Identification of an L-Phenylalanine Binding Site Enhancing the Cooperative Responses of the Calcium-sensing Receptor to Calcium*

Chen Zhang1, Yun Huang1, Yusheng Jiang1, Nagaraju Mulupuri1, Ling Wei1, Donald Hamelberg1, Edward M. Brown1, and Jenny J. Yang2

From the 1Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 and the 2Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115

Background: The calcium-sensing receptor (CaSR) is a key mediator of Ca2+ homeostasis in vivo.

Results: An L-Phe binding site at the CaSR hinge region globally enhances its cooperative activation by Ca2+.

Conclusion: Communication between the binding sites for Ca2+ and L-Phe is crucial for functional cooperativity of CaSR-mediated signaling.

Significance: The results provide important insights into the molecular basis of Ca2+ sensing by the CaSR.

Functional positive cooperative activation of the extracellular calcium ([Ca2+]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca2+]o or amino acids elicits intracellular Ca2+ ([Ca2+]i) oscillations. Here, we report the central role of predicted Ca2+-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca2+-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca2+]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca2+]o and L-Phe in eliciting CaSR-mediated [Ca2+]i oscillations. The heterocommunication between Ca2+ and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca2+]o signaling by positively impacting multiple [Ca2+]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the long-standing question of how the receptor transduces signals initiated by [Ca2+]o and amino acids into intracellular signaling events.

It has long been recognized that Ca2+ acts as a second messenger that is released from intracellular stores and/or taken up from the extracellular environment in response to external stimuli to regulate diverse cellular processes. The discovery of the parathyroid Ca2+-sensing receptor (CaSR) by Brown et al. (1) has established a new paradigm of Ca2+ signaling. In addition to its known role as a second messenger, extracellular Ca2+ can function as a first messenger by CaSR-mediated triggering of multiple intracellular signaling pathways, including activation of phospholipases C, A2, and D, and various mitogen-activated protein kinases (MAPKs), as well as inhibition of cyclic adenosine monophosphate (cAMP) production (2–7). This receptor is present in the key tissues involved in [Ca2+]o homeostasis (e.g., parathyroid, kidney, and bone) and diverse other nonhomeostatic tissues (e.g., brain, skin, etc.) (8–11). CaSR consists of a large N-terminal extracellular domain (ECD) (~600 residues) folded into a Venus flytrap motif, followed by a seven-pass transmembrane region and a cytosolic C terminus. The ECD has been shown to play an important role in the cooperative response of the CaSR to [Ca2+]o. Elevations in [Ca2+]o activate the CaSR, evoking increases in the intracellular Ca2+ concentration ([Ca2+]i), producing [Ca2+]i oscillations, modulating the rate of parathyroid hormone secretion, and regulating gene expression (3, 12–14). The pattern of [Ca2+]i oscillations is one of the most important signatures reflecting the state of CaSR activity.

More than 200 naturally occurring mutations have been identified in the CaSR that either inactivate the receptor (reducing sensitivity to [Ca2+]o), leading to familial hypocalciuric hypercalcaemia or neonatal severe hyperparathyroidism, or activate it (increasing sensitivity to [Ca2+]o), thereby causing autosomal dominant hypoparathyroidism (15–17). Several of these naturally occurring mutations of CaSR exhibit altered functional cooperativity (15).

Functional cooperativity of CaSR (i.e., based on biological activity determined using functional assays rather than a direct binding assay), particularly the functional positive homotropic cooperative response to [Ca2+]o, is essential for the ability of the receptor to respond over a narrow physiological range of [Ca2+]o (1.1–1.3 mM) (3). CaSR has an estimated Hill coefficient of 3–4 for its regulation of processes such as activating intracellular Ca2+ signaling and inhibiting parathyroid hormone release. Under physiological conditions, L-amino acids,
especially aromatic amino acids (e.g., L-Phe), as well as short aliphatic and small polar amino acids (18), potentiate the high [Ca\(^{2+}\)]\(_o\)-elicited activation of the CaSR by altering the EC\(_{50}\) values required for [Ca\(^{2+}\)]\(_o\)-evoked [Ca\(^{2+}\)]\(_o\) responses and its functional cooperativity (19, 20). In aggregate, the levels of amino acids in human serum in the fed state are close to those activating the CaSR in vitro (19, 21) and can further enhance functional cooperativity via positive heterotropic cooperativity. Recently, several groups have reported that the CaSR in cells within the lumen of the gastrointestinal tract is activated by L-Phe and other amino acids, which have long been recognized as activators of key digestive processes. Hence, the CaSR enables the tract to monitor events relevant to both mineral ion and protein/amino acid metabolism in addition to the sensing capability of CaSR in blood and other extracellular fluids (19, 22, 23). Glutathione and its \(\gamma\)-glutamylpeptides also allosterically modulate the CaSR at a site similar to the L-aminocacid-binding pocket but with over 1,000-fold higher potencies (20, 24). Thus, CaSR is essential for monitoring and integrating information from both mineral ions/nutrients/polyamines in blood and related extracellular fluids. Nevertheless, we still lack a thorough understanding of the molecular mechanisms by which CaSR is activated by [Ca\(^{2+}\)]\(_o\) and amino acids, which, in turn, regulate CaSR functional positive cooperativity. In addition, in a clinical setting, the molecular basis for the alterations in this cooperativity caused by disease-associated mutations is largely unknown because of the lack of knowledge of the structure of this receptor and its weak binding affinities for [Ca\(^{2+}\)]\(_o\) and amino acids (13, 15, 25, 26).

In the present study, we use two complementary approaches—monitoring [Ca\(^{2+}\)]\(_o\), oscillations in living cells and performing molecular dynamics (MD) simulations—to provide important insights into how the CaSR functions and the behavior of the receptor at the atomic level. We first demonstrate that the molecular connectivity between [Ca\(^{2+}\)]\(_o\)-binding sites that is encoded within key Ca\(^{2+}\)-binding site 1 in the hinge region of the CaSR ECD is responsible for the functional positive homotropic cooperativity in the CaSR response to [Ca\(^{2+}\)]\(_o\). We further identify a L-Phe-binding pocket adjacent to Ca\(^{2+}\)-binding site 1. We show that occupancy of this binding pocket by L-Phe is essential for functional positive heterotropic cooperativity by virtue of its having a marked impact on all five of the predicted Ca\(^{2+}\)-binding sites in the ECD with regard to [Ca\(^{2+}\)]\(_o\)-evoked [Ca\(^{2+}\)]\(_o\) signaling. Furthermore, with MD simulations, we show that the simulated motions of Ca\(^{2+}\)-binding site 1 are correlated with those of the other predicted Ca\(^{2+}\)-binding sites. Finally, the dynamic communication of L-Phe at its predicted binding site in the hinge region with the CaSR Ca\(^{2+}\)-binding sites not only influences the adjacent [Ca\(^{2+}\)]\(_o\) binding site 1 but also globally (i.e., by exerting effects widely over the ECD) enhances cooperative activation of the receptor in response to alterations in [Ca\(^{2+}\)]\(_o\).

MATERIALS AND METHODS

Computational Prediction of L-Phe-binding Site and Ca\(^{2+}\)-Binding Sites from a Model Structure—The structure of the extracellular domain of CaSR (residues 25–530) was modeled based on the crystal structure of metabotropic glutamate recep-

\[
\Delta S = \frac{[M]^n}{K_d^n + [M]^n}
\]
(Eq. 1)

Measurement of [Ca\(^{2+}\)], Responses in Single Cells Transfected with WT or Mutant CaSRs with or without L-Phenylalanine—Measurement of intracellular free Ca\(^{2+}\) was assessed as described by Huang et al. (30). Briefly, wild type CaSR or its mutants were transiently transfected into HEK293 cells grown on coverslips and cultured for 48 h. The cells were subsequently loaded for 15 min using 4 \(\mu\)M Fura-2 AM in 2 ml of physiological saline buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 1.0 mM MgCl\(_2\), 1 mM CaCl\(_2\), pH 7.4). The coverslips were mounted in a bath chamber on the stage of a Leica DM6000 fluorescence microscope, and the cells were incubated in calcium-free physiological saline buffer for 5 min. The cells were then alternately illuminated with 340- or 380-nm light, and the fluorescence at an emission wavelength 510 nm was recorded in real time as the concentration of extracellular Ca\(^{2+}\) was increased in a stepwise manner in the presence or absence of 5 mM L-Phe. The ratio of the emitted fluorescence intensities resulting from excitation at both wavelengths was utilized as a surrogate for changes in [Ca\(^{2+}\)], and was further plotted and analyzed as a function of [Ca\(^{2+}\)]\(_o\). All experiments were performed at room temperature. The signals from 30–60 single cells were recorded for each measurement. Oscillations were defined as three successive fluctuations in [Ca\(^{2+}\)], after the initial peak.

Measurement of [Ca\(^{2+}\)], in Cell Populations by Fluorimetry—The [Ca\(^{2+}\)]\(_o\), responses of wild type CaSR and its mutants were measured as described by Huang et al. (25). Briefly, CaSR-transfected HEK293 cells were grown on 13.5 × 20-mm coverslips. After the cells reached 90% confluence, they were loaded by incubation with 4 \(\mu\)M Fura-2 AM in 20 mM HEPES, containing 125 mM NaCl, 5 mM KCl, 1.25 mM CaCl\(_2\), 1 mM MgCl\(_2\), 1 mM NaH\(_2\)PO\(_4\), 1% glucose, and 1% BSA (pH 7.4) for 1 h at 37 °C and then washed once with 20 mM HEPES (pH 7.4) containing 125 mM NaCl, 5 mM KCl, 0.5 mM CaCl\(_2\), 0.5 mM MgCl\(_2\), 1% glucose, and 1% BSA (bath buffer). The coverslips with transfected, Fura-2-loaded HEK293 cells were placed diagonally in 3-ml quartz cuvettes containing bath buffer. The fluorescence spectra at 510 nm were measured during stepwise increases in [Ca\(^{2+}\)]\(_o\), with alternating excitation at 340 or 380 nm. The ratio of the intensities of the emitted light at 510 nm when excited at 340 or 380 nm was used to monitor changes in [Ca\(^{2+}\)]\(_o\). The EC\(_{50}\) and Hill constants were fitted using the following Hill equation,
where ΔS is the total signal change in the equation and $[M]$ is the free ligand concentration.

MD Simulation and Correlation Analysis Using Amber—MD simulation provides an approach complementary to the experiments in live cells for understanding biomolecular structure, dynamics, and function. The initial coordinates for all the simulations were modeled from the 2.20 Å resolution x-ray crystal structure of mGluR1 with Protein Data Bank code 1EWK (31). The AMBER 10 suite of programs (32) was used to carry out all of the simulations in an explicit TIP3P water model (33), using the modified version of the all-atom Cornell et al. (34) force field and the reoptimized dihedral parameters for the peptide ω-bond (35). An initial 2-ns simulation was performed using NOE restraint during the equilibration to reorient the side chains residues in the Ca$^{2+}$-binding site, but no restraints were used during the actual simulation. A total of three MD simulations were carried out for 50 ns each on the apo-form and ligand-loaded forms. During the simulations, an integration time step of 0.002 ps was used to solve Newton’s equation of motion. The long range electrostatic interactions were calculated using the particle mesh Ewald method (36), and a cutoff of 9.0 Å was applied for nonbonded interactions. All bonds involving hydrogen atoms were restrained using the SHAKE algorithm (37). The simulations were carried out at a temperature of 300 K and a pressure of 1 bar. A Langevin thermostat was used to regulate the temperature with a collision frequency of 1.0 ps$^{-1}$. The trajectories were saved every 500 steps (1 ps). The trajectories were analyzed using the ptraj module in Amber 10.

Accelerated Molecular Dynamics Simulation—Accelerated MD was carried out on the free CaSR ECD using the Rotatable accelerated Molecular Dynamics, (RaMD) method (38) implemented in a pmemd module of AMBER for the rotatable torsion. A boost energy, E, of 2,000 kcal/mol was added to the average dihedral energy, and a tuning parameter, α, of 200 kcal/mol was used. The dual boost was also applied to accelerate the diffusive and solvent dynamics as previously described (39). The simulation conditions were similar to that of the normal MD simulations above. Principal component analysis was carried out on the trajectories using the ptraj module in AMBER. The directions of the eigenvectors for the slowest modes were visualized using the Interactive Essential Dynamics plugin (40).

Docking Studies of Phe, Asp, and Glutathione—The binding energies for the ligands were calculated using an ensemble docking method and Autodock vina (28). The ensemble of conformations of CaSR was generated using molecular dynamics simulations as described above. Gasteiger charges were assigned to the ligands and CaSR using the Autodock ADT program. The ligands were flexible during docking to each conformation of CaSR using the following parameters: the grid spacing was 1.0 Å; the box size was 25 Å in each dimension, and the center of the box was chosen as the center of the active site of CaSR, with a large enough space to sample all possible ligand conformations within the box. The maximum number of binding modes saved was set to 10. The conformation with the lowest binding energy was used and assumed to be the best binder. Distributions of the binding energies for each ligand were calculated based on the lowest binding energy of each ligand to each conformation in the ensemble of CaSR conformations.

Principal Component Analysis—Using the ptraj module of AMBER 10, principal component analysis (PCA) (41, 42) was performed on all the snapshots of the combined trajectories of the ligand-free CaSR ECD, the Ca$^{2+}$-loaded form, the form loaded with only L-Phe, and the form loaded with both Ca$^{2+}$ and L-Phe were calculated. The covariance matrix was further diagonalized to produce orthonormal eigenvectors and their corresponding eigenvalues, ranked on the basis of their corresponding variances. The first three eigenvectors, the principal components that contributed the majority of all the atomic fluctuations, were used to project the conformational space onto them, i.e., along two dimensions.

Statistics—The data are presented as means ± S.E. for the indicated number of experiments. Statistical analyses were carried out using the unpaired Student’s t test when two groups were compared. A p value of < 0.05 was considered to indicate a statistically significant difference.

RESULTS

Molecular Connectivity among Predicted Calcium-binding Sites Is Required for Functional Positive Cooperativity of CaSR—It has been documented that in several regions of the CaSR and mGluRs, the amino acid residues are highly conserved (43). Those conserved elements provide a structural framework for the modeling of the CaSR ECD. Among all the available crystal structures of the mGluRs, studies on mGluR1 give concrete structural information about ligand-free as well as various ligand-bound forms of the receptor. Moreover, CaSR and mGluR1 share similar signaling pathways and can form heterodimers with one another either in vivo or in vitro (44). Thus, the crystal structures of mGluR1 were employed for modeling the CaSR ECD. By using our own computational algorithms, we previously identified five putative Ca$^{2+}$-binding sites in the modeled CaSR ECD (Fig. 1) (25, 26, 45). Among these, site 1 is located in the hinge region between the two lobes in the Venus flytrap motif. Among 34 newly identified naturally occurring missense mutations within the ECD, 18 are located within 10 Å of one or more of the predicted Ca$^{2+}$-binding sites (15). Interestingly, a few disease-associated human mutations severely impair the functional cooperativity of CaSR (46).

Functional positive homotropic cooperativity here refers to [Ca$^{2+}$]$_i$-induced changes in CaSR activity that can be ascribed to interactions between the five predicted Ca$^{2+}$-binding sites, which are located in different regions of the ECD (47–49). To understand the observed cooperativity and the origin of changes in cooperativity caused by disease-associated mutations at the atomic level, we have carried out MD simulations on the modeled CaSR ECD to predict correlated motions. MD simulation provides an approach complementary to the experiments in live cells for understanding biomolecular structure, dynamics, and function (50). We calculated the cross-correlation coefficients of each residue with those of all of the other residues in the CaSR ECD from the simulations (“Material and Methods”). Fig. 1 (lower right panel) shows the normalized correlation matrix map of both negative (blue) and positive (red) correlated motions between each pair of residues. Negative and
promote Ca2+ functional positive cooperativity

Table 1: Analysis of correlated motions of WT CaSR model structure

<table>
<thead>
<tr>
<th>Residue pairs</th>
<th>Negative correlation</th>
<th>Positive correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser170 (site 1):Asp248 (site 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp306 (site 1):Ser248 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser169 (site 1):Asp248 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 1):Asp248 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp191 (site 1):Gln253 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 1):Glu375 (site 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 1):Glu375 (site 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 1):Glu375 (site 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 1):Glu375 (site 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser244 (site 2):Asp248 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser244 (site 2):Gln253 (site 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 4):Glu223 (site 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 4):Glu223 (site 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu228 (site 4):Glu223 (site 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp191 (site 1):Gln253 (site 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We define functional positive heterotropic cooperativity as that which occurs when the functional positive cooperative effect of interaction with one ligand (e.g., Ca2+) affects the functional response resulting from interaction of a different ligand with the protein (i.e., an aromatic amino acid) (57). This term can be applied in the case of CaSR when it simultaneously senses Ca2+ and \textit{l}-Phe. We have also observed greater correlated motions among the multiple Ca2+-binding sites after docking both Ca2+ and \textit{l}-Phe compared with docking of \textit{l}-Phe alone to the ECD domain of the CaSR (Fig. 2c). Taking these results together, we propose that there is molecular connectivity centered at predicted calcium-binding site 1 that plays an essential role in regulating the correlated motions among the multiple Ca2+-binding sites. Further communication of this site with the amino acid-binding site is likely to mediate functional heterotropic cooperativity of CaSR-mediated signaling, as shown later.

Functional Positive Homotropic Cooperativity among Ca2+-binding Sites—Given that it is not readily possible to perform radioligand binding assays on CaSR because of its low affinity for its ligands, especially Ca2+ (e.g., mks \textit{K}_D), as well as difficulty in purification of CaSR, we monitored [Ca2+], responses both by using a cuvette population assay and by monitoring [Ca2+] oscillations using single-cell imaging to determine functional cooperativity of CaSR. HEK293 cells transfected with WT CaSR exhibited sigmodal concentration response curves for [Ca2+]-evoked [Ca2+], responses (as monitored by changes in the ratio of fluorescence at 510 nm when excited at 340 or 380 nm) during stepwise increases in [Ca2+], with a Hill coefficient of 3.0 ± 0.9.
L-Phe and Ca\(^{2+}\) Promote CaSR Functional Positive Cooperativity

0.1 and a EC\(_{50}\) of 2.9 ± 0.2 mM. This result suggests strong positive homotropic cooperativity within the five predicted Ca\(^{2+}\)-binding sites of the CaSR (Fig. 3). The sensitivity to agonist was assessed using the [Ca\(^{2+}\)]\(_o\), at which cells began to show [Ca\(^{2+}\)] oscillations and the frequency of the oscillations at the respective levels of [Ca\(^{2+}\)]\(_o\), at which more than 50% of the cells started to oscillate.

To seek the key determinants underlying the observed functional positive homotropic cooperativity, mutations were introduced into the various predicted Ca\(^{2+}\)-binding sites of the CaSR by site-directed mutagenesis. The mutated receptors exhibited impaired Ca\(^{2+}\) sensing capabilities with altered oscillation patterns in single-cell studies and higher EC\(_{50}\) values compared with WT CaSR in population studies (Tables 2 and 3). Such population studies were also reported in our previous studies (25, 26). Results from Western blot and immunofluorescence staining using an anti-CaSR antibody indicate that the cooperativity among the five predicted Ca\(^{2+}\)-binding sites of the CaSR was impaired by mutating each of them separately. Strikingly, removal of Ca\(^{2+}\)-binding ligand residues, such as E297I and Y218Q at site 1, converted the single process for functional activation of the WT CaSR by [Ca\(^{2+}\)]\(_o\), to biphasic functional processes, suggesting that the underlying cooperative binding mechanism had been substantially perturbed (Figs. 3b and 6d).

Functional Positive Heterotropic Cooperativity Contributed by the Identified L-Phe-binding Site—Fig. 6a shows the effect of 5 mM L-Phe on the [Ca\(^{2+}\)]\(_o\), responses at different levels of [Ca\(^{2+}\)]\(_o\), in HEK293 cells transiently transfected with the WT CaSR or its variants with mutations around the predicted L-Phe-sensing site. L-Phe lowered the threshold for [Ca\(^{2+}\)]\(_o\)-induced oscillations in the WT CaSR from 3.0 ± 0.1 to 2.0 ± 0.2 mM, a 1.5-fold decrease (Fig. 6a and Table 2). Concurrently, L-Phe also increased the oscillation frequency from 1.5 ± 0.1 to 2.2 ± 0.2 peaks/min (n>30, p < 0.05) in the presence of 3.0 mM [Ca\(^{2+}\)]\(_o\), in the single-cell assay (Fig. 6c and Table 2). Meanwhile, L-Phe produced functional positive heterotropic cooperativity of the receptor, because it facilitated the response of the WT CaSR to [Ca\(^{2+}\)]\(_o\), by significantly decreasing the EC\(_{50}\) from 2.9 ± 0.2 to 1.9 ± 0.2 mM (n = 3, p < 0.05) and increasing the Hill coefficient from 3.0 to 4.0 in the cell population assay (Fig. 6d and Table 3).

We then performed detailed analyses to understand the role of residues in the modeled L-Phe-binding site in the functional positive heterotropic cooperativity contributed by L-Phe (Fig. 6 and Table 4). Five of 12 residues located within 5 Å of the modeled L-Phe-binding site exhibited impaired L-Phe-sensing ability. Mutants L51A and S170T exhibited impaired L-Phe sensing capability as indicated by the absence of any change in the starting point (Fig. 6b) as well as constant oscillatory frequencies (~1.7 and 1.4 peaks/min) in the presence of L-Phe (Fig. 6c),
whereas they maintained relatively unaltered calcium-sensing functions. Consistent with the single-cell assay results, cell population studies revealed that the EC_{50} values of L51A, S170T, and Y218Q remained the same with or without l-Phe (Fig. 6a) (the effect of l-Phe on S170T has previously been reported by Zhang et al. (51) in a cell population assay). The addition of 5 mM l-Phe lowered the [Ca^{2+}]_o required to initiate oscillations in cells transfected with mutations S272A or T145A but failed to increase the oscillatory frequency at 2.5 mM [Ca^{2+}]_o (the level at which the majority of the cells began to oscillate), nor did it reduce the EC_{50} (Table 4 and Fig. 7). Tyr^{218} is predicted to be involved in binding of both l-Phe in its binding pocket and of Ca^{2+} in site 1. Indeed, the mutation Y218Q largely disrupted the functional positive homotropic cooperativity with transformation of the single cooperative response to [Ca^{2+}]_o, of the WT CaSR to a biphasic process in the cell population assay. Y218Q also exhibited less sensitivity to [Ca^{2+}]_o, because [Ca^{2+}]_o oscillations did not start until [Ca^{2+}]_o was increased to more than 10 mM, reflecting its role in this Ca^{2+}-binding site. Of note, however, addition of 5 mM l-Phe failed to restore the calcium sensitivity of this mutant as manifested by an unchanged oscillation pattern. An oscillation frequency of ~1.5 peaks/min was observed at 20 mM [Ca^{2+}]_o both with and without l-Phe for this mutant. In contrast, mutations such as K47A, Y63I, W70L, G146A, I162A, S169A, I187A, H413L, and R415A did not abrogate the positive allosteric effect of 5 mM l-Phe (Table 5). Taken together, these results suggest that residues located at the predicted l-Phe-binding site, including Leu^{51}, Thr^{145}, Ser^{272}, and Tyr^{218}, play key roles in sensing l-Phe.

Global Functional Positive Heterotropic Cooperative Tuning by l-Phe of the Positive Homotropic Cooperative Response of CaSR to [Ca^{2+}]_o—The sensing of l-Phe at the hinge region adjacent to site 1 has marked global (i.e., extending widely over the ECD) effects on the five predicted Ca^{2+}-binding sites predicted earlier, which are spread over different several locations in the CaSR ECD. Interestingly, addition of 5 mM l-Phe significantly rescued the [Ca^{2+}]_o responses of the two mutants, E297I and D215I, in sites 1 and 2, respectively, that exhibited disrupted cooperativity. Notably, l-Phe converted the biphasic Ca^{2+}-response curve for E297I back to a uniphasic curve (Fig. 8). Fig. 8 shows that their starting points for [Ca^{2+}]_o-initiated oscillations were reduced from 17.0 ± 0.4 to 7.3 ± 0.2 mM (E297I) and from 13.9 ± 0.2 to 6.7 ± 0.3 mM (D215I), respectively, in the presence of l-Phe (Table 2). Both of the mutants exhibited more than 2-fold shifts in their starting points in the presence of l-Phe. The frequencies of their oscillations increased to more than 2 peaks/min in both cases compared.

TABLE 2

Summary of individual cellular responses to the indicated increments of [Ca^{2+}]_o in HEK293 cells transiently transfected with WT CaSR or mutations in the indicated Ca^{2+}-binding sites.

<table>
<thead>
<tr>
<th>Predicted sites</th>
<th>Residues</th>
<th>Mutants</th>
<th>Starting point</th>
<th>Ending point</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Ser^{47}, Ser^{170}, Asp^{349}, Tyr^{178}, Glu^{297}</td>
<td>WT</td>
<td>3.0 ± 0.1</td>
<td>2.0 ± 0.2</td>
<td>6.4 ± 0.3</td>
</tr>
<tr>
<td>Site 1</td>
<td>Asp^{215}, Leu^{242}, Ser^{249}, Asp^{348}, Glu^{253}</td>
<td>E297I</td>
<td>17.0 ± 0.4</td>
<td>7.3 ± 0.2</td>
<td>NA</td>
</tr>
<tr>
<td>Site 2</td>
<td>Glu^{242}, Glu^{249}, Glu^{251}, Glu^{252}</td>
<td>D215I</td>
<td>17.0 ± 0.2</td>
<td>6.7 ± 0.3</td>
<td>17.7 ± 0.3</td>
</tr>
<tr>
<td>Site 3</td>
<td>Glu^{350}, Glu^{353}, Glu^{354}, Asn^{386}, Ser^{388}</td>
<td>E224I</td>
<td>5.0 ± 0.2</td>
<td>5.2 ± 0.1</td>
<td>16.8 ± 0.3</td>
</tr>
<tr>
<td>Site 4</td>
<td>Glu^{278}, Glu^{279}, Thr^{276}, Asp^{398}, Glu^{399}</td>
<td>E353I</td>
<td>4.8 ± 0.1</td>
<td>12.4 ± 0.1</td>
<td>10.8 ± 0.2</td>
</tr>
<tr>
<td>Site 5</td>
<td>D398A/399E</td>
<td>9.3 ± 0.1</td>
<td>5.5 ± 0.2</td>
<td>16.8 ± 0.3</td>
<td>11.0 ± 0.1</td>
</tr>
</tbody>
</table>

a Indicates significance with respect to the corresponding experiment in the same mutant without l-Phe (p < 0.05).

b Indicates significance with respect to wild type CaSR without l-Phe (p < 0.05).
\textbf{\textit{L-Phe and Ca2+ Promote CaSR Functional Positive Cooperativity}}

\section*{TABLE 3}

Summary of EC\textsubscript{50} values and Hill coefficients predicted using Hill equation for the WT and mutant CaSRs

HEK293 cells were transiently transfected with the WT CaSR or Ca2+ binding-related CaSR mutants, and after 48 h the cells were loaded with Fura-2 as described under "Materials and Methods." The cells on glass coverslips were then transferred into the cuvette for fluorimetry and exposed to various increases in [Ca2+], (from 0.5 to 30 mM) in the absence or presence of 5 mM \textit{L}-Phe as described above. The average of [Ca2+], at each [Ca2+], was plotted against [Ca2+], and further fitted using the Hill equation, which gave EC\textsubscript{50} and Hill numbers. The maximum response for each mutant was subtracted from the baseline and normalized to the maximal cumulative [Ca2+], response of the WT receptor. The data were obtained from three experiments for each construct.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Mutants</th>
<th>Response at 30 ms [Ca2+]</th>
<th>EC\textsubscript{50} [Ca2+]</th>
<th>Hill coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without L-Phe</td>
<td>With L-Phe</td>
<td>Without L-Phe</td>
</tr>
<tr>
<td>WT</td>
<td>E297I</td>
<td>100.0 ± 2.0</td>
<td>104.6 ± 2.9</td>
<td>2.9 ± 0.2</td>
</tr>
<tr>
<td>Site 1</td>
<td>D215I</td>
<td>78.0 ± 6.9a</td>
<td>138.2 ± 1.9a</td>
<td>Phase 1: 3.2 ± 0.4 a</td>
</tr>
<tr>
<td>Site 2</td>
<td>E224I</td>
<td>88.0 ± 2.5a</td>
<td>147.5 ± 6.0a</td>
<td>14.7 ± 1.9a</td>
</tr>
<tr>
<td>Site 3</td>
<td>D338I</td>
<td>83.2 ± 5.2a</td>
<td>104.2 ± 4.5a</td>
<td>5.3 ± 0.4a</td>
</tr>
<tr>
<td>Site 4</td>
<td>E353I</td>
<td>80.7 ± 1.6a</td>
<td>88.9 ± 1.8a</td>
<td>4.0 ± 0.1a</td>
</tr>
<tr>
<td>Site 5</td>
<td>D398A/E399I</td>
<td>80.9 ± 7.0a</td>
<td>78.3 ± 6.5</td>
<td>4.7 ± 0.7a</td>
</tr>
</tbody>
</table>

a Indicates significance with respect to the corresponding mutants in the absence of L-Phe (p < 0.05).

b Indicates significance with respect to wild type CaSR in the absence of L-Phe (p < 0.05).

\section*{FIGURE 4. Individual cellular responses of mutants in calcium-binding sites to the indicated increments of \([\text{Ca}^{2+}]_o\) in the presence or absence of L-Phe.}

\textit{a}, representative intracellular calcium response from a single cell. Fura-2-loaded HEK293 cells expressing CaSR with mutations in calcium-binding site 3, 4, or 5 were prepared for single-cell experiments. Each experiment with or without 5 mM L-Phe began in the same non-calcium-containing Ringer buffer followed by stepwise increases in \([\text{Ca}^{2+}]_o\) as indicated above the oscillation pattern using a perfusion system until \([\text{Ca}^{2+}]_o\) reached a plateau (up to 30 mM \([\text{Ca}^{2+}]_o\)). At least 30 cells were analyzed for each mutant. \textit{b}, frequency distribution of the \([\text{Ca}^{2+}]_o\), at which CaSR-transfected single HEK293 cells started to oscillate. The cell number percentage is defined as the number of cells starting to oscillate at a given \([\text{Ca}^{2+}]_o/\text{total cell number showing oscillation pattern × 100. Empty bar, in the absence of L-Phe; black bar, in the presence of 5 mM L-Phe. c, the frequency distribution of the oscillation frequency from single cells was investigated as described before. For experiments without L-Phe, the number of peaks/min was recorded at the level of \([\text{Ca}^{2+}]_o\), at which the majority of the cells (>50%) started to oscillate; for experiments with 5.0 mM L-Phe, the frequency was analyzed at the same \([\text{Ca}^{2+}]_o\), that was used in the absence of L-Phe. Specifically, the frequency of E224I was studied at 4 mM \([\text{Ca}^{2+}]_o\); E353I was analyzed at 5.0 mM \([\text{Ca}^{2+}]_o\); and D398A/E399I was investigated at 10.0 mM \([\text{Ca}^{2+}]_o\). Empty bar, in the absence of L-Phe; black bar, in the presence of 5 mM L-Phe.}

with the frequencies without L-Phe (Fig. 8c and Table 2). Similarly, the addition of L-Phe decreased their EC\textsubscript{50} values in the cell population assay (Table 3).
The Ensemble of Conformations of Calcium- and L-Phe-loaded CaSR ECD Is Distinguishable from the Nonloaded Forms—

To provide a more detailed description of the CaSR mechanism of action at the atomic level, we again used MD simulations to analyze the trajectories of these simulations using PCA (“Materials and Methods”), which separates out the protein motions into principal modes ranked according to their relative contributions (41). Projection of the trajectories of the different states of CaSR onto the first three modes, which accounted for the majority of the total fluctuations, is shown in Fig. 9a. The conformations sampled by the Ca\(^{2+}\)-free and L-Phe-free forms of the CaSR are distinctly different from those sampled by the Ca\(^{2+}\)-loaded and Ca\(^{2+}\)- and L-Phe-loaded forms of the receptor. Interestingly, the conformations of the L-Phe-loaded and the free forms of CaSR are essentially indistinguishable, as can be seen in Fig. 9a. The results suggest that [Ca\(^{2+}\)]\(_o\) shifts the population of conformational ensembles of CaSR to a semi-active ensemble that can subsequently be shifted to an ensemble of more active conformations upon interaction of the receptor with L-Phe. These results are consistent with the experiments described above and suggest that the unbound CaSR does not respond to L-Phe alone, because L-Phe cannot effectively shift the inactive conformations to an active ensemble of conformations. The above results do not rule out the role of conformational selection, which implies the existence of all relevant active and inactive conformations of the receptor before binding, in the mechanism of activation of CaSR, but clearly indicate that the ensembles of active and inactive conformations are distinctly different and that [Ca\(^{2+}\)]\(_o\) alone and/or [Ca\(^{2+}\)]\(_o\) and L-Phe together are required to shift the population, in agreement with previously well-documented experimental results that L-Phe could not activate CaSR at sub-threshold levels of [Ca\(^{2+}\)]\(_o\), below \(\sim 1.0 \text{ mM}\) in CaSR-transfected HEK293 cells (58).

Based on all the experimental results and the directions of the eigenvectors from the long time simulation (Fig. 9b), we propose a model to illustrate the possible mechanism by which Ca\(^{2+}\) and L-Phe regulate the function of the CaSR mainly through the molecular connectivity encoded at the hinge region of the ECD of the protein. Our model (Fig. 9c) suggests that a local conformational change upon interaction of the...
CaSR with L-Phe might affect the overall conformation of the receptor, thereby influencing the cooperativity between multiple Ca\(^{2+}\)-binding sites and enhancing the overall response of the receptor to Ca\(^{2+}\).

DISCUSSION

Several major barriers have hampered our understanding of how CaSR integrates its activation by two different classes of nutrients, divalent cations and amino acids, to regulate the functional cooperativity of the receptor and of the alterations of this cooperativity caused by disease mutations. These include “invisible” binding pockets for these two key physiological agonists of the CaSR, namely Ca\(^{2+}\) and amino acids, challenges in obtaining structural information associated with membrane proteins, and the lack of direct binding methods in determining the mechanism underlying cooperative activation of the CaSR by Ca\(^{2+}\) and amino acids (13, 19, 59). To overcome these limitations, we have developed several computer algorithms and a grafting approach for identifying and predicting Ca\(^{2+}\)-binding sites in proteins, and we have successfully verified the intrinsic Ca\(^{2+}\)-binding capabilities of predicted Ca\(^{2+}\)-binding sites in the CaSR and mGluR1 (25–27, 60).

Our studies, shown in Figs. 1, 3, and 6, suggest that mutations in Ca\(^{2+}\)-binding site 1, such as E2971 and Y218Q, not only disrupt the Ca\(^{2+}\) sensing capacity of CaSR but also have an impact on the positive homotropic cooperative interactions of Ca\(^{2+}\) with the other Ca\(^{2+}\)-binding sites. The biphasic behavior of these mutants with a large disruption of cooperativity is very similar to our previously reported metal-binding concentration response curves of subdomain 1 and its variants with increases in [Ca\(^{2+}\)]\(_i\) (26). Subdomain 1 of CaSR contains a protein sequence encompassing Ca\(^{2+}\)-binding sites 1, 2, and 3, but not Ca\(^{2+}\) with L-Phe.
L-Phe and Ca\(^{2+}\) Promote CaSR Functional Positive Cooperativity

TABLE 4

Summary of cellular responses of HEK293 cells transiently transfected with WT CaSR or mutants in the predicted L-Phe-binding site

The average [Ca\(^{2+}\)] at which cells started [Ca\(^{2+}\)] oscillations was recorded using the aforementioned methods for WT or each mutant CaSR. For the oscillation frequency in the absence of L-Phe, peaks/min were measured at the level of [Ca\(^{2+}\)], at which more than 50% cells started to oscillate; when L-Phe was added, frequencies were recorded at the same [Ca\(^{2+}\)], as their counterparts without L-Phe. Specifically, the frequencies of WT and L51A were measured at 3.0 mM [Ca\(^{2+}\)], whereas S272A, T145A, and S170T were measured at 2.5 mM [Ca\(^{2+}\)], and Y218Q was analyzed at 15.0 mM [Ca\(^{2+}\)]. The values are means ± S.E. EC\(_{50}\) and Hill numbers were obtained from the cell population assay by fitting plots using the Hill equation.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Without L-Phe</th>
<th>With L-Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>3.0 ± 0.1</td>
<td>2.0 ± 0.2(^*)</td>
</tr>
<tr>
<td>L51A</td>
<td>2.9 ± 0.1</td>
<td>2.8 ± 0.1</td>
</tr>
<tr>
<td>T145A</td>
<td>2.8 ± 0.1</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>S170T</td>
<td>2.1 ± 0.2(^b)</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>Y218Q</td>
<td>17.7 ± 1.0(^b)</td>
<td>16.7 ± 2.2</td>
</tr>
<tr>
<td>S272A</td>
<td>2.7 ± 0.2</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>

\(^{*}\) Significant difference between cases without L-Phe and with 5 mM L-Phe (p < 0.05).

\(^{b}\) Significant difference between mutant receptor and WT CaSR without L-Phe (p < 0.05).

FIGURE 7. Individual cellular responses of mutants in the L-Phe-sensitive site to the indicated increments of [Ca\(^{2+}\)] in the presence or absence of L-Phe. HEK293 cells transfected with wild type CaSR or mutants were loaded with Fura-2 AM for 15 min. Each experiment with or without 5 mM L-Phe began in the same non-calcium-containing Ringer buffer followed by stepwise increases in [Ca\(^{2+}\)] until [Ca\(^{2+}\)] reached a plateau (up to 30 mM) as monitored by changes in the ratio of light emitted at 510 nm following excitation at 340 or 380 nm. At least 30 cells were analyzed for mutants S272A and T145A. Representative cellular responses from a single cell are shown.

Ca\(^{2+}\)-binding sites 4 and 5. It also exhibits both strong and weak metal-binding components. This strong metal-binding process can be removed by further mutating site 1 (E297I). In contrast, mutations at sites 2 and 3 in subdomain 1 have less impact on the first binding process (26). These experimental results are consistent with molecular dynamics simulation studies carried out here showing that residues located at site 1 have strong correlated motions with other residues involved in sites 2, 3, 4 and 5 (Table 1). The results suggest that the dynamics of site 1 are intrinsically coupled to those of the other binding sites; therefore, any changes in the dynamics of site 1 could affect those of the other sites. The observation of this molecular connectivity and its relationship to positive cooperativity from the molecular dynamics simulations provides a description at the atomic level of the cross-talk between the different sites of the CaSR suggested by the experimental results in live cells.

Here, we have also identified and characterized an L-Phe-binding pocket formed by residues Leu\(^{51}\), Ser\(^{170}\), Thr\(^{145}\), Tyr\(^{218}\), and Ser\(^{272}\) that is adjacent to and partially overlaps the key Ca\(^{2+}\)-binding site 1 at the hinge region of the Venus flytrap of the CaSR. This Ca\(^{2+}\)-binding site is also conserved in other family C GPCRs, including the mGluR1 Venus flytrap (Fig. 2) (27, 31, 56). Tyr\(^{218}\) is involved in sensing both Ca\(^{2+}\) and L-Phe. The aromatic ring from residue Tyr\(^{218}\) could form delocalized pi bonds with the side chain of L-Phe and the hydrophobic interaction between Leu\(^{51}\) and L-Phe would further stabilize this interaction. Mutating Ser\(^{170}\) might interfere with H-bonding of the ligated amino acid to the -amino group of Ser\(^{170}\) based on the structure of mGluR1α (53). S170T has been reported by different groups to interfere with the L-Phe sensing ability of CaSR (51, 53). Consideration of the crystal structure of the glutamate-bound form of mGluR1 (31), together with our docking analysis, implies that residues Thr\(^{145}\) and Ser\(^{272}\) may not directly participate in the interaction with L-Phe but could possibly interact with L-Phe by ligation of water molecules, which is a relatively weaker type of interaction.

We have observed essentially equivalent expression of WT CaSR as well as its variants on the cell surface (Fig. 5). These data suggest that the difference in the Ca\(^{2+}\) sensing capacities among the WT and mutant receptors are due to perturbation of the cell surface receptor functions rather than, for example, impaired trafficking of the receptor proteins to the cell surface. L-Phe rescued the calcium responses of the tested mutants located in all five predicted Ca\(^{2+}\)-binding sites, and it had more dramatic rescuing effects on mutants E297I and D215I compared with the other mutants (Fig. 8d). Thus, the importance of the hinge region, where L-Phe likely interacts with the CaSR ECD, is once again highlighted.

The PCA results suggest that the need for Ca\(^{2+}\) in initially activating CaSR, as suggested by these experiments, is related to shifting the ensemble of conformations of CaSR from an inactive state to an active state. The activity of the Ca\(^{2+}\)-loaded form of CaSR is then further enhanced by the binding of L-Phe, which produces an additional change in the ensembles of conformations of CaSR. Therefore, the global modulation of receptor activity by Ca\(^{2+}\) and L-Phe might be explained by a combination of an induced fit and population shift models (61); that is, the overall structure of the receptor could vary in the equilibrium distributions of conformations that can interchange dynamically in the absence of Ca\(^{2+}\) and L-Phe. Our experimental results suggest that binding of Ca\(^{2+}\) at its various sites is associated with motions of these sites that are highly correlated...
L-Phe and Ca\(^{2+}\) Promote CaSR Functional Positive Cooperativity

TABLE 5

Summary of cellular responses of HEK293 cells transiently transfected with WT CaSR or mutants in the predicted L-Phe-sensing site

The intracellular calcium responses of HEK293 cells transiently overexpressing WT CaSR or various mutants potentially involved in the interaction with L-Phe were measured using Fura-2 AM during stepwise increases in [Ca\(^{2+}\)]. The pattern of [Ca\(^{2+}\)]\(_o\) responses in each cell (minimum of 30 cells) was analyzed, and the [Ca\(^{2+}\)]\(_i\) at which individual cells started to oscillate was recorded. For experiments without L-Phe, the number of peaks/min was recorded at the level of [Ca\(^{2+}\)]\(_o\) at which the majority of the cells (>50%) started oscillating, whereas for experiments with 5 mM L-Phe, the frequency was analyzed at the same levels of [Ca\(^{2+}\)]\(_o\). In the corresponding experiments carried out without L-Phe. Specifically, WT, K47A, G146A, S169A, and H413L were measured at 3.0 mM [Ca\(^{2+}\)]\(_o\); Y63L and R415A were measured at 10.0 mM [Ca\(^{2+}\)]\(_o\); and W70L and I162A were measured at 12.5 mM [Ca\(^{2+}\)]\(_o\). The average fluorescence intensity ratio at each increase in the level of [Ca\(^{2+}\)]\(_o\) was plotted against [Ca\(^{2+}\)]\(_o\) and fitted using the Hill equation, which gave EC\(_{50}\) and Hill numbers. The values are means ± S.E. NA, not available.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Without L-Phe</th>
<th>With L-Phe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>3.0 ± 0.1</td>
<td>2.0 ± 0.2</td>
<td>1.5 ± 0.1</td>
<td>2.2 ± 0.2</td>
<td>2.9 ± 0.1</td>
<td>1.8 ± 0.2</td>
<td>3.2 ± 0.3</td>
<td>4.1 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K47A</td>
<td>2.4 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>2.8 ± 0.2</td>
<td>2.5 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>3.0 ± 0.1</td>
<td>3.6 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y63L</td>
<td>3.3 ± 0.2</td>
<td>2.4 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>2.0 ± 0.2</td>
<td>2.8 ± 0.2</td>
<td>1.7 ± 0.1</td>
<td>3.0 ± 0.1</td>
<td>3.6 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W70L</td>
<td>13.9 ± 1.0</td>
<td>9.2 ± 0.3</td>
<td>2.7 ± 0.2</td>
<td>3.1 ± 0.2</td>
<td>8.2 ± 0.3</td>
<td>7.8 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>3.7 ± 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G146A</td>
<td>2.5 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>2.9 ± 0.2</td>
<td>2.6 ± 0.1</td>
<td>1.9 ± 0.1</td>
<td>2.5 ± 0.1</td>
<td>3.3 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I162A</td>
<td>13.0 ± 1.2</td>
<td>9.6 ± 0.3</td>
<td>1.4 ± 0.1</td>
<td>2.5 ± 0.2</td>
<td>7.9 ± 0.4</td>
<td>11.3 ± 0.1</td>
<td>2.0 ± 0.1</td>
<td>1.5 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S169A</td>
<td>3.0 ± 0.2</td>
<td>2.3 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>2.3 ± 0.2</td>
<td>3.2 ± 0.2</td>
<td>2.2 ± 0.1</td>
<td>3.3 ± 0.1</td>
<td>3.9 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I187A</td>
<td>8.1 ± 0.4</td>
<td>3.4 ± 0.1</td>
<td>1.8 ± 0.1</td>
<td>NA</td>
<td>9.0 ± 0.3</td>
<td>3.4 ± 0.1</td>
<td>1.6 ± 0.1</td>
<td>2.6 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H413L</td>
<td>2.8 ± 0.2</td>
<td>1.4 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>2.1 ± 0.1</td>
<td>3.4 ± 0.2</td>
<td>2.1 ± 0.1</td>
<td>3.4 ± 0.2</td>
<td>3.6 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R415A</td>
<td>3.5 ± 0.3</td>
<td>2.8 ± 0.2</td>
<td>1.8 ± 0.2</td>
<td>2.6 ± 0.3</td>
<td>3.0 ± 0.2</td>
<td>2.5 ± 0.1</td>
<td>2.9 ± 0.2</td>
<td>3.4 ± 0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significance difference between cases without L-Phe and with 5 mM L-Phe (p < 0.05).

* Significant difference between mutant receptor and WT CaSR without L-Phe (p < 0.05).

FIGURE 8. [Ca\(^{2+}\)]\(_o\) responses of CaSRs with mutations in the Ca\(^{2+}\)-binding sites stimulated by increasing [Ca\(^{2+}\)]\(_o\) in the presence or absence of 5 mM L-Phe. a, [Ca\(^{2+}\)]\(_o\) was monitored in mutants E297I and D215I in the absence or presence of L-Phe. b, [Ca\(^{2+}\)]\(_o\) was increased stepwise up to 30 mM in 5 mM L-Phe. c, in the single-cell experiments, the frequency of the oscillation patterns was investigated in more than 30 cells. For experiments without L-Phe, the number of peaks/min was recorded at the level of [Ca\(^{2+}\)]\(_o\) at which the majority of the cells (>50%) started oscillating, whereas for experiments with 5 mM L-Phe, the frequency was analyzed at the same level of [Ca\(^{2+}\)]\(_o\). d, frequency distribution of [Ca\(^{2+}\)]\(_o\) at which the majority of the cells started to oscillate in the single-cell experiments. The average fluorescence intensity ratio at each increase in the level of [Ca\(^{2+}\)]\(_o\) was plotted against [Ca\(^{2+}\)]\(_o\) and fitted using the Hill equation, which gave EC\(_{50}\) and Hill numbers. Inset in top panel of d, zoomed in view of the binding first phase.

with one another. Consequently, the shift in the ensemble of conformations of CaSR induced by the initial binding of Ca\(^{2+}\) at site 1 will alter the equilibrium population of the unbound conformations of other Ca\(^{2+}\)-binding sites because of their cross-talk with site 1. The binding of Ca\(^{2+}\) to site 1 and the subsequent interaction of CaSR with L-Phe can further shift the conformations of the ECD from one part of the free energy landscape to another. In this way, Ca\(^{2+}\) binding to other sites is more readily favorable. Our findings here also enhance our understanding of the role of Ca\(^{2+}\) in modulating key Ca\(^{2+}\)-
binding proteins, such as calmodulin, to mediate signal transduction via correlated motions among their multiple Ca\(^{2+}\)-binding sites, thereby generating cooperative responses with critical biological consequences (62, 63).

The coactivation of CaSR by these two classes of ligands may be particularly important in the gastrointestinal tract, where high concentrations of amino acids resulting from protein digestion would promote activation of the CaSR and its stimulation of digestive processes even when there are relatively low levels of Ca\(^{2+}\). Moreover, as reported in clinical studies, there are three disease-related variants near Ca\(^{2+}\)-binding site 1 associated with receptor activation or inactivation and, in some cases, with reduced cooperativity (15). Our work suggests that it is likely that such mutations disrupt the molecular connectivity encoded in the receptor and provide a better understanding of the molecular basis of some of the CaSR-related clinical disorders. Although the circulating levels of Ca\(^{2+}\) and \(\ell\)-Phe \textit{in vivo} are lower than in the \textit{in vitro} experiments, the discrepancy noted here (2–3-fold for the WT receptor for Ca\(^{2+}\)) is substantially less than the variety of more classical hormone receptor systems. For the cloned parathyroid hormone receptor, for example, the \(K_d\) values for activation of adenylate cyclase and stimulation of PLC, are 1 and 20–50 nM, respectively, whereas the normal circulating levels of parathyroid hormone are \(\sim 1\)–7 pM, \textit{i.e.}, resulting in a \(>100\)-fold discrepancy even a \(>1000\)-fold discrepancy between \textit{in vivo} and \textit{in vitro} results (64). Our finding of the capacity of \(\ell\)-Phe to rescue disease-linked mutations suggests the possibility of enhancing the activities of such mutant receptors using calcimimetics of various types as pharmacotherapy. Thus, our results provide insights into key factors regulating the overall activity of the receptor, which can lay the foundation for a new generation of therapeutics and drugs.

In addition to the Ca\(^{2+}\)-sensing receptor, \(\left[\text{Ca}^{2+}\right]_o\) regulates 14 of the other members of the family C GPCRs, including the...
mGluRs, GABA_B receptors, and receptors for pheromones, amino acids, and sweet substances (1, 5, 10, 16, 54–56, 65). The observed molecular connectivity centered at predicted calcium-binding site 1 of the CaSR, which is adjacent to an amino acid-binding pocket at the hinge region of the receptor, may be shared by other members of the family C GPCRs (66, 67). In addition to the strong conservation of the predicted calcium-binding site 1 and the adjacent amino acid-binding pocket, several lines of evidence support this suggestion (Fig. 2) (25, 26, 56, 68). We have predicted a Ca²⁺-binding site partially sharing a Glu-binding site in the ECD of mGluR1α, and both of them coactivate the receptor (27). A Ca²⁺-binding pocket was proposed to be present in the ligand-binding site of the GABA_B receptor (55). Many animals and humans can detect the taste of calcium via a calcium taste receptor that is modulated by an allosteric mechanism (69).

In summary, our present study provides a mechanistic view of the interplay among extracellular Ca²⁺, amino acids and the CaSR via molecular connectivity that modulates the positive homotropic and heterotropic cooperativity of CaSR-mediated intracellular Ca²⁺ signaling. The positive cooperative coactivation of the CaSR by Ca²⁺ and l-Phe and the importance of the positive homotropic and heterotropic cooperativity, respectively, exhibited by the two agonists may be further extended to other members of the family C GPCRs to facilitate understanding of the molecular basis for related human disorders and the development of new therapeutic strategies.

Acknowledgments—We thank Dr. Yubin Zhou, Dr. Michael Kirberger, Dr. Rajesh Thakker, Katheryn Lee Meenach, and Xiaojun Xu for critical review and assistance.

REFERENCES
L-Phe and Ca\(^{2+}\) Promote CaSR Functional Positive Cooperativity

64. Gama, L., Wilt, S. G., and Breitwieser, G. E. (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neu-