Lec2 CHO cells, and sPST-myc was immunoprecipitated from the cell media (Fig. 5, right panels). We found that sNCAM7 specifically co-immunoprecipitated with sPST-myc (Fig. 5, right panels, +sPST-myc), and we saw little nonspecific precipitation in the absence of sPST-myc (Fig. 5, right panels, −sPST-myc). These results demonstrated that neither the Ig5 domain nor membrane association is required for polyST-NCAM interaction. Finally, to determine whether the FN1 domain is necessary for polyST binding, we tested PST-myc binding to the ΔFN1 protein, which lacks the FN1 domain and is not polysialylated (Fig. 1) (39). We found that the ΔFN1 protein was unable to bind to PST-myc (Fig. 6). This result correlated well with the inability of the polySTs to recognize and polysialylate the ΔFN1 protein (39) and demonstrated the importance of the FN1 domain for polyST binding.

Replacing PSSP and the Acidic Patch Decrease PolyST-NCAM Binding—To determine whether the FN1 acidic patch, α-helix, or the three sequences common to NCAM and OCAM FN1 identified in this work play a role in polyST-NCAM interaction, we evaluated the impact of replacing these sequences on polyST-NCAM binding. Mutation of acidic patch residues to either alanine or arginine in full-length NCAM led to a decrease in polyST binding to 61–64% of the level of wild type NCAM (Fig. 7, top panels, AP-AAA and AP-RRR). Notably, although this did correlate with the small decrease in polysialylation seen for the AP-AAA mutant, it did not correspond to the large decrease in polysialylation seen for the AP-RRR mutant (Fig. 4B). These results suggest that the acidic patch plays a role in polyST-NCAM binding and that replacing these residues with arginine may affect more than the enzyme-substrate interaction. In contrast, replacing the α-helix with two alanine residues led to a surprising increase in polyST-NCAM binding that could be partially explained by a smaller increase in nonspecific binding (Fig. 7, top panels, Δhelix-AAAA). We currently do not understand why this increased binding is observed in the absence of the FN1 α-helix.

We performed a similar polyST-NCAM binding analysis on the three sequences common to NCAM and OCAM FN1. Replacing GGVP1 and NGKG with alanine residues did not substantially alter the ability of NCAM to bind PST (Fig. 7, bottom panels, GGVP1-AAAAA, NGKG-AAAAA). In contrast, a substantial decrease in binding was seen for the PSSP-AAAA mutant, which bound to PST at only 41% that of the level observed for wild type NCAM (Fig. 7, bottom panels, PSSP-AAAA). These results reaffirm the notion that NGKG and GGVP1 may be involved in maintaining the Ig5-FN1 relationship, possibly by stabilizing the linker between the two domains, whereas the presence of PSSP may also be required for optimal polyST recognition and binding.

Pro100 and Pro502 in the PSSP Sequence Are Critical for NCAM Polysialylation—Inspection of the three-dimensional structure of the Ig5-FN1 tandem predicts that the PSSP sequence is part of a unique surface formed by three adjacent strands (Fig. 3A). The presence of the two proline residues may be critical to maintain the structure of not only this surface but also the spacing between the Ig5-FN1 domains. Alternatively, the side chains of the intervening serine residues and, in particular Ser502, may form hydrogen bonds that stabi-
lylation (Fig. 8). These results indicate that Pro500 and Pro503 PSSP-PGGP mutant showed little decrease in NCAM polysialylation, whereas a mutant that lacks the Ig5 domain (Fig. 4). The decrease in NCAM7 polysialylation observed when the PSSP sequences were replaced suggested these may play a role in polyST recognition. Additional analysis of polyST-NCAM binding demonstrated a requirement for the FN1 domain (Figs. 5 and 6) and showed that replacing the FN1 acidic patch residues or the PSSP sequence led to decrease in polyST-NCAM interaction (Fig. 7).

Taken together these results suggest that the GGVPI and NGKG sequences are likely to stabilize the Ig5-FN1 linker, whereas the PSSP sequence may play two roles in maintaining both the structure of the Ig5-FN1 linker region and a polyST recognition site.

How could replacing the GGVPI and NGKG sequences alter the Ig5-FN1 linker and destabilize the Ig5-FN1 relationship? We used the NCAM Ig5-FN1 crystal structure (PDB ID 3MTR (45)) to search for bonding patterns that might explain the importance of the GGVPI and NGKG loops in stabilizing the Ig5-FN1 linker region and/or Ig5-FN1 relationship. The structure predicts that GGVPI is an unstructured loop containing the acidic patch residues, whereas NGKG is a classic β turn. Two hydrogen bonds are predicted to stabilize the NGKG β turn. These include a hydrogen bond between the side-chain carboxyl group of Asn[580] and the main chain amide of Lys[582] and a hydrogen bond between the main chain amide group of Asn[580] and the main chain carbonyl of G1y[583] (Fig. 3D). Hydrogen bonds between residues in the GGVPI and NGKG loops and Ig5-FN1 linker region reside Asp[498] are predicted by the structure and may stabilize the loop-linker relationship and, in turn, the Ig5-FN1 relationship. These include a hydrogen bond between the main chain carboxyl of Asp[498] and the side chain amide group of Asp[580] (Fig. 3B) and a hydrogen bond between the main chain carboxyl of Gly[526] in GGVPI and the main chain amide of Asp[498] (Fig. 3C). Finally, a hydrogen bond may form between the amine group in the indole ring of Trp[417] in Ig5 and the main chain carboxyl of Gly[581] in the NGKG turn that may further stabilize and orient Ig5 and FN1 (Fig. 3D).

For the hydrogen bonds formed by solely main chain substituents, the side chains of the participating loop amino acids would not immediately appear to be critical. However, it is important to note that for both the GGVPI and NGKG loops, a substantial decrease in NCAM polysialylation was only observed when all residues in these loops were converted to alanine or glycine. Replacing single amino acids (for example, Val or Pro or Ile in GGVPI) showed little or only partial de-
increases in polysialylation. This suggests that the integrity of the loop structures is critical for their stabilizing effects. Converting all loop residues to alanine or glycine may have altered the spacing between the loops and Ig5-FN1 linker region, and this would be expected to prevent hydrogen bonds between both main chain and side chain substituents. Alternatively, replacing the GGVPI sequences that are found on the same unstructured strand as the acidic patch residues could have altered the presentation of the acidic patch, thereby decreasing polysialylation. However, the fact that we see a decrease in polyST-NCAM binding for the acidic patch mutants but no alteration in polyST-NCAM binding for the GGVPI-AAAAA mutant argues against this possibility.

The effects of replacing the PSSP sequence on NCAM polysialylation are exclusively linked to Pro⁵⁰⁰ and Pro⁵⁰³ (Fig. 8). Although glycines and alanines make a region more flexible, proline residues reduce the allowed torsional angles and make a region more rigid. The negative effects observed on NCAM polysialylation when the PSSP sequence is replaced by an AAAA, GGGG, or GSSG stretch coupled with the proximity of this sequence to the Ig5-FN1 junction (⁴⁶¹Q(A/D)TPSSP⁴⁶⁵) suggest that these changes may have made the Ig5-FN1 junction more flexible and that this is detrimental to the polysialylation of Ig5 N-glycans. Strikingly, this elimination of N-glycan polysialylation is similar to what we observed when three amino acids were inserted at the Ig5-FN1 junction (42). Together, these results lead us to question the rigidity or flexibility of the Ig5-FN1 linker and interdomain relationship.

Previous rotary shadowing cryoelectron microscopy of the NCAM extracellular domain suggested that there is a flexible hinge between domains in the vicinity of the polysialic acid attachment sites (48, 49). Work and models by various groups supported the idea that this flexible hinge might be found either between Ig4 and Ig5 (50) or Ig5 and FN1 (37, 49). However, recent crystal structures of the NCAM FN1-FN2 tandem suggest that the flexible hinge may exist between these two domains (36). Our own crystal structure of the NCAM Ig5-FN1 tandem exhibited an extended relationship between these two domains, but other analyses suggested that there may be flexibility in the interdomain relationship (45).

Examination of the Ig5-FN1 structure demonstrates that the acidic patch and N-terminus sequences of the FN1 domain are not aligned precisely with the two Ig5 glycosylation sites (Asn⁴⁴⁹ (Asn⁵) and Asn⁴⁷⁸ (Asn⁶)) that carry polysialic acid (Ref. 45 and Fig. 8). Subsequent analysis of the ability of N-glycans on novel engineered glycosylation sites to be acceptors for polysialic acid demonstrated that glycans further away from the FN1 domain or closer to the unpolysialylated Asn⁴²³ (Asn⁵) glycosylation site found on the opposite side of the Ig5 domain could be polysialylated (45). These results suggested some flexibility in the polysialylation process that could be accounted for by either a flexible Ig5-FN1 relationship or the ability of the polySTs to bind the FN1 domain in different ways to allow them to position themselves for the polysialylation of glycans located at different sites on the Ig5 domain.

Our data in this work suggesting that sequences at or near the Ig5-FN1 junction and interface are critical for NCAM Ig5 N-glycan polysialylation strongly indicate that the Ig5-FN1 relationship is relatively rigid. This again leaves us with the task of further defining the polyST recognition site or sites on the NCAM FN1 domain required for interacting with the polySTs. The impact of replacing the PSSP sequences on polyST-NCAM binding suggest that additional sequences may be on the face of the FN1 domain containing the acidic patch and PSSP sequences. In sum, these results indicate a model of NCAM polysialylation that involves two important factors; they are the ability of the polyST to recognize and bind NCAM FN1 and the correct relative orientation of NCAM Ig5 and FN1 domains to allow for N-linked polysialylation of Ig5 glycans.

Acknowledgments—We thank Jonathan Cruz and Emma Wiggins for technical assistance with the NGKG and GGVPI mutants and with sPST-myc, respectively.

REFERENCES

⁴ J. Cruz and M. Thompson, unpublished.
Ig5-FN1 Interdomain Sequences in NCAM Polysialylation

Sequences at the Interface of the Fifth Immunoglobulin Domain and First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Are Critical for Its Polysialylation
Matthew G. Thompson, Deirdre A. Foley, Kristin G. Swartzentruber and Karen J. Colley

doi: 10.1074/jbc.M110.200386 originally published online December 3, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M110.200386

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/12/03/M110.200386.DC1

This article cites 50 references, 30 of which can be accessed free at
http://www.jbc.org/content/286/6/4525.full.html#ref-list-1