Group X Secretory Phospholipase A₂ Regulates Insulin Secretion through a Cyclooxygenase-2-dependent Mechanism*

Preetha Shridas‡¶, Lubna Zahoor‡§, Kathy J. Forrest‡§, Joseph D. Layne‡§, and Nancy R. Webb‡*†

From‡¶ Saha Cardiovascular Research Center and Departments of‡§ Internal Medicine and‡¶ Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky Medical Center, Lexington Kentucky 40536

Received for publication, June 24, 2014, and in revised form, July 28, 2014. Published, JBC Papers in Press, August 13, 2014, DOI 10.1074/jbc.M114.591735

*This work was supported in whole or in part by National Institutes of Health Grant R01 DK082419 (to N. R. W.) and the NIGMS Grant 8 P20 GM103527-05 (to P. S.).
†To whom correspondence should be addressed: Dept. of Internal Medicine, 537 CT Wethington Bldg., 900 S. Limestone St., Lexington, KY 40536. Tel.: 859-2183189; Fax: 859-257-3646; E-mail: pshri2@uky.edu.
‡§The abbreviations used are: T2D, type 2 diabetes; AA, arachidonic acid; GSIS, glucose-stimulated insulin secretion; GX, group X; PLA, phospholipase A; PGE₂, prostaglandin E₂; EP, prostaglandin E receptor subtype; COX, cyclooxygenase; PDE, phosphodiesterase; ABCG1, ATP binding cassette transporter G1; cAMP, cyclic AMP; LXR, liver X receptor; ABCA1, ATP binding cassette transporter A1; POPG, 1-palmitoyl-2-oleoylphosphatidylglycerol; LXR, liver X receptor; ABCA1, ATP binding cassette transporter A1; ABCG1, ATP binding cassette transporter G1; cAMP, cyclic AMP.

Background: Arachidonic acid and its metabolites regulate pancreatic glucose-stimulated insulin secretion (GSIS) through multiple mechanisms.

Results: Group X secretory phospholipase A₂ (GX sPLA₂) suppresses GSIS; suppression was abolished when COX-2 activity or PGE₂-EP3 receptor signaling were inhibited.

Conclusion: GX sPLA₂ inhibits GSIS by augmenting PGE₂ production.

Significance: GX sPLA₂ may be targeted for ameliorating beta cell dysfunction in type 2 diabetes.

Group X secretory phospholipase A₂ (GX sPLA₂) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E₂ (PGE₂) is a known inhibitor. In this study, we determined that GX sPLA₂ is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA₂-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA₂ overexpression or exogenous addition. GX sPLA₂ was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA₂ (MIN6-GX) compared with control (MIN6-C) cells. PGE₂ production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA₂ on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE₂-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA₂ plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE₂ production.

Type 2 diabetes (T2D)² occurs when pancreatic beta cells are unable to secrete sufficient insulin to meet the metabolic requirements associated with insulin resistance (1). Pancreatic dysfunction is characterized by a reduction in mass as well as function of islets (2). While the molecular mechanisms of beta cell failure are poorly understood, arachidonic acid (AA) and its metabolites are thought to play important roles in pancreatic islet function. Islets have the highest AA-containing phospholipid (PL) content of any known tissue, constituting more than 30% of the total esterified fatty acyl mass of glycerolipids in rodent and human islets (3). Acute AA treatment promotes glucose-stimulated insulin secretion (GSIS) (4, 5). However, chronic treatment with fatty acids including AA suppresses insulin secretion by beta islet cells (6). Thus, the role of AA in GSIS likely depends on its metabolic fate in beta cells. While free AA is known to be an activator of GSIS in general (7, 8), prostaglandin E₂ (PGE₂), a product of AA metabolism and the major prostaglandin (PG) produced by islets, is considered to be an inhibitor of GSIS (9–13). PGE₂ exerts its effects by interacting with one or more of its four PGE₂ (EP) receptors, EP₁, EP₂, EP₃, and EP₄ (14). EP₃ is the most abundant PGE₂ receptor expressed in islets (13, 15). Upon binding to the EP₃ receptor subtype, PGE₂ decreases adenylyl cyclase activity with a subsequent reduction in cAMP (16), a known potentiator of GSIS (17). Cyclooxygenase (COX) enzymes catalyze the key step in the synthesis of PGE₂ from AA (18). Unlike most cell types, COX-2 rather than COX-1 is the predominant, constitutively expressed COX in pancreatic islet cells (19). Inhibition of COX-2 enhances GSIS in C57BL/6 mice with a parallel reduction in PGE₂ production, consistent with a role for PGE₂ in suppressing GSIS (20). The increase in diabetes susceptibility in the BTBR mouse strain has recently been attributed to elevated PGE₂ production and EP₃ receptor expression in pancreatic beta cells (13). Islets from T2D humans produce significantly more PGE₂ compared with islets from non-diabetic donors (13). Furthermore, L-798,106, a specific EP₃ receptor antago-
GX sPLA2 Regulates Insulin Secretion

We previously described the generation of C57BL/6 mice with targeted deletion of GX sPLA2 (gene PLA2G10) (30). Heterozygous GX sPLA2+/− mice were bred to produce GX sPLA2+/− (WT) and GX sPLA2−/− (GX KO) mice for the experiments. Mice (3–15-month-old) were maintained on a 10-h light/14-h dark cycle and received standard mouse chow and water ad libitum. Male mice were used throughout the study. All procedures were in accordance with the guidelines of the Lexington Veterans Affairs and the University of Kentucky Institutional Animal Care and Use Committees.

Islet Isolation—Mouse islets were isolated via intraductal collagenase (Roche) digestion and ficoll gradient centrifugation by a method adopted by the Islet Procurement and Analysis Core, Diabetes Research and Training Center, Vanderbilt University Medical Center (Nashville, TN). A detailed method will be provided on request. Following isolation, islets were hand-picked and maintained in RPMI containing 5 mM glucose, 10% (v/v) FBS, and penicillin and streptomycin.

Immunohistochemistry—Pancreata from WT and GX KO mice were embedded in paraffin and 5 μm-thick sections were mounted on glass slides. After antigen retrieval with sodium citrate-based reagent (Dako) for 15 min at 95 °C, sections were blocked with 2% horse serum. Following blocking, the sections were immunostained using rabbit anti-mouse GX sPLA2 (gift from Dr. M. Gelb, University of Washington) and goat antimouse insulin (Santa Cruz Biotechnology), both at a dilution of 1:100. For fluorescent images, Alexa Fluor-conjugated secondary antibodies were used (Invitrogen).

Metabolic Experiments—To assess GSIS in vivo, mice were fasted for 16 h, and then plasma samples were collected from the retro-orbital sinus before and 15 min after intraperitoneal glucose injection (3 g/kg). For glucose tolerance tests, mice were fasted for 6 h prior to i.p. glucose injection (2 g/kg).

Real-time RT-PCR—Total RNA was prepared from 150–200 islets isolated from WT and GX KO mice or transfected MIN6 cells using the RNeasy Mini kit (Promega). Quantification was performed in duplicate using the standard curve method and normalized to 18S. The primer sequence used for various genes will be provided on request.

Cell Culture and Transfections—MIN6 cells were cultured in DMEM supplemented with 15% heat-inactivated fetal bovine serum (FBS), 2 mmol/liter l-glutamine, 45 mmol/liter β-mercaptoethanol, 100 units/ml penicillin, and 100 μg/ml streptomycin. The GX sPLA2 and control expression constructs and procedure for transient transfections have been described (31). When assayed 48 h after transfection, phospholipase activity secreted by transfected MIN6-GX cells was increased 1.5–2.5-fold compared with control MIN6-C cells.

In Vitro GSIS Assays—After isolation and handpicking, islets from WT and GX KO mice were cultured overnight in RPMI media. Islets were then selected and transferred to culture inserts (Greiner bio-one) in 12-well plates (25 islets per well) washed and equilibrated for 1 h in Buffer 1 (DMEM supplemented with 38 mM sodium bicarbonate, 4 mM l-glutamine, 1 mM sodium pyruvate, 4.65 mM HEPES, and 1 g/liter BSA) containing 5 mM glucose, and then incubated successively for 40 min in Buffer 1 containing 5 mM glucose (low glucose) followed by Buffer 1 containing 20 mM glucose (high glucose). At the end of the incubations, insulin content in the low glucose and high glucose buffer was assayed and normalized to total cellular insulin content, which was determined after lysing islets in acid-ethanol (75% ethanol, 0.2 mol/liter HCl). For GSIS in MIN6 cells, cells in 24-well plates were washed once with Kreb’s...
GX sPLA₂ Regulates Insulin Secretion

Ringer buffer containing 0.2% BSA (KR BSA) and 5 mM glucose and then equilibrated in the same buffer for 1 h. The media was replaced with fresh KR BSA supplemented with either 5 mM (low) glucose or 20 mM (high) glucose for 40 min. Insulin concentrations in conditioned media were normalized to total cell protein.

Statistics—Data are expressed as mean ± S.E. Results were analyzed by t test or by 1-way ANOVA followed by a Bonferroni post-test. p < 0.05 was considered statistically significant. All statistical analyses were carried out using GraphPad Prism 4.

RESULTS

GX sPLA₂ Is Expressed in Pancreatic Islets and MIN6 Cells—GX sPLA₂ mRNA was detected by RT-PCR in mouse pancreata and was relatively enriched in isolated mouse islets (Fig. 1A). MIN6 cells (a mouse pancreatic beta cell line) also expressed GX sPLA₂ mRNA (Fig. 1A). To assess the distribution of GX sPLA₂ protein in mouse pancreas, we performed double immunofluorescence staining of pancreatic sections from C57BL/6 mice for GX sPLA₂ (green) and insulin (red) and visualized (20× magnification) by fluorescence microscopy. A merged image shows co-expression of GX sPLA₂ in insulin-producing cells of WT pancreas (yellow).

FIGURE 1. GX sPLA₂ is expressed in pancreatic islet cells and MIN6 cells. A, total RNA was isolated from mouse pancreas, islets isolated from mouse pancreas, and MIN6 cells, a mouse pancreatic beta-cell line. RT-PCR was performed using 0.5 μg of RNA and primers for GX sPLA₂ and 18 S. B, pancreatic sections from WT and GX KO mice were stained by indirect immunofluorescence for GX sPLA₂ (green) and insulin (red) and visualized (20× magnification) by fluorescence microscopy. A merged image shows co-expression of GX sPLA₂ in insulin-producing cells of WT pancreas (yellow).

GX sPLA₂ Deficiency Is Associated with Enhanced Glucose-Stimulated Insulin Secretion—Prompted by our novel finding that GX sPLA₂ is expressed by pancreatic islet cells, we next investigated whether the enzyme plays any role in beta islet function. Glucose-stimulated insulin secretion (GSIS) was assessed in WT and GX KO mice by measuring plasma insulin levels before and 15 min following i.p. injection of glucose (3 mg/kg body weight). Fasting insulin levels were similar in WT mice (0.34 ± 0.04 ng/ml) compared with GX KO mice (0.31 ± 0.03 ng/ml). Plasma insulin levels increased significantly in both WT and GX KO mice 15 min following glucose injection (Fig. 2A). Interestingly, insulin levels were significantly higher in GX KO mice (0.95 ± 0.1 ng/ml) compared with WT mice (0.72 ± 0.04 ng/ml) following glucose challenge (Fig. 2A). The increased plasma insulin levels were associated with a modest (~22%) but not statistically significant decrease in blood glucose concentrations in GX KO mice compared with WT mice (Fig. 2B).

FIGURE 2. Deficiency of GX sPLA₂ enhances glucose-stimulated insulin secretion. Plasma (A) insulin and (B) glucose concentrations were determined before and 15 min after intraperitoneal glucose injection (3 g/kg; n = 10 per group) in 4-month-old WT and GX KO mice. C, islets (25 islets per mouse) were isolated from 4-month-old WT and GX KO mice (n = 4), cultured overnight, washed, and equilibrated in assay buffer containing 5 mM glucose, and then incubated for 40 min in either 5 or 20 mM glucose as indicated. Insulin in the assay media was determined and normalized to total insulin in the corresponding islets. Data are presented as mean ± S.E.; *, p < 0.05.

As a gain-of-function strategy, we analyzed GSIS in MIN6 cells transiently overexpressing GX sPLA₂. As expected, MIN6 cells overexpressing GX sPLA₂ (MIN6-GX) demonstrated a significant increase in phospholipase activity in the culture medium compared with cells transfected with vector control (MIN6-C) (Fig. 3A). Consistent with the results from primary islets (Fig. 2C), the increase in sPLA₂ activity in MIN-GX cells was associated with a significant ~32% reduction in GSIS compared with MIN6-C cells (Fig. 3B).
We and others have reported that GX sPLA₂ potently releases arachidonic acid (AA) and thus enhances PGE₂ production in multiple cell types (30, 32, 33). Here we show that increased GX sPLA₂ activity leads to enhanced PGE₂ production in β cells. MIN6-GX cells produced a significant 2.5-fold increase in PGE₂ secretion compared with MIN6-C cells (Fig. 3C). PGE₂ binding to the EP₃ receptor, the most abundant EP receptor expressed in islets, results in decreased adenylate cyclase activity and consequently, reduced cellular cAMP (34). Increased intracellular cAMP enhances insulin secretion, whereas decreased cAMP is known to at least partially mediate PGE₂-induced beta cell dysfunction (34). In accordance with these concepts, increased PGE₂ production by MIN6-GX cells (Fig. 3C) was associated with significantly reduced cAMP levels compared with MIN6-C cells (Fig. 3D). Taken together, our data supports the conclusion that GX sPLA₂ negatively regulates GSIS, possibly by enhancing the generation of PGE₂ in islet cells, leading to reduced cAMP.

GX sPLA₂-mediated Suppression of GSIS Involves COX-2 and the PGE₂-EP₃ Receptor in MIN6 Cells—To investigate the possibility that GX sPLA₂ inhibits GSIS through COX-2-dependent PGE₂ production, we assessed the effect of a specific COX-2 inhibitor, NS398, on GSIS in MIN6-GX cells. Under basal conditions, insulin secretion was not significantly altered by NS398 treatment in either MIN6-C or MIN6-GX cells (Fig. 4B). However, insulin secretion under high glucose conditions was significantly increased in MIN6-C cells treated with NS398, consistent with published studies (5,
GX sPLA₂ Regulates Insulin Secretion

FIGURE 5. COX-2 inhibitor and EP3 receptor antagonist enhance GSIS in primary mouse islets isolated from WT but not GX sPLA₂-deficient mice. A, 25 islets isolated from 3-month-old WT and GX KO mice (n = 4 mice per group) were treated with the COX-2 inhibitor, NS398 (10 μM) or an equivalent volume of vehicle (DMSO) in regular culture medium containing 1% FBS for 20 h (n = 4) prior to assaying GSIS as described under “Experimental Procedures.” B, GSIS assay was performed as described under “Experimental Procedures” in 25 primary islets isolated from WT and GX KO mice (n = 4) with either the EP3 antagonist, L-798,106 (10 μM) or an equivalent volume of vehicle in the assay buffer. NS398 and L-798,106 treatment did not alter insulin secretion from either WT or GX KO islets under basal conditions. Data are presented as mean ± S.E.; *, p < 0.05; **, p < 0.01.

15). Interestingly, after treatment with NS398 there was no significant difference in GSIS between MIN6-C and MIN6-GX cells, indicating that COX-2 is required for GX sPLA₂’s suppressive effect (Fig. 4A). To define the role of EP3 receptor signaling, we next assessed GSIS in MIN6-C and MIN6-GX cells in the presence and absence of the specific EP3 antagonist L-798,106 (13). Treatment with L-798,106 caused a significant 2.9-fold increase in GSIS in MIN6-C cells (Fig. 4B) in accordance with previous reports (13, 15). In the absence of L-798,106 MIN6-GX cells demonstrated a significant (~30%) reduction in GSIS compared with MIN6-C cells, as shown above (Figs. 3B and 4A). Treatment with L-798,106 significantly enhanced GSIS in both MIN6-C and MIN6-GX cells, and completely abolished the difference in GSIS between the two cell types (Fig. 4B). Findings in transfected cells were corroborated in an additional series of experiments whereby untransfected MIN6 cells were incubated for 16 h with 0.1 μg/ml recombinant GX sPLA₂ (rGX). Consistent with the overexpression results, exogenous treatment with rGX resulted in significantly enhanced PGE2 production (3.4-fold; Fig. 4C) and significantly reduced GSIS (first two bars, Fig. 4D). Importantly, the ability of rGX to reduce GSIS was abolished in cells treated with 10 μM NS398 (Fig. 4D). We conclude that the suppressive effect of GX sPLA₂ on GSIS in MIN6 cells is mediated by COX-2-dependent PGE2 production and EP3 receptor signaling.

Treatment with COX-2 Inhibitor or EP3 Receptor Antagonist Completely Abolishes the Effect of Endogenous GX sPLA₂ on GSIS in Primary Islet Cells—Primary islets isolated from WT and GX KO mice were treated with either NS398 or the corresponding volume of vehicle (DMSO) for 20 h prior to assessing GSIS. Another set of islets were treated with L-798,106 or DMSO during the GSIS assay. Basal insulin secretion was not altered by either NS398 or L-798,106 in either WT or GX KO islets (data not shown). As expected based on our previous findings (Fig. 2C), control-treated islets from GX KO mice demonstrated a significant increase in GSIS compared with islets from control-treated WT mice (Fig. 5, A and B). NS398 and L-798,106 caused a significant, 1.8-fold and 3.1-fold increase in GSIS in WT islets, respectively (black bars, Fig. 5, A and B). In contrast, there was no statistically significant increase in GSIS in islets from GX KO mice when treated with either NS398 or L-798,106 (p = 0.29 and 0.21, respectively). Interestingly, the difference in GSIS observed between islets from WT and GX KO mice was completely abolished in the presence of either inhibitor, consistent with the conclusion that endogenous GX sPLA₂ suppresses insulin secretion through the COX-2, EP3 receptor pathway.

GX KO Mice Are Protected from the Development of Age-related Glucose Intolerance and GSIS Impairment—Given our data that GX sPLA₂ modulates GSIS, we investigated whether
GX sPLA₂ influences glucose homeostasis in mice. For these studies we carried out i.p. glucose tolerance tests in WT and GX KO mice at 3 months (Fig. 6A) and 15 months (Fig. 6B) of age. The glucose challenge was kept constant for the two age groups (2 mg/g) to allow for direct comparison of results. For both age groups, fasting glucose levels were not significantly different between the two strains. The 15-month-old WT mice exhibited a severe impairment in glucose tolerance, as evidenced by a marked increase in plasma glucose concentrations at 60–180 min after glucose challenge compared with younger WT mice. Interestingly, GX KO mice appeared to be protected from this age-related glucose intolerance. To investigate whether differences in glucose tolerance could be at least partly attributed to differences in beta cell function, we assessed GSIS in islets isolated from young and old WT and GX KO mice (Fig. 6C). For both age groups, basal insulin secretion in islets from WT and GX KO mice were similar. Interestingly, GSIS was significantly higher in islets from GX KO mice compared with WT mice at both ages. Islets from older WT mice demonstrated significantly reduced GSIS compared with younger WT mice, reflecting a decline in beta cell function with age in the WT mice. Although there was a trend for decreased GSIS in islets from older GX KO mice compared with younger GX KO mice, GSIS in islets from 14-month-old GX KO mice was nevertheless comparable to that of islets from 2-month-old WT mice (Fig. 6C). Thus, the absence of GX sPLA₂ activity during the course of aging partially ameliorates the development of beta cell dysfunction.

DISCUSSION

Insulin secretion by pancreatic beta cells is a complex process that is regulated by a number of autocrine, paracrine, and endocrine regulators (1, 35). Pancreatic beta cell dysfunction leading to defective insulin secretion is thought to be one of the major contributors to the development of T2D (2). Thus, there is a pressing need to understand the factors and pathways that regulate insulin secretion by beta cells and their respective roles in beta cell dysfunction. In the present study, we report the following novel findings: 1) mouse pancreatic islet cells express GX sPLA₂, a member of the secretory phospholipase A₂ family known to potently hydrolyze membrane phospholipids to release AA; 2) increased expression or exogenous addition of GX sPLA₂ suppresses GSIS in MIN6 cells, a mouse beta cell line; 3) islets isolated from GX KO mice exhibit enhanced GSIS ex vivo compared with islets from WT mice; and 4) GX KO mice exhibit significantly enhanced GSIS and appear to be protected from age-related glucose intolerance and beta cell dysfunction. In addition, our in vitro studies support the conclusion that GX sPLA₂ suppresses GSIS through a COX-2-dependent pathway (Fig. 7).

Recently, Kimple et al. reported that EP3 receptor expression and PGE₂ production in islets from diabetic mice (40–200-fold) and human T2D donors (~7-fold) compared with non-diabetic controls. Interestingly, treatments with an EP3 receptor antagonist augmented GSIS only in islets from diabetic mouse or human donors and not non-diabetic donors. Furthermore, activation of the EP3 receptor suppressed the effects of glucagon-like peptide-1 on GSIS in this same study (13). Despite extensive evidence establishing the role of PGE₂/EP3 axis in suppressing GSIS, the ‘prerequisite’ PLA₂ (41) that generates AA for PGE₂ production in beta cells has not been identified. Our results from experiments using a selective COX-2 inhibitor (NS398) and an EP3 receptor antagonist (L-798,106) clearly show that GX sPLA₂ suppresses GSIS through a mechanism that is at least partially mediated through the COX2/PGE2/cAMP pathway.

Of the 10 members of the sPLA₂ family known to be expressed by mammalian cells, to date only group IB and group IIA sPLA₂ have been shown to be expressed in rodent pancreatic islets (36, 37). However, group IB sPLA₂ deficiency does not lead to alterations in basal or glucose-stimulated insulin secretion in mice (38) and group IIA sPLA₂ is naturally deficient in the inbred C57BL/6 mouse strain (39), ruling out a role for these two isozymes in the current study. We determined by real-time RT-PCR that GV and GIID sPLA₂ mRNAs are expressed by MIN6 cells, whereas group III, group XIIA, and group XIIB mRNAs were not detected (data not shown). Our studies indicate that expression of GIID sPLA₂ is confined to non-insulin producing cells in pancreatic islets (data not shown). Among the known sPLA₂s, GX- and GV sPLA₂s are reported to be potent in releasing AA leading to eicosanoid generation in a variety of cells both in vitro and in vivo (40). Our unpublished results indicate that GV sPLA₂ does not contribute to PGE₂ production in islets and in contrast to GX sPLA₂ activates GSIS. Further studies are needed to understand how these two closely related enzymes exert opposing effects in beta cells. Furthermore, the cellular membrane(s) hydrolyzed by GX sPLA₂ to release AA for PG production has not yet been clearly delineated. While it is generally believed that GX sPLA₂ hydrolyzes PLs in the outer leaflet of the plasma membrane, there is also evidence indicating that AA is released prior to secretion of GX sPLA₂ (41). Alternatively, externalized GX sPLA₂ may be taken up by the cells, where it is coupled to intracellular cyclooxyge-

FIGURE 7. GX sPLA₂-mediated regulation of GSIS. GX sPLA₂ hydrolysis of cellular membrane phospholipids generates arachidonic acid (AA), which is converted to PGE₂ in a COX-2-dependent manner. PGE₂ released from the cell binds the EP3 receptor on the cell surface, leading to reduced cellular cAMP content and suppressed GSIS. The cellular membrane(s) hydrolyzed by GX sPLA₂ to release AA have not been delineated. GX sPLA₂ may generate AA during (1) or after (2) its secretion from cells, or subsequent to re-uptake (3).
sPLA2 Regulates Insulin Secretion

While GX sPLA2 suppresses LXR expression or cholesterol content in primary mouse islets and/or GX sPLA2 is synthesized as an inactive zymogen that requires members of the furin-like proprotein convertases may play a role in the protease(s) involved and the factor(s) that regulate their proteolytic cleavage for hydrolytic activity (46). The identity of the protease(s) involved and the factor(s) that regulate their proteolytic cleavage is not determined. While GX sPLA2 suppresses GSIS primarily through PGE2 signaling, and not through altered cholesterol homeostasis. An interesting possibility is that under certain conditions, such as in the setting of hyperlipidemia or in aging, GX sPLA2 contributes to disruptions in cholesterol homeostasis and beta cell dysfunction. Our observation that 15-month-old GX KO mice, unlike WT mice, do not develop glucose intolerance may be related to a cumulative detrimental effect of GX sPLA2 on LXR activation, cholesterol homeostasis, and function in beta cells during aging.

In summary, our results demonstrate that GX sPLA2 negatively regulates GSIS in pancreatic islet cells possibly by generating AA substrate for PGE2 production and consequent reduction of intracellular cAMP. Thus, GX sPLA2 may act as a “molecular brake” to modulate insulin secretion. An important question to address is the regulation of GX sPLA2 in beta cells. GX sPLA2 is synthesized as an inactive zymogen that requires proteolytic cleavage for hydrolytic activity (46). The identity of the protease(s) involved and the factor(s) that regulate their action are not yet known, although it has been suggested that members of the furin-like proprotein convertases may play a role in the processing of GX sPLA2 (47). Interestingly, two proprotein convertases, PC1 and PC2, are highly expressed in pancreatic beta cells, where they mediate the cleavage of proinsulin to form insulin (48, 49), raising the possibility that proteolytic activation of proinsulin and GX sPLA2 may be coordinately regulated. Further studies are needed to address whether aberrant activation of GX sPLA2 exacerbates beta cell dysfunction under pathological conditions, possibly including chronic inflammation (42). Targeting GX sPLA2 may be an effective therapeutic option in enhancing beta cell function in the treatment of diabetes.

Acknowledgments—We thank Dr. Sabire Ozcan, University of Kentucky for providing MIN6 cells and Dr. M. Gelb, University of Washington for supply of recombinant GX sPLA2 enzyme. We thank Dr. Deneys R. van der Westhuyzen for helpful discussion and review of the manuscript. We also thank Dr. Wendy Katz for helping us with paraffin embedding and tissue sectioning. This article is the result of work supported with resources and the use of facilities at the Lexington Veterans Affairs Medical Center, Lexington, KY.

REFERENCES

20. Fujita, H., Kakei, M., Fukushima, H., Morii, T., Yamada, Y., Qi, Z., and...

Group X Secretory Phospholipase A₂ Regulates Insulin Secretion through a Cyclooxygenase-2-dependent Mechanism
Preetha Shridas, Lubna Zahoor, Kathy J. Forrest, Joseph D. Layne and Nancy R. Webb

doi: 10.1074/jbc.M114.591735 originally published online August 13, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.591735

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 49 references, 29 of which can be accessed free at http://www.jbc.org/content/289/40/27410.full.html#ref-list-1