Ion Pathways in the Sarcoplasmic Reticulum Ca\(^{2+}\)-ATPase

Published, JBC Papers in Press, February 11, 2013, DOI 10.1074/jbc.R112.436550
Maike Blubitza, Maria Magsarda, Hanne Poulsen, Lea Thøgersen, Claus Olsen, Birgit Schiött, J. Preben Morth, Jesper Vuust Møller, and Poul Nissen

The sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P\(_{ii}\)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca\(^{2+}\) to the sarco/endoplasmic reticulum store, thereby also terminating Ca\(^{2+}\)-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca\(^{2+}\) and H\(^{+}\) ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca\(^{2+}\) entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane \(\alpha\)-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca\(^{2+}\)-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in P\(_{ii}\)-ATPases including not one, but two cytoplasmic pathways working in concert.

P-type ATPases form a large family of transmembrane transporters that couple the energy from ATP hydrolysis to active transport of key cations across biological membranes. These so-called ion pumps are multidomain enzymes that contain polar and charged residues within their transmembrane (TM)\(^4\) domain that mediate binding of the transported ions. For the most well studied members, the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) and the Na\(^{+}/K\(^{+}\)-ATPase (NKA), the binding sites have been thoroughly described by structural and mutational studies (1–5), whereas the inherently dynamic interactions along the routes of ion entry and exit remain less clear.

P-type ATPases generally function according to an alternating access model (6–8) (also described as an E1/E2 scheme (9–11)) in which the ion-binding sites are accessible from either the cytoplasmic or extracytoplasmic side, interspersed by occluded states coupled with phosphorylation or dephosphorylation (12–14). Therefore, there must be at least one ion access pathway at each side of the membrane, but it has also been suggested that the Ca\(^{2+}\) exit and proton entry pathways on the luminal side of SERCA are separate (15). This article provides a focused review of the ion pathways in SERCA, pointing in particular to the possibility of two cytoplasmic pathways, one for proton exit and another for Ca\(^{2+}\) binding.

The Luminal/Extracellular Pathway: The “Exit Path”

The structure of SERCA in the E2P conformation (trapped as a phosphoenzyme intermediate mimicked by BeF\(_3\)) revealed a luminal Ca\(^{2+}\) exit pathway (Exit path) (Fig. 1a) encompassed by TM segments M1–M6 (16, 17). This structure follows a conformational change in the E1P state upon completion of the phosphorylation reaction. Relaxation of the tense E1P conformation allows ADP release and a large rotation/translation of the A-domain, which then interacts with the phosphorylated P-domain. The E1P-to-E2P transition transduces into a spreading of the M1–M2 and M3–M4 segments away from the M5–M6 segment, which remains associated with the M7–M10 helix bundle. The geometry of the two Ca\(^{2+}\)-binding sites gets distorted by these movements, and three of the Ca\(^{2+}\)-coordinating residues (Glu\(^{309}\), Glu\(^{771}\), and Asn\(^{796}\)) are exposed to the luminal environment through a wide open, funnel-shaped exit pathway paved with polar side chains. A Mg\(^{2+}\) ion is bound at the exposed site, involving the otherwise Ca\(^{2+}\)-coordinating Glu\(^{309}\) and a second acidic residue, Glu\(^{90}\) (16). The effect of mutating Glu\(^{90}\) to alanine or leucine is a marked reduction in the apparent affinity for luminal Ca\(^{2+}\), suggesting a direct interaction (18). If a permanent positive charge is introduced by an E90R mutation, the rate of dephosphorylation (the step that follows Ca\(^{2+}\) release and occlusion of H\(^{+}\) during the pumping cycle) is reduced, and accordingly, the site has been described as a transient, low affinity Ca\(^{2+}\)-“leaving site” (18).

The recently reported E2P structure of porcine NKA in a high affinity complex with the cardiac tonic steroid ouabain (19) displays a close analogy to the E2-BeF\(_3\) structure of SERCA.

*This work was supported by the European Union FP7 Program EDICT and the Danish Research Council Program DANSICAT, a postdoctoral fellowship from the Danish Medical Research Council (to C.O.), a Carlsberg fellowship (to J. P. M.), an Elbefors travel stipend from the Danish Research Council (to M. M.), and a Hallas-Møller stipend from the Novo-Nordisk Foundation (to M. M.), and a Hallas-Møller stipend from the Novo-Nordisk Foundation and the European Research Council Advanced Research Programs (to M. M.), and a Hallas-Møller stipend from the Novo-Nordisk Foundation and the European Research Council Advanced Research Programs (to M. M.). This article is part of the Thematic Minireview Series on the Ins and Outs of Calcium Transport.

1. To whom correspondence should be addressed. E-mail: mbu@mb.au.dk.
2. Present address: Dept. of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
3. Present address: Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway.

The abbreviations used are: TM, transmembrane; SERCA, sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase; NKA, Na\(^{+}/K\(^{+}\)-ATPase; SPCA, secretory pathway Ca\(^{2+}\)-ATPase; MD, molecular dynamics; AMPPCP, adenosine 5'-[(β,γ-methylene)triphosphate].
Although the Exit path is obstructed by ouabain in this structure, it suggests that the pathway is a conserved feature between the two pumps. Based on the two outward open structures, the Exit path is not only an exit pathway for Ca\(^{2+}\)/H\(^{+}\) or Na\(^{+}\), but is also the entry pathway for the countertransported cations: H\(^{+}\) for SERCA and K\(^{+}\) for NKA. The Mg\(^{2+}\) ion stabilizing the open E2P state (16, 20) would therefore at the same time modulate the ion exchange kinetics.

Cytoplasmic Pathway I: The “N-path”

The very first structure of SERCA representing a nucleotide-free, Ca\(^{2+}\)-bound, E1-like state (4) shows a hydrophilic environment at the Ca\(^{2+}\)-binding sites, which are surrounded by straight helices M1, M2, M4, and M6, including unwound parts of M4 (\(^{309}\)EGLP\(^{312}\)) and M6 (\(^{800}\)DG\(^{803}\)) exposed to the cytoplasm. This structure is, however, stable only in very high Ca\(^{2+}\) concentrations and without ATP present and must be considered an uncoupled state.

FIGURE 1. Ion pathways in SERCA1a.

- **a,** overall schematic representation of SERCA1a (Protein Data Bank code 3NSK), with bound water as red spheres. Domains are labeled as follows. N, nucleotide-binding domain (red); P, phosphorylation domain (blue); A, actuator domain (yellow); TM, transmembrane domain, with M1-M2 in pink, M3-M4 in beige, and M5-M10 in green. The N-path, C-path, and Exit path are indicated by arrows. Spheres that represent waters inside the channel are scaled according to their van der Waals radius; all other waters are scaled to half-size. Thapsigargin is depicted as yellow sticks. A magnification of the C-path area is boxed.

- **b,** C-path of SERCA and NKA (code 2ZXE (38)), with polar and charged side chains shown as sticks, water molecules shown as red spheres, K\(^{+}\) ions shown as purple spheres. The C-terminal extension in NKA is colored orange. NKA residue numbering is adapted to the human 2 sequence. Blue mesh, Fo - Fc electron density map contoured at 1.0; green mesh, unbiased Fo - Fc map contoured at 2.8. Polar residues lining the cavity and the ion-binding site are indicated.

- **c,** experimental evidence for water molecules between helices M5, M7, M8, and M10. Blue mesh, unbiased Fo - Fc map contoured at 2.8. Polar residues interacting with the water molecules.

- **d,** plot representation of the water network in the C-path and the residues interacting with the water molecules.
Mutational studies propose that Ca\(^{2+}\) ions enter through a single pathway to the two cooperative binding sites (sites I and II): the first Ca\(^{2+}\) ion gains access to site I through site II with Glu\(^{309}\) as a gating residue, and conformational changes induced by the Ca\(^{2+}\) occupation of site I stimulate high affinity binding at site II (21). To do so, the ions would follow a pathway between M1, M2, and M4: the N-path (Fig. 1a) (22, 23). The following transfer of the \(\gamma\)-phosphate from bound ATP to Asp\(^{351}\) is associated with closure of the N-path and occlusion of the Ca\(^{2+}\) ions by formation of a hydrophobic cluster of amino acid residues of M1 and M2, blocking entry to the Ca\(^{2+}\) sites (13, 24, 25). In NKA, Glu\(^{329}\) is equivalent to SERCA Glu\(^{309}\) and plays a similar role in ion gating (26). The plasma membrane and secretory pathway Ca\(^{2+}\)-ATPases (PMCA and SPCA) both lack an acidic residue in site I, which is consistent with the binding and transport of only one Ca\(^{2+}\) ion per hydrolyzed ATP (27, 28).

In support of the N-path for Ca\(^{2+}\) binding, crystal structures of SERCA in complex with the inhibitors cyclopiazonic acid and 2,5-di-tert-butylhydroquinone, which interfere with Ca\(^{2+}\) binding, reveal an inhibitor-binding cleft at the lipid interface between the kinked M1 and M2-M4 (29–32). A divergent cation bound between cyclopiazonic acid and SERCA further hinted at a transient Ca\(^{2+}\) site located at the entry to the N-path (29). In further accordance with the N-path, molecular dynamics (MD) simulations of SERCA show a water-filled cytoplasmic pathway toward Glu\(^{309}\) and a local negative potential that attracts positively charged ions \textit{in silico} (33). Moreover, the analogous N-path in NKA was pinpointed as the Na\(^+\) entry pathway by cysteine scanning experiments on palytoxin-inhibited enzyme (34). Confirming this model, a recent SERCA structure trapped in a Ca\(^{2+}\)-free E1 state (in complex with the regulatory protein sarcolipin) is in evident agreement with such a cytoplasmic path leading to Glu\(^{309}\) at the ion-binding sites (35). The E1 pathway is stabilized by Mg\(^{2+}\) ions with the ion-binding sites in seemingly deprotonated states, in remarkable analogy to the luminal pathway of the E2P structure, and hints at Mg\(^{2+}\) modulation of Ca\(^{2+}\) binding. Recently, the Cu\(^{+}\)-ATPase structure also pointed to an N-path, however further functionalized by an N-terminal platform consisting of P\(_{\text{In}}\) specific helices MA and MB (36).

Cytoplasmic Pathway II: The “C-path” in NKA

The C-terminal region of NKA was found to be important for ion binding in binding kinetics studies (3). The structure shows that the C-terminal tyrosine of the \(\alpha\)-subunit forms a plug at the cytoplasmic end of a cavity lined by several polar and charged residues between helices M5, M7, M8, and M10 connected to the ion-binding sites (Fig. 1b). Electrophysiological studies suggest that the cavity forms an ion pathway (37). Neither of the NKA crystal structures (3, 38) reveals water molecules in this region, but MD simulations suggest that the release of the C-terminal plug or its destabilization by mutation will allow water molecules to enter this cavity (37). Furthermore, electrophysiological studies indicate that during the enzymatic cycle, a proton enters and leaves via the C-terminal region to neutralize one of the three Na\(^{+}\)-binding sites (at Asp\(^{350}\) for the human \(\alpha2\)-isoform) when the two K\(^+\) ions are countertransported (37).

Mutations in the C-terminal end of the \(\alpha\)-subunit, as well as in residues lining the cavity, are associated with neurological disorders referred to as familial hemiplegic migraine 2 and rapid-onset dystonia parkinsonism (39, 40), underlining that the cavity is important for proper pump function.

A C-path Also in SERCA1a?

The four C-terminal helices (M7–M10) that form the cavity against M5 in NKA are a shared characteristic of the P\(_{\alpha}\) subfamily of P-type ATPases. In SERCA1a, the region is highly hydrophilic (Asp\(^{981}\), Asn\(^{911}\), Asn\(^{914}\), Glu\(^{759}\), Ser\(^{766}\), Ser\(^{767}\), Tyr\(^{837}\), and Arg\(^{836}\)), and in a recent 2.2 Å crystal structure of SERCA1a in the AlF\(_4\)^-bound transition state of E2-P dephosphorylation, a number of well defined, bound water molecules are revealed inside this narrow elongated cavity (C-path; Protein Data Bank code 3N5K) (Fig. 1, a–d). The cavity extends from the cytoplasmic interface to the ion-coordinating residues (Asp\(^{768}\), Glu\(^{771}\), Asn\(^{796}\), Asp\(^{800}\), and Glu\(^{908}\)), and therefore, it could form a direct ion exit pathway. Three water molecules occupy the Ca\(^{2+}\)/H\(^+\)-binding sites surrounded by Glu\(^{309}\), Ser\(^{767}\), Asn\(^{768}\), Glu\(^{771}\), Ser\(^{796}\), Asp\(^{800}\), and Glu\(^{908}\), and another six form a “hydration path” between M5, M6, M7, M8, and M10 leading to the cytoplasmic solvent side (Fig. 1, b–d). Seven of the nine water molecules in the cleft are visible in both molecules of the asymmetric unit of the 2.2 Å structure and have in part also been observed in other thapsigargin-bound crystal forms of SERCA1a (17, 31, 41).

In contrast to NKA, SERCA lacks the C-terminal “plug” to seal the cavity from cytoplasmic solvent, but two pairs of charged residues (Arg\(^{762}\)-Glu\(^{918}\) and Arg\(^{836}\)-Asp\(^{981}\)) located at the cytoplasmic end of the C-path in SERCA would be obvious candidates to function as access gates by formation or release of ionic interactions in a state-dependent manner. The involvement of water molecules in SERCA function has not been investigated in much detail, but MD simulations of SERCA1a in the E2 state confirm a continuous water path through the C-terminal pathway, stretching from Glu\(^{908}\) of the ion-binding site to Asp\(^{813}\) of the L6-L7 loop (Refs. 33 and 42 and further analyses of simulations herein).

The residue that corresponds to the proton-shuttling Asp\(^{930}\) in NKA is a conserved asparagine in Ca\(^{2+}\)-ATPases (SERCA1a Asn\(^{911}\)), which provides a hydrogen bond donor/acceptor rather than a titratable acidic group. This might reflect the different functions: proton shuttling in the control of a unique site III in NKA \textit{versus} unidirectional proton release via a water chain in SERCA. Asn\(^{911}\) at a strategic position might in fact be able to function as a switch: paving a water-mediated proton wire by coordination of water molecules or blocking proton transfer if inserted into the pathway.

The C-path Changes with the Functional Cycle of SERCA

Comparing the structural details of this region in all available SERCA1a conformations reveals a clear internal cavity in all E2-like (\textit{i.e.} Ca\(^{2+}\)-free) states, between M5, M7, M8, and M10, whereas the cavity is absent or negligibly small in Ca\(^{2+}\)-bound E1 states (Fig. 2). The same effect is observed in MD simulations of SERCA in different states (Refs. 33 and 42 and further analyses of simulations herein).
The helix movements within the cavity-enclosing bundle are subtle but significant. During the E1P-to-E2P transition, the cytoplasm-facing termini of M5 and M7 tilt slightly away from each other (with the movement of M5 being induced by its insertion into the moving P-domain), opening the cavity for water influx. The three water molecules at the ion-binding sites most probably enter through the luminal pathway along with the protons that neutralize the negatively charged residues after Ca\(^{2+}\) release, but the opening of a C-terminal cleft in the E2 states suggests that the other water molecules in the C-path come from the cytoplasmic side.

Mutations Affecting the C-path

Several disease-causing mutations that map to the C-path significantly impair the function of NKA (37, 43, 44). In SERCA, mutational studies similarly show the region to be important for function. The R762I mutant has a reduced rate of [H\(_{\text{g}}\)]E2 to [Ca\(_{\text{a}}\)]E1 transition (45), and mutation of Ser\(^{766}\) (to Cys, Val, or Leu) strongly reduces the apparent Ca\(^{2+}\) affinity and ATPase activity (46–48). Strikingly, in SERCA2b, mutations analogous to S766L and E918K in SERCA1a (situated at critical positions at either end of the channel/cavity) cause Darier disease, a genetic skin disorder (47, 49). Milder but measurable effects are also observed for Q759A (45, 48, 50) and N914A (48, 50). Various mutations of Tyr\(^{763}\) slow down SERCA activity (48), whereas removal of the side chain in Y763G causes uncoupling (ATP hydrolysis without Ca\(^{2+}\) transport) (51). From the structures, it is evident that without the bulky tyrosine side chain, an extra cavity in immediate vicinity to the Ca\(^{2+}\)-binding sites would appear. This would possibly allow Ca\(^{2+}\) or protons to leak through the C-terminal pathway during the E1P-to-E2P transition when the C-path reforms. These studies provide further support for a functional role of the C-path in SERCA.

What Is the Functional Role of the C-path?

Previously, the possible hydration of the ion pathways in the P-type ATPases had been scarcely addressed. Notably, a structure-based *in silico* analysis of SERCA (15) has proposed that rapid proton binding from the luminal side depends on chains of water molecules. It was suggested that there are two separate hydrated pathways on the luminal side, one for the exit of Ca\(^{2+}\) and one for the entry of H\(^{+}\). The advantages of the ions following separate routes include that they avoid having to share a single access channel, and the vacated (i.e. highly unstable (42)) binding sites may be neutralized simultaneously. Karjalainen *et al.* (15) also obtained evidence for extensive entry of water molecules into the same C-path, where we now present solid crystallographic evidence of bound waters. However, although the authors suggested the use of bifurcated ion pathways on the luminal side, they argued against ions passing through the C-path, primarily because of the positively charged Lys\(^{758}\), Lys\(^{985}\), Arg\(^{762}\), and Arg\(^{886}\), which would prevent cations from passing. The exit of protons would, however, probably not be significantly hindered by these basic residues. In fact, during the catalytic cycle, the estimated pK_a of Lys\(^{758}\) and Lys\(^{985}\) may fluctuate around 7–8 (52), making them titratable and thereby suitable stepping stones for protons leaving the ion-binding sites or functioning as modulators of nearby carboxylic acid residues for proton hopping.

As noted above, for NKA, a cytoplasmic proton was suggested to shuttle to and from Asp\(^{930}\) (human α2 numbering) via the C-path, but it has not been shown so far whether any of the transported Na\(^{+}\) or K\(^{+}\) ions also use the pathway. At present, it seems most likely that in both NKA and SERCA, the C-terminal helices have evolved as separate proton pathways, coupled with the ATPase driven cycle. We anticipate that a C-terminal pathway is also functionally adapted in the plasma membrane Ca\(^{2+}\)-ATPases, SP1 and SP2, and H\(^{+}\)/K\(^{+}\)-ATPases.

It should be mentioned at this point that the [H\(_{\text{g}}\)]E2-to-[Ca\(_{\text{a}}\)]E1 transition in SERCA is greatly accelerated by high pH, indicating that the rate of E1 formation from E2 is dependent on release of H\(^{+}\) before Ca\(^{2+}\) can bind (53). At the same time, in SP1, which充当了countertransport of H\(^{+}\) has been observed, the breakdown of E2 phosphoenzyme is not pH-dependent (28).

Earlier studies of the cytoplasmic loop between M6 and M7 have indicated its importance for the functional properties of the ATPase. The loop is situated right above the C-path open- ing and contains several charged residues (Asp\(^{813}\), Asp\(^{815}\), and Asp\(^{818}\)) near the lipid-water interface, and it was suggested to be involved in Ca\(^{2+}\) binding (54). However, it seems that the lower apparent Ca\(^{2+}\) affinity of an L6-L7 loop mutant observed during ATP hydrolysis may be caused by an impaired rewinding of M6 into the Ca\(^{2+}\)-binding conformation (55) or a mere loss of proton-abstracting capacity, thus favoring the protonated state and decelerating deprotonation.

Bifurcated pathways may be specific for the P\(_{\text{II}}\)-type ATPases because of the strong cooperativity of transport and countertransport. Structures are known for members of two other subfamilies, namely the proton pump AHA2 (subfamily P\(_{\text{II}}\)), which transports ions one way, and the heavy metal pump...
CopA (subfamily P), which lacks the C-terminal helix bundle and in which countertransport also is not expected (53). In the proton pump, compensation of the single charged proton-binding residue in the TM region appears to be achieved by an unusually large, hydrated cavity (56), whereas the copper pump features uncharged cysteines in the TM part (36) (although deprotonation/protonation of cysteines may also be associated with copper transport). We thus speculate that the introduction of two ion gateways on both sides of the membrane for coupled exit and entry of ions provides an efficient mechanism for the coordination of transport and countertransport processes.

Concluding Remarks

We find that a C-terminal hydrated proton path in the TM region of SERCA correlates well with all of the observations discussed above and should therefore be considered in future studies on countertransport mechanisms of SERCA and related pumps. Based on the points raised here, a tentative scheme for the ion exchange events in the functional cycle of SERCA is presented in Fig. 3. Starting from the occluded Ca\(^{2+}\)-bound [Ca\(_2\)]E1P state, the protein is phosphorylated during the transition to the E2P state, and Ca\(^{2+}\) ions are released to the sarcoplasmic reticulum. As suggested by Musgaard et al. (42), one proton may bind through the N-path from the cytoplasmic side, whereas two protons bind from the luminal side, potentially through the luminal proton pathway suggested by Karjalainen et al. (15). At the same time, the C-path starts forming, SERCA then enters a proton-occluded state ([H\(_3\)]E2-P) before the [H\(_3\)]E2-to-E1 transition occurs. During this transition, one proton may be released to the cytoplasm through the N-path (42), whereas the other two are released through the open C-path more or less simultaneously with Ca\(^{2+}\) binding through the N-path in formation of the [Ca\(_2\)]E1-ATP state. The C-path and the N-path then close, coupled with phosphorylation, and the occluded [Ca\(_2\)]E1P state is regenerated. This mechanism illustrates a possible way in which a smooth exchange of protons and Ca\(^{2+}\) ions can occur and is in accordance with the present structural and functional data.

Acknowledgments—We thank Dr. Laure Yatime for help with data collection and Prof. Marc le Maire for valuable discussions on C-terminal pathways in SERCA. We are grateful for beam time obtained at the Swiss Light Source (Villigen, Switzerland), EMBL-DESY (Hamburg, Germany), and MAX-lab (Lund, Sweden).

REFERENCES

FIGURE 3. Schematic model for events in the Ca\(^{2+}\) ion-binding sites and the ion pathways during the functional cycle of SERCA. The four TM helices contributing to the binding sites are shown as rods, with M4 in yellow and M5, M6, and M8 in green. Ca\(^{2+}\) ions are shown as cyan spheres, and Ca\(^{2+}\) ion coordinations are indicated by dashed lines in the Ca\(^{2+}\)-bound E1 state, with Asp\(^{360}\) coordinating both of the ions. The protonation states of the four acidic residues framing the Ca\(^{2+}\) ion-binding sites are highlighted. As the functional cycle of SERCA is fully reversible, the arrows could in principle be reversed.
MINIREVIEW: Ion Pathways in Sarcoplasmic Reticulum Ca\(^{2+}\)-ATPase

vation by Ca\(^{2+}\) (or Sr\(^{2+}\)) and ATP. J. Biol. Chem. 279, 32125–32133
Ion Pathways in the Sarcoplasmic Reticulum Ca\(^{2+}\)-ATPase
Maike Bublitz, Maria Musgaard, Hanne Poulsen, Lea Thøgersen, Claus Olesen, Birgit Schiøtt, J. Preben Morth, Jesper Vuust Møller and Poul Nissen

J. Biol. Chem. 2013, 288:10759-10765.
doi: 10.1074/jbc.R112.436550 originally published online February 11, 2013

Access the most updated version of this article at doi: 10.1074/jbc.R112.436550

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 59 references, 28 of which can be accessed free at
http://www.jbc.org/content/288/15/10759.full.html#ref-list-1