Calcium, Bioenergetics, and Neuronal Vulnerability in Parkinson’s Disease*

D. James Surmeier1,2 and Paul T. Schumacker3

From the Departments of 1Physiology and 2Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611

The most distinguishing feature of neurons is their capacity for regenerative electrical activity. This activity imposes a significant mitochondrial burden, especially in neurons that are autonomously active, have broad action potentials, and exhibit prominent Ca2+ entry. Many of the genetic mutations and toxins associated with Parkinson’s disease compromise mitochondrial function, providing a mechanistic explanation for the pattern of neuronal pathology in this disease. Because much of the neuronal mitochondrial burden can be traced to L-type voltage-dependent channels (channels for which there are brain-penetrant antagonists approved for human use), a neuroprotective strategy to reduce this burden is available.

Neurons, Electrical Excitability, and Bioenergetics

Parkinson’s disease (PD) is a disease of neurons, but not all neurons are affected by the disease. The pathological hallmarks of PD are 1) the presence of proteinaceous intracellular depo- sitions called Lewy bodies (LBs) or Lewy neurites (LNs) and 2) frank neuronal loss (1). In general, these two signs of the disease are correlated, although not perfectly. If LB/LN deposition is present, 1% of the neurons in the brain appear to be affected at mid-stages of the disease, so although PD is a disease of neurons, only a subset of neurons are at risk.

What then are the phenotypic features of neurons at risk? A cardinal feature of neurons is their electrical excitability. Neurons use a steep electrochemical gradient across their plasma membrane to integrate incoming chemical signals from other neurons and to pass the outcome of this computation on to other neurons. Excitability and synaptic transmission between neurons depend upon the maintenance of electrochemical gradients for Na+, K+, Ca2+, and Cl− across the plasma membrane. A major challenge to these gradients is the action potential or spike depends upon the opening of voltage-dependent channels that are selectively permeable to Na+ ions, allowing positively charged Na+ ions to move from the extracellular space into the cytosol. This redistribution of charge pushes the transmembrane potential from relatively negative membrane potentials to near 0 mV. This depolarization causes voltage-dependent channels that are selectively permeable to K+ ions to open, resulting in the movement of positively charged K+ ions in the opposite direction: from the cytosol to the extracellular space, re-establishing the potential gradient. This sequence of events requires that the concentration of Na+ ions be low in the cytosol, but the concentration of K+ ions needs to be high.

Another cation that crosses the plasma membrane during spikes is the Ca2+ ion. In most neurons, voltage-dependent Ca2+ channels are opened only by strong depolarization during the action potential. With repolarization of the membrane, these channels close slowly, creating a period during which the driving force for influx of Ca2+ is large and the conductance remains high. This makes the total Ca2+ influx during a spike very sensitive to spike duration. Neurons that need to spike at high frequencies typically restrict Ca2+ entry by keeping spikes very brief (<1 ms). Also, neurons often express fixed Ca2+-buffering proteins (2), like parvalbumin, in addition to Ca2+-signaling proteins (3) to help manage Ca2+.

Exchangers and pumps are responsible for maintaining the electrochemical gradients for Na+, K+, Ca2+, and Cl−. These transmembrane proteins fall into two broad categories. The first comprises pumps that rely upon ATP to drive the movement of ions. Pumps that fall into this category include the Na+/K+-ATPase, the plasma membrane Ca2+-ATPase, and the smooth endoplasmic reticulum Ca2+-ATPase. The proteins in the second category utilize the energy stored in an existing electrochemical gradient to move ions. A good example of this type of protein is the Na+/Ca2+ exchanger, which, under physiological conditions, uses the Na+ gradient to move Ca2+ ions out of the cytosol. Together, this combination of pumps and exchangers maintains the transmembrane ionic gradient for cations. Ca2+ that is not pumped back out of the neuron rapidly is sequestered in intracellular organelles, including lysosomes (4, 5) and the endoplasmic reticulum (6). High affinity ATP-dependent transporters move Ca2+ from the cytoplasm into these organelles.

Although the molecular events coupling ion movement to ATP hydrolysis are still not fully understood, the thermodynamics of ion movement are worth considering because they establish lower limits on the cost of pumping. For Na+ and K+ ions, the concentration differences maintained across the plasma membrane are similar, being 10–30-fold. In contrast, the concentration difference for the Ca2+ concentration is ~20,000-fold, being 2 mM in the extracellular space and ~100 nM in the intracellular space. Because the free energy change needed to move an ion from one compartment to another depends upon the logarithm of the concentration ratio between the two compartments, Ca2+ should be ~8 times more ener-
The At-risk Neuronal Phenotype

Although all neurons maintain steep electrochemical gradients across their plasma membrane and spike, not all neurons show signs of pathology in PD. As a consequence, vulnerability in PD must depend upon some constellation of features that define the specific neuronal phenotype, i.e. something more specific than just being a neuron. One way to determine that at-risk neuronal phenotype is to characterize neurons affected by the disease in terms of common features. The neurons with the best documented vulnerability are dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNc). The cardinal motor symptoms of PD, including bradykinesia, rigidity, and resting tremor, are clearly linked to the degeneration and death of these neurons (7). There are only a few tens of thousands of these neurons out of the billions in the brain.

Why do these neurons exhibit LB/LN pathology and die? One possibility is that, in the protective milieu of the brain, these neurons are uniquely prone to oxidative stress. Nevertheless, their vulnerability is considerably greater than that seen in other parts of the body (21). The oxidative stress is likely to be exacerbated by the massive metabolic demands of these neurons because they have large plasticity and high activity levels. We speculate that the oxidation of cytosolic DA (and its metabolites) leads to the production of cytotoxic free radicals (22). However, there are reasons to doubt whether this type of cellular stress alone is responsible for PD pathology. For example, there is considerable regional variability in the vulnerability of DA neurons in PD, with some DA neurons in the brain being devoid of pathology (19, 21–24). Moreover, many of the neurons showing signs of pathology in PD do not use DA as a transmitter (e.g. cholinergic neurons in the dorsal motor nucleus of the vagus (DMV)). Finally, L-3,4-dihydroxyphenylalanine administration (which relieves symptoms by elevating DA levels in PD patients) does not accelerate disease progression (25), suggesting that DA itself is not a significant source of reactive oxidative stress, at least in the short term.

A second possibility is that oxidation of cytosolic DA (and its metabolites) leads to the production of cytotoxic free radicals (20). However, there are reasons to doubt whether this type of cellular stress alone is responsible for PD pathology. For example, there is considerable regional variability in the vulnerability of DA neurons in PD, with some DA neurons in the brain being devoid of pathology (19, 21–24). Moreover, many of the neurons showing signs of pathology in PD do not use DA as a transmitter (e.g. cholinergic neurons in the dorsal motor nucleus of the vagus (DMV)). Finally, L-3,4-dihydroxyphenylalanine administration (which relieves symptoms by elevating DA levels in PD patients) does not accelerate disease progression (25), suggesting that DA itself is not a significant source of reactive oxidative stress, at least in the short term.
total yield of ATP increases to 36 mol/mol of glucose. The dependence of a cell on mitochondrial oxidative phosphorylation can be evaluated with genetic models. For example, deletion of TFAM (transcription factor A mitochondrial) abolishes mitochondrial gene transcription, undermines the stability of mtDNA, and leads to a progressive decline in mitochondrial ATP production even though the mitochondrial mass may be increased. Deletion of TFAM in SNc DA neurons leads to respiratory chain deficiency, cell loss, and impaired motor function (45). This observation is consistent with an abundance of literature demonstrating that mitochondrial toxins taken up by dopaminergic neurons lead to their demise (46). That said, the dependence upon mitochondria for survival is probably a universal feature of neurons, not just SNc DA neurons (47).

What differentiates neurons at risk in PD? The metabolic demands posed by maintaining transmembrane ionic gradients underlying excitability led Nicholls (48) to postulate that neurons are at risk in neurodegenerative disease because they have a modest bioenergetic or respiratory reserve. This reserve is defined as the difference between the maximum capacity for ATP generation by oxidative phosphorylation and the basal consumption of ATP. The smaller this respiratory reserve, the greater the likelihood that episodic demands on metabolism, like exposure to a toxin or bursts of spiking, will cause cellular ATP levels to fall and create a bioenergetics crisis that could lead to failure of membrane pumps or other ATP-dependent processes. Persistent loss of membrane potential leads to massive Ca\(^{2+}\) influx and cell death (49, 50). Clearly, slow pacemaking neurons with broad action potentials, sustained Ca\(^{2+}\) influx, and low intrinsic Ca\(^{2+}\)-buffering capacity (like SNc DA neurons) would be at the bad end of the respiratory reserve distribution of neurons, putting them at risk for deficits of this kind.

A second possibility is that the increased metabolic demands on at-risk neurons give rise to an increase in the basal level of oxidant stress in their mitochondria. Mitochondria have long been known to generate reactive oxygen species (ROS) (51). The transfer of four electrons to O\(_2\) at Complex IV yields H\(_2\)O, but on occasion, single electrons are captured by O\(_2\) at proximal sites in the chain, yielding superoxide anion, a free radical. Sites implicated in that process include Complexes I and III and possibly certain dehydrogenases of the TCA cycle (52). Complex II contains the succinate dehydrogenase catalytic site, the B, C, or D subunit of succinate dehydrogenase (Complex II), transport complex subunits also can enhance the generation of superoxide. For example, in humans who are heterozygous for the B, C, or D subunit of succinate dehydrogenase (Complex II), cells can undergo somatic cell loss of heterozygosity, leading to the deletion of that subunit from the cell (56). The A subunit of Complex II contains the succinate dehydrogenase catalytic site, whereas the B, C, and D subunits are responsible for transferring the electrons to ubiquinone. If the B, C, or D subunit function is disrupted while the A subunit is still expressed, transfer of the electrons to ubiquinone cannot occur, and they become stranded on the flavin group, which provides a ready source of electrons for superoxide generation. Accordingly, Guzy et al. (57) found that knockdown of the B subunit was associated with an increase in the basal ROS generation by mitochondria, whereas knockdown of the A subunit was not. The complete loss of Complex II function in a cell leads to inhibition of elec-
tron transport coupled to proton extrusion and thus a loss of oxidative phosphorylation. Survival of the cell then depends entirely on ATP production by glycolysis, resulting in the release of lactic acid. Ironically, in that state, the mitochondria shift to become consumers of ATP, which is taken up from the cytosol and used to maintain the mitochondrial membrane potential through reverse operation of Complex V.

Recent work by our group has shown that pacemaking in SNc DA neurons does indeed create a basal mitochondrial oxidant stress (58). In this study, we utilized a transgenic mouse that expressed a mitochondria-targeted redox-sensitive variant of GFP (mito-roGFP) (59) under the control of the tyrosine hydroxylase promoter. The use of roGFP allowed us to quantitatively estimated the mitochondrial matrix redox state, something not possible with conventional redox probes. Using two-photon laser scanning microscopy to monitor mito-roGFP in brain slices from young adult mice, we found that pacemaking created an oxidant stress in the mitochondria that was specific to the vulnerable SNc DA neurons and not apparent in neighboring VTA DA neurons. This difference in oxidant stress level was virtually eliminated by antagonizing L-type Ca\(^{2+}\) channels, as well as by limiting mitochondrial calcium uptake using the ruthenium-based compound Ru360. These findings suggest that the increased mitochondrial activity caused by the entry of extracellular Ca\(^{2+}\) and the subsequent increase in Ca\(^{2+}\) uptake by mitochondria leads to an increase in the basal generation of oxidant stress in the mitochondria of SNc DA neurons.

That oxidant stress engages defenses manifested by transient mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), a gene associated with an early-onset form of PD, increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. The results with the DJ-1 knock-out, showing that the impact of DJ-1 deletion depends upon a physiological phenotype that engages mitochondrial oxidant defenses, provide an example of how mutations in a widely expressed gene can affect a select subpopulation of neurons.

Can oxidant stress (regardless of how it is generated) and mtDNA damage induced by oxidants explain the selective loss of SNc DA neurons in PD? Deletion mutations in mtDNA can arise when \(\text{H}_2\text{O}_2\) in the matrix introduces double-strand breaks; accordingly, the frequency of these mutations is decreased in hearts of mice expressing mitochondrial catalase (69). In two studies published simultaneously, Bender et al. (60) and Kraysberg et al. (61) assessed the abundance of mtDNA deletions, as opposed to point mutations, in SNc neurons from human subjects. The number of mtDNA deletions was significantly greater in SNc neurons from older compared with younger subjects. By contrast, undetectable levels of deletions were found in the cerebral cortex, cerebellum, and dentate nucleus of aged individuals (61). This indicates that cell-specific differences in the occurrence of deletions can exist, consistent with the cell-specific manifestations of PD. Comparisons among single neurons from the same subject revealed that one neuron might contain no deletions whereas another would contain multiple copies of a single species, indicating that they originated from a single initial mutant DNA copy that was clonally amplified in that cell (61). The mechanisms responsible for the clonal expansion of a single deletion mutant copy of mtDNA are not fully known, but the consequences are profound.

mtDNA mutations can affect cell survival by causing bioenergetic failure. When the abundance of damaged mtDNA is below a critical level, the normal copies of mtDNA are adequate to supply the organelle with the proteins needed for ATP production. However, when the abundance of the mutant form exceeds a critical level (typically 60%), the phenotypic defect in function becomes evident. Accordingly, Kraysberg et al. (61) found that the presence of mtDNA deletions correlated strongly with the absence of cytochrome oxidase immunostaining. mtDNA encodes three critical subunits of cytochrome oxidase, so these findings suggest that mtDNA deletions may be responsible for the development of respiratory insufficiency in the affected cells. Like other neurons, SNc DA neurons depend on mtDNA for survival (45), so the accumulation of mutations can lead to the development of a bioenergetic deficiency that becomes lethal over time. As discussed above, loss of electron transport chain function can turn mitochondria into ATP consumers, further stressing bioenergetic status. In PD, it is conceivable that the progressive clonal expansion of the deletion mutant could occur over many years, resulting in the progressive demise of DA cells.

Does the accumulation of deletion mutations in mtDNA of SNc neurons lead to an amplification of ROS generation that triggers a “vicious cycle” in this population of cells? Deletions of mtDNA can lead to the expression of truncation mutant proteins or to the complete loss of subunit expression. When one subunit of a mitochondrial complex is genetically deleted, the remaining subunits are still expressed and degraded, which can lead to the generation of an unfolded protein response in the matrix (62, 63). By augmenting mitochondrial and possibly endoplasmic reticulum stress responses, deletion mutations in mtDNA can thereby amplify oxidant stress in mitochondria and other cellular compartments, pushing the cell already burdened with enhanced oxidant stress even closer to the edge. Hence, the cellular consequences of mtDNA damage may depend importantly on the nature of the mutation.

How do SNc neurons in aged subjects compare with those from individuals with PD? Bender et al. (60) found that the degree of mtDNA deletions was somewhat higher in neurons from affected individuals compared with aged-matched controls. This was associated with a significantly greater proportion of cytochrome oxidase-deficient cells, compatible with the idea that bioenergetic crisis could be responsible for the progressive cell loss. Consistent with the study of Kraysberg et al. (61), this group detected clonal expansion of the unique species of mtDNA deletions in individual SNc neurons, indicating that these are indeed somatic mutations. By contrast, high levels of mtDNA deletions were not detected in the hippocampus.

If this type of functional design puts neurons at risk, why did evolution not eliminate it? On average, symptoms in PD appear after 6 decades of life, which is well past the reproductive period...
and well past the normal life expectancy until recently. Hence, the evolutionary pressure to change this design is minimal.

Are L-type Ca^{2+} Channels a Viable Therapeutic Target?

L-type Ca^{2+} channels might be a viable therapeutic target in the early stages of PD. These channels are antagonized by orally deliverable dihydropyridines (DHPs) with good brain bioavailability that have a long record of safe use in humans. Is there evidence that DHP L-type channel antagonist use might work in humans to prevent or slow PD? Three major epidemiological studies unequivocally suggest that use of brain-penetrant DHPs diminishes the risk of developing PD (64–66). This linkage is especially surprising given the short period of treatment for inclusion and the lack of DHP potency at Ca_{i,3} L-type Ca^{2+} channels. What is less clear is whether DHP use can slow the progression of the disease once diagnosed, as the clinical signs of PD become apparent only when dopaminergic cell loss is extensive. Recent work suggests not (67), possibly because the existing drugs are weak Ca_{i,3} channel antagonists or, at this advanced stage, other factors, like inflammation, begin to alter disease progression (68). In the absence of biomarkers that predict disease onset well in advance of the transition to the symptomatic phase, the only obvious way of addressing this question is by early treatment of those harboring mutations that increase disease risk, but this is a small (<10%) fraction of the PD population, making statistical power problematic. The only alternative at this point is a carefully designed prospective clinical trial in early-stage patients with isradipine, the DHP with the highest Ca_{i,3} channel affinity and good pharmacokinetics.

REFERENCES

25. Fahn, S., and Parkinson Study Group (2005) Does levodopa slow or hasten the rate of progression of Parkinson’s Disease? J. Neuro, 252, IV37–IV42
ules: whole-cell recordings in brain slices show dependence on cAMP and protein kinase A. Brain Res. 556, 339–343