Kinetic and binding analysis of the catalytic involvement of ribose moieties of a trans-acting delta ribozyme.

Karine Fiola and Jean-Pierre Perreault*

RNA Group/Groupe ARN, Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.

Running title: Ribose 2’-OHs in δ ribozyme

Revised May 13th, 2002

* Corresponding author:
Jean-Pierre Perreault
Telephone: (819) 564-5310
Fax: (819) 564-5340
E-mail: jperre01@courrier.usherb.ca
SUMMARY

We have identified ribose 2'-hydroxyl groups (2'-OH)\(^1\) that are critical for the activity of a trans-cleaving \(\delta\) ribozyme derived from the antigenomic strand of the hepatitis \(\delta\) virus. Initially, an RNA-DNA mixed ribozyme composed of 26 deoxyribo- (specifically the nucleotides forming the P2 stem and the P4 stem-loop) and 31 ribonucleotides (those forming the catalytic center) was engineered. This mixed ribozyme catalyzed the cleavage of a small substrate with kinetic parameters virtually identical to those of the all-RNA ribozyme. The further substitution of deoxyribose for ribose residues permitted us to investigate the contribution of all 2'-OHs to catalysis. Determination of the kinetic parameters for the cleavage reaction of the resulting ribozymes revealed the following: i. ten 2'-OH groups appear to be important in supporting the formation of several hydrogen bonds within the catalytic core; ii. none of the important 2'-OHs seem to coordinate a magnesium cation; and, iii. one of the tested RNA-DNA mixed polymers appeared to stabilise the ribozyme-substrate transition state complex, resulting in an improvement over the all-RNA counterpart. The contribution of the 2'-OHs to the catalytic mechanism is discussed, and differences with the crystal structure of a genomic \(\delta\) self-cleaved product are explained. Clearly, the 2'-OHs are essential components of the network of interactions involved in the formation of the catalytic center of the \(\delta\) ribozyme.

\(^1\) The abbreviations used are: 2'-H, 2'-hydrogen atom; 2'-OH, 2'-hydroxyl group; \(\delta\), delta; EMSA, electrophoresis mobility shift assay; H-bond, hydrogen bond; HDV, hepatitis \(\delta\) virus; nt, nucleotide; PAGE, polyacrylamide gel electrophoresis; RNase, ribonuclease; Rz, ribozyme; S, substrate;
INTRODUCTION

Both genomic and antigenomic hepatitis δ virus (HDV) RNAs exhibit self-cleavage activity, a process involved in viral replication (see ref. 1,2 for reviews). Like other small catalytically active ribozymes, δ ribozymes cleave a phosphodiester bond of their RNA substrates yielding reaction products containing a 5'-hydroxyl and a 2',3'-cyclic phosphate termini. Trans-acting ribozymes (Rz) have been developed by removing the J1/2 junction, producing one molecule possessing the substrate (S) sequence and the other the catalytic domain (Rz) (Fig. 1). According to the pseudoknot model, which is well supported by experimental data, the secondary structure of δ ribozymes consists of one stem (P1), one pseudoknot (P2), two stem-loops (P3-L3 and P4-L4) and three single-stranded junctions referred to as the linker stems (J1/2, J1/4 and J4/2) (Fig. 1; see ref. 1,2). It has been reported that after the formation of the P1 stem, an additional pseudoknot, named P1.1, consisting of two base pairs (bp) composed by nucleotides of the J1/4 junction and the P3 loop, was also formed (1,3,4).

It has been demonstrated that imidazol buffer rescues the activity of a mutant antigenomic-derived δ ribozyme possessing U76 instead of the usual C76 (referred as C47 in the trans-acting δ ribozyme used here) (5). This result suggests that C76 acts as a general base in the catalytic mechanism. However, it has been shown that the corresponding cytosine residue (C75) of a genomic-derived ribozyme acts as a general acid in the presence of a bound hydrated metal hydroxide acting as a base (6). In the latter report, it was also reported that in the absence of bivalent cation, a very high concentration of NaCl supports the cleavage activity, although at a pH near 5.0. The ability of δ ribozyme to efficiently carry out general acid-base catalysis appears to be unique among all known catalytic RNAs (6).
δ ribozyme has a highly ordered catalytic center that is revealed by a number of unusual properties reported for cis-acting versions as compared to other self-cleaving RNA motifs (2). For example, it is extremely stable, with an optimal reaction temperature of about 65°C, and retains activity at temperatures as high as 80°C and in buffer containing 5 M urea or 18 M formamide. Based on the crystal structure of a self-cleaved genomic δ RNA, several tertiary interactions were proposed to take place within the catalytic core of the ribozyme (3,7). The 2’-hydroxyl groups (2’-OH) of ribonucleotides appear to be key players in a number of these interactions. More generally, 2’-OHs were shown to contribute to the catalytic mechanism of various RNA molecules; to ensure an efficient catalytic core structure; and, to bind to other macromolecules or cofactors including bivalent cations (8-15). However, in the case of δ ribozyme, the identification in solution of the 2’-OH(s) important for its catalysis remains to be performed. This information is of primary importance in order to be able to better understand the molecular mechanism of this catalytic RNA.

The chemical synthesis of RNA polymers permits the use of site-specific functional modifications (e.g. the substitution of deoxyriboses (2’-H) for riboses (2’-OH)) in order to identify the chemical groups that make important contributions to the activity of an RNA species (see ref. 8 for a review). The main limiting factor in this approach is the size of the RNA molecule. The 57 nucleotide (nt) δ ribozyme derived from the antigenomic RNA strand of the hepatitis delta virus (16,17; Fig. 1) is too large for efficient chemical synthesis. Consequently, we tried to both remove and shorten the structural P4 stem as this approach had been shown to work for a genomic δ ribozyme (18). All mutants tested did not work indicating that this was not a viable approach (L. Bergeron and J.P. Perreault, unpublished data). Consequently, we designed a two-piece ribozyme (19). This two-piece version required a higher concentration of magnesium
(22 mM as compared to 2-3 mM for the one piece) in order to obtain the same half-maximal velocity (16) (this has been observed with other two-pieces δ ribozymes; see ref. 20,21). These versions of the ribozyme may fold differently than their one-piece counterpart, and are therefore not appropriate for this study. In this work, we use an RNA-DNA mixed ribozyme with P2 and P4 stems, which surround the catalytic center, composed exclusively of deoxyribonucleotides except for one base pair in each stem. As this RNA-DNA mixed ribozyme has kinetic parameters virtually identical to those of the all-RNA version, we used this new tool to identify all 2’-OHs important in supporting the cleavage activity of the trans-acting δ ribozyme.
EXPERIMENTAL PROCEDURES

Chemical RNA synthesis

The chemical synthesis of ribozymes, substrates and analogue was performed using 2’-ACE chemistry (Dharmacon Research Inc., Lafayette, Colorado). The resulting polymers were deprotected according to the manufacturer’s recommended protocol, and purified by denaturing 10% or 20% polyacrylamide gel electrophoresis (PAGE; 19:1 ratio of acrylamide to bisacrylamide) using 45 mM Tris-Borate, pH 7.5, 7 M urea and 1 mM EDTA solution as buffer. The products were visualized by UV-shadowing, and the bands corresponding to the correct sizes cut out. The nucleic acid were then eluted from these gel slices by incubating overnight at room temperature in a solution containing 0.1% SDS and 0.5 M ammonium acetate. The RNA and RNA-DNA mixed polymers were then precipitated by the addition of 0.1 volume of 3 M sodium acetate, pH 5.2, and 2.2 volumes of ethanol, and their quantity was determined by spectrophotometry at 260 nm after dissolving in water.

End-labeling of polymers with $[^{32}\text{P}]$ ATP

Purified RNA and RNA-DNA mixed polymers (5 pmol) were 5’-end-labeled in a final volume of 10 µl containing 3.2 pmol $[^{32}\text{P}]$ATP (6000 Ci/mmol; New England Nuclear, Canada) and 6 units T4 polynucleotide kinase as recommended by the enzyme’s manufacturer (Amersham Pharmacia Biotech, Canada) at 37°C for 45 min, and were then purified on 10 % or 20% PAGE gels and recovered as described above.

Nuclease digestion and alkaline hydrolysis
The length and position of the deoxyribonucleotides in the RNA-DNA polymers were verified by alkaline hydrolysis and ribonuclease T₁ digestion (RNase T₁, which digests Gp↓N linkages in single-stranded RNA) digestion. In the enzymatic digestion, trace amounts of the 5'-end-labeled polymers (< 1 nM, ~ 50 000 cpm) were dissolved in 4 µl of buffer containing 50 mM Tris-HCl, pH 7.5, 10 mM MgCl₂ and 100 mM NH₄Cl. The mixtures were incubated for 0.5 min at 37°C in the presence of 5 units of RNase T₁ (Amersham Pharmacia Biotech, Canada), and were then quenched by adding 5 µl of loading buffer (97 % formamide, 1 mM EDTA, 0.05% xylene cyanol). For alkaline hydrolysis, the 5'-end-labeled polymers (~50 000 cpm) were resuspended in 4 µl of water and 1 µl of 2N NaOH was added. The reaction was incubated at room temperature for 5 min, and then quenched by the addition of 8 µl of 500 mM Tris-HCl, pH 7.5 and 5 µl of loading buffer. The resulting mixtures were separated on denaturating 10% PAGE gels and visualized by exposure of the gels to PhosphorImaging screens.

Cleavage reactions

Various concentrations of ribozymes mixed with trace amounts of 5'-end-labeled substrate (< 1 nM) were resuspended in 32 µl of ultrapure water, heated at 90°C for 2 min, and snap-cooled on ice for 2 min. The volume was then made up to 36 µl by adding 500 mM Tris-HCl, pH 7.5 to a final concentration of 50 mM. The mixtures were then pre-incubated at 37°C for 5 min prior to the addition of MgCl₂ to 10 mM (final concentration), thereby initiating the reaction. The reactions were incubated at 37°C and were followed for either 2 or 24 hr. Aliquots (4µl) were periodically removed and quenched by the addition of 8 µl of stop solution (97% formamide, 10 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol). The resulting samples were fractionated by denaturing 20% PAGE. Both the 11 nt substrate and 4 nt product bands were
detected using a Molecular Dynamic phosphorimager after exposure of the gels to PhosphorImaging screens. The screens were scanned and analysed to determine percentage of cleavage using ImageQuant, version 5.0 (Molecular Dynamics).

Kinetic Analysis

Measurement of pseudo first-order rate constant (k_2, K_M', k_2/K_M' and K_{Mg}) - Kinetic analyses were performed under single turnover conditions as described previously (16,22). Briefly, trace amounts of 5'-end-labeled substrate (< 1 nM) were cleaved by various ribozyme concentrations (5-300 nM). The fractions cleaved were determined, and the rate of cleavage (k_{obs}) obtained by fitting the data to the equation $A_t = A_\infty (1-e^{-kt})$, where A_t is the percentage of cleavage at time t, A_∞ is the maximum percent cleavage (or the end-point of cleavage), and k is the rate constant (k_{obs}). Each rate constant was calculated from at least two independent measurements. The values of k_{obs} obtained were then plotted as a function of ribozyme concentration in order to determine the other kinetic constants (k_2, K_M', and k_2/K_M'). The magnesium dependency for each Rz was studied by incubating the reaction mixtures with various MgCl$_2$ concentrations (1-100 mM) in the presence of an excess of ribozyme (100 nM) over substrate (< 1 nM). The concentrations of magnesium at the half-maximal velocity (K_{Mg}) were determined.

Determination of the equilibrium dissociation constants (K_d) - In order to evaluate the formation of the Rz:S complex, the equilibrium constants (K_d) were determined by electrophoresis mobility shift assay (EMSA) by mixing ribozyme concentrations ranging from 0 to 50 nM with trace amounts of 5'-end-labeled SdC4-analogue (< 1 nM) in 9 µl of ultrapure water. The mixtures were then heated at 95°C for 2 min, and cooled to 37°C for 5 min prior to the addition of buffer (to a final concentration of 50 mM Tris-HCl, pH 7.5, and 10 mM MgCl$_2$)
in a manner analogous to that of the cleavage reaction. The samples were incubated 1 hr at 37°C, then 2 µl of loading solution (50% glycerol, 0.025% of each bromophenol blue and xylene cyanol) were added and the resulting mixtures separated through native 15% PAGE gels (29:1 ratio acrylamide to bisacrylamide) in a buffer containing 45 mM Tris-Borate (pH 7.5) and 10 mM MgCl₂. The migrations were performed at 150 volts for 5 hr at 4°C. The gels were exposed to phosphorimaging screens that were then scanned and analysed using ImageQuant software to determine the amounts of bound and free SdC4-analogue. Each equilibrium constant was calculated from at least two independent experiments.
RESULTS

Development of δRD-Rz

As the studied version of δ ribozyme can be neither significantly reduced in size, nor separated into two smaller RNA strands, the first step of this project was the development of a version of δ ribozyme containing less ribonucleotides. The catalytic core of δ ribozyme is surrounded by both the P2 stem and the P4-L4 stem-loop that were proposed to play solely structural roles (1). Consequently, we postulated that an RNA-DNA version including a P2 stem and a P4-L4 stem-loop composed of deoxyribonucleotides should be active (Fig. 2A). One base pair in each stem was kept RNA so as to favor their folding into a typical RNA A-helix, rather than into a DNA B-helix (12). In order to simplify the text the RNA-DNA mixed version, which includes 26 deoxyribo- and 31 ribonucleotides, will be referred as the δRNA-DNA-ribozyme (δRD-Rz) while the all-ribonucleotide version is referred to as the δRNA-ribozyme (δR-Rz).

The presence of deoxyribonucleotides in both the P2 stem and the P4-L4 stem-loop was confirmed by alkaline hydrolysis and RNase T1 digestion (see experimental procedures, data not shown). The ability of both δR- and δRD-Rz to cleave a model substrate, giving rise to products of 4 and 7 nt, was then tested under single turnover conditions. Trace amounts of 5'-end-labeled substrate (<1 nM) were incubated in the presence of an excess of either δR- or δRD-Rz (100 nM), and aliquots removed at various times (Fig. 2B). The two ribozymes had almost identical maximal cleavage percentages (end point) of 89% and 85%, respectively. However, the cleavage rate (k_{obs}) of δRD-Rz was two-fold slower than that of δR-Rz (i.e. 0.05 min^{-1} compared to 0.11 min^{-1}). We performed extensive kinetic analyses to accurately compare the cleavage abilities of δR- and δRD-Rz. Pseudo first-order cleavage rate constants (k_2 and K_M') were measured in the presence of an excess of ribozyme (5-300 nM) and trace amounts of 5'-end-labeled substrate (<
Both the k_2 and $K_{M'}$ values of δRD-Rz were three-fold lower than those of δR-Rz, producing similar apparent second-order rate constants ($k_2/K_{M'} = 2.1 \times 10^7 \text{ min}^{-1}\text{M}^{-1}$).

The difference in the binding between the substrate and either δRD-Rz or δR-Rz was studied by EMSA performed under conditions similar to those used in the cleavage assays. Trace amounts of 5'-end-labeled SdC4-analogue were incubated at 37°C with various concentrations of ribozyme, and the mixtures were then analysed on native polyacrylamide gels. The SdC4-analogue is an 11 nt RNA identical to the substrate except for the presence of a deoxyribose residue at position 4 (i.e. the cleavage site), and therefore, is not cleavable. It has been shown in inhibition experiments that the use of the SdC4-analogue mimics the formation of the P1 stem in the ribozyme-substrate complex (16). The dissociation constant (K_d) decreased three-fold for δRD-Rz as compared to δR-Rz (1 nM and 3 nM, respectively; Table I), indicating that some minor differences exist between these two ribozymes. In contrast, both ribozymes had equal values for the Mg$^{2+}$ concentration at the half-maximal velocity ($K_{Mg} = 3.3 \text{ mM}$ and 3.2 mM), showing that the magnesium dependency was similar. Although some differences do exist between them, δR- and δRD-Rz can be considered to catalyse the cleavage of a small substrate with the same efficiency.

Before substituting any more deoxyribonucleotides for the remaining ribonucleotides in δRD-Rz, we compared the effect of the substitution for a single ribose in both versions of the ribozyme. Specifically, the ribocytidine at position 47 was replaced by a deoxyribocytidine in both ribozymes. Regardless of the precise cleavage mechanism, this cytidine is crucial to the chemical step of the δ ribozyme catalysis (5,6). Both δR-dC47 and δRD-dC47 exhibited lower cleavage activities than did the versions containing a ribocytidine at position 47. Briefly, the measured kinetic parameters showed that the inclusion of a deoxyribose at position 47 has the
same effect on both ribozymes when compared to their respective non-substituted versions (Table I, compare δR-dC47 to δR and δRD-dC47 to δRD). For example, the k_2 values were at least six-fold less for both dC47 ribozymes, while the $K_{M'}$ values showed a two-fold increase in both cases. Consequently, a significant decrease of twenty- (δR-dC47) and ten-fold (δRD-dC47) in the $k_2/K_{M'}$ values were observed, indicating that the 2’-OH of the C47 is critical. More importantly, these results show that the δRD-Rz might be considered as an interesting starting version for further site-specific functional modifications geared towards the elucidation of the molecular mechanism of δ ribozyme.

Substitution of 2’-OHs in the catalytic core

A collection of δRD-Rz including various substitutions of deoxyribo- for ribonucleotides were synthesized. The incorporation of deoxyribonucleotides at the appropriate positions in all of these ribozymes was confirmed by both alkaline hydrolysis and RNase T1 digestion (data not shown). Subsequently, the ability of these ribozymes to cleave a small substrate was determined. The reactions were performed for either 2 or 24 hr depending upon the level of activity.

The J4/2 junction - The J4/2 junction is the single-stranded region joining the P2 and P4 stems (i.e. positions 47 to 51). The global substitution of five deoxyriboses for the five riboses led to a ribozyme which catalysed less than 1 % of cleavage, even after 24 hr of incubation (Fig. 3A, δRD-dJ4/2), suggesting that at least one of these 2’-OHs is important for efficient catalysis. In order to identify the critical one(s), the five ribonucleotides were individually substituted for. As revealed in figure 3A both the δRD-dU48 and -dA49 ribozymes exhibited the same level of activity as δRD-Rz, indicating that the absence of the 2’-OH at these positions did not affect the catalytic activity. The kinetic parameters ($K_{M'}$, k_2 and $k_2/K_{M'}$) of these two ribozymes were
almost identical to those of δRD-Rz (Table II), showing that the introduction of an unique deoxyribose in this single-stranded region did not necessarily alter the cleavage activity. In contrast, both δRD-dC47 and δRD-dA50 exhibited reduced cleavage activity, suggesting that the presence of the 2’-OH at these positions is important for the catalysis (Fig. 3A). These two ribozymes had virtually identical K_M', but significantly reduced k_2 values (i.e. 6 and 12 fold, respectively) as compared to δRD-Rz (Table II). Finally, the presence of a 2’-H at position 51 (δRD-dG51) led to a minor increase in k_2, while K_M' remained similar to that of δRD-Rz (Table II). Inclusion of a deoxyribonucleotide at the equivalent position in the bimolecular system also resulted in an improved cleavage activity (19). Most likely, δRD-dG51 adopts a conformation that slightly enhances the folding pathway that occurs prior to the chemical step.

The C6-G52 base pair – In order to preserve the A-helix conformation of the all DNA P2 stem within δRD-Rz, the C6-G52 base pair at the bottom of this stem was kept as RNA (Fig. 2A). The importance of the 2’-OHs at these two positions was evaluated by designing the δRD-dC6dG52 ribozyme. This ribozyme exhibited a cleavage activity similar to that of δRD-Rz (Fig. 3A). Both the k_2 and K_M' values decreased two-fold, yielding similar values for k_2/K_M' (Table II) and demonstrating that the 2’-OH at positions 6 and 52 are not important for the catalysis. Since both the P2 and P3 stems were shown to stack together (3), we believe that the presence of an RNA P3 stem was sufficient to ensure that the P2 stem folds into an A-helix conformation.

The P3 stem – When the P3 stem was composed of either two or three deoxyribonucleotide base pairs, no cleavage was detected, even after an extensive incubation of 24 hr (δRD-dP3 and δRD-dC8dG18dC9dG17; Fig. 3B). Subsequent minimal substitutions, such as the presence of a deoxyribose at either position 7 or 8 on one strand (i.e. δRD-dA7 and -dC8), gave ribozymes that exhibited a lower level of cleavage activity characterized by a reduction of
five- and seven-fold, respectively in their \(k_2/K_{M'} \) value as compared to \(\delta \text{RD-Rz} \) (Fig. 3B, Table II). An initial examination of panel B in figure 3 suggests that the level of cleavage of \(\delta \text{RD-dA7} \) is not significantly reduced. However, the reduction in its \(k_2/K_{M'} \) value is largely due to the three-fold increase of its \(K_{M'} \) which was not detected during the preliminary activity experiments because they were performed with a large excess of ribozyme. A more significant alteration of the catalytic activity was observed with the \(\delta \text{RD-dC9} \) ribozyme. In this case, a twenty-fold decrease in the \(k_2/K_{M'} \) value, due to a \(K_{M'} \) value three-fold higher and a \(k_2 \) value six-fold lower as compared to \(\delta \text{RD-Rz} \), was observed. On the other strand, the presence of a deoxyribose at position 17 causes a dramatic decrease in the cleavage level (\(\delta \text{RD-dG17} \), Fig. 3B). After 24 hr of incubation the percentage of cleavage is less than 5 % and a \(k_{\text{obs}} \) of 0.0021 min\(^{-1}\), which is twenty-five-fold slower than \(\delta \text{RD-Rz} \) (i.e. 0.05 min\(^{-1}\)), was estimated in the presence of a ribozyme concentration of 100 nM. No other kinetic parameters could be determined because the activity was too low. Substitution of the adjacent ribose (i.e. \(\delta \text{RD-dG18} \)) also yields a lower cleavage activity than \(\delta \text{RD-Rz} \), although to a lower degree. In this case the \(k_2/K_{M'} \) value was \(0.7 \times 10^7 \) min\(^{-1}\)M\(^{-1}\), that is three-fold less than \(\delta \text{RD-Rz} \). Finally, the incorporation of a deoxyribose at position 19 (i.e. \(\delta \text{RD-dU19} \)) gave a ribozyme that exhibited almost the same level of activity as \(\delta \text{RD-Rz} \) (Fig. 3B, Table II). The slight reduction in the activity observed with this mutant was probably due to instability caused by the presence of a RNA-DNA heteroduplex base pair, and is therefore not indicative of an important 2’-OH group. With the exception of the 2’-OH of from U19, all 2’-OHs of the P3 stem are important in the cleavage activity, albeit to different degrees.

The L3 loop – This 7 nt loop is located in the middle of the catalytic core. Since the cytosines at positions 11 and 12 are involved in the formation of the P1.1 pseudoknot, the 2’-OH of these residues were analysed separately (see below). Five \(\delta \text{RD-Rz} \) possessing each one
additional deoxyribose residue were synthesized (Fig. 3C, Table II). The δRD-dG15 and -dC16 ribozymes exhibited the same level of cleavage and had kinetic parameters virtually identical to δRD-Rz; while δRD-dC14 showed a (probably) insignificant minimal decrease. Both the δRD-dU10 and -dU13 ribozymes exhibited less cleavage activity due to a significant decrease in their k_2 values as compared to that of δRD-Rz (i.e. nine- and four-fold, respectively). Thus, the 2’-OH group of the residues at positions 10 and 13 in the L3 loop contribute to efficient catalysis.

The **P1.1 pseudoknot** — The P1.1 pseudoknot is composed of two base pairs (i.e. C11G28/C12G27). The δRD-dP1.1 ribozyme, which includes deoxyribonucleotides at all four positions, exhibited the same level of cleavage and had kinetic parameters equivalent to δRD-Rz (Fig. 3D, Table II). Thus, the presence of only DNA base pairs in the P1.1 pseudoknot did not result in folding into a B-helix. A potential explanation for this observation is that the P1.1 pseudoknot stacks with (and between) the P1 and P4 stems, and, since the P1 stem is composed of RNA and folds into an A-helix, the P1.1 pseudoknot also adopts the proper folding.

The **G29-G46 base pair** — Another particular feature of δ ribozyme is the presence of a homopurine base pair at the top of the P4 stem (i.e. G29-G46, ref.1). This base pair is the only one within the P4 stem of δRD-Rz that was kept as RNA in order to allow the adoption of an A-helix. If deoxyribonucleotides are introduced at both positions almost no cleavage is observed after a 24 hr of incubation, even if the C30-G45 base pair has been synthesized as RNA in order to ensure proper folding (Fig. 3D). In the presence of 100 nM of Rz, a k_{obs} of only 0.0019 min$^{-1}$ was estimated, consequently no other kinetic parameters can be determined. The presence of a deoxyribonucleotide at only position 46 did not restore the cleavage activity (Fig. 3D, δRD-dG46; $k_{obs} = 0.0022$ min$^{-1}$). However, the level of activity was recovered with the δRD-dG29 version (Fig. 3D, Table II). This shows that the incorporation of one deoxyribonucleotide in the
homopurine base pair is not responsible for the lower activity level. Thus, the 2’-OH of the ribose at position 46 is most likely involved in a key tertiary interaction required for efficient catalysis to occur.

K\textsubscript{d} and K\textsubscript{Mg} determination

In general, the substituted ribozymes that exhibited different levels of activity showed variation of their k\textsubscript{2}, but not their K\textsubscript{M’}, values. In order to verify whether or not the absence of the 2’-OH affected the formation of the RzS complex, EMSA using the SdC4-analogue were performed. The K\textsubscript{d} values are reported in Table III. With the exception of δRD-dG17, all substituted-Rz had K\textsubscript{d} values varying between 0.4 and 1.1 nM, that is to say similar to the 1.0 nM obtained for δRD-Rz. Since the binding of the substrate remained unaltered, this suggests that the global architecture (or appropriate folding) of most of the ribozymes was not modified by the inclusion of deoxyribonucleotides. The binding of the SdC4-analogue imitates the formation of the P1 stem, but not necessarily the subsequent step(s) which includes the conformational transition (13). Consequently, the significant variation of the K\textsubscript{M’} values observed for both the δRD-dA7 and δRD-dC9 ribozymes (i.e. K\textsubscript{M’} = 6.8 nM and 8.2 nM compared to 2.8 nM for δRD-Rz) suggests alteration of the step(s) that occurs after P1 stem formation during the folding pathway. Only the δRD-dG17 ribozyme had a K\textsubscript{d} that was significantly altered as compared to δRD-Rz (3.6 nM and 1.0 nM, respectively). On its own this reduction of the binding affinity is not enough to explain the important loss of catalytic activity seen with this ribozyme (i.e. ~2 orders of magnitude).

In several RNA species important 2’-OHS have been shown to bind metal ions such as magnesium (10,23). If a 2’-OH bound a Mg2+ ion either directly, or through a solvating water
molecule, the absence of this group would result in a weaker binding of the cation yielding a lowered catalytic activity and a larger K_{Mg} value. In order to verify whether or not the important 2'-OHs make such a contribution to the catalytic activity K_{Mg} values were determined for the substituted δRD-Rz (Table III). Small variations of the K_{Mg} were observed, but they did not appear to be significant when the statistical errors were taken into account except in three cases (see below). Regardless the substituted δRD-Rz, increasing the magnesium concentration did not restore the cleavage activity (data not shown). These results lead us to conclude that no 2'-OH in the catalytic center are involved in magnesium binding, a finding unique to δ ribozyme. Unlike most of the substituted δRD-Rz, the δRD-dA7, -dC8 and -dC9 ribozymes had smaller K_{Mg} values (i.e. 0.9 mM, 0.4 mM and 0.6 mM, respectively) than δRD-Rz (3.2 mM; Table III). This suggests that these ribozymes bound the Mg$^{2+}$ ion(s) slightly more strongly, although they exhibited less activity. This difference in the magnesium dependency might result from an unusual conformation, due to the presence of a deoxyribose residue within this strand of the P3 stem, that favors magnesium binding to the catalytic center. Finally, since magnesium cations show cooperative binding to many RNA species, as is observed with tRNA (23), the collected data were plotted according to the Hill equation (data not shown). All ribozymes gave Hill coefficients near unity (i.e. 0.52 to 1.43 +/- 0.3), leading us to conclude that the binding of magnesium to the various δ ribozymes is neither cooperative, nor different depending on the deoxyribonucleotide substitutions present.

Substitutions of the 2'-OH in the binding domain

The binding domain of δ ribozyme is formed by the P1 stem, which consists of 7 consecutive base pairs (6 Watson-Crick base pairs and the wobble base pair adjacent to the cleavage site; see
ref. 1). In order to test whether or not any of the 2’-OH of the nucleotides within the P1 strand of the ribozyme (positions 20 to 26) are important six substituted-Rz were synthesized. These Rz contain only one (δRD-dG22, -dA23, -dC24, -dC25 and -dU26) or two (δRD-dC20C21), additional deoxyribonucleotides as compared to δRD-Rz. All of these ribozymes cleaved the small substrate with approximately the same efficiency as δRD-Rz (Fig. 4A). Regardless of the substituted-Rz the K_M’ values were virtually identical to that of δRD-Rz, while all had slightly smaller k_2’ values (i.e. 2 two-fold), indicating that none of the 2’-OH of the P1 strand contributes to the molecular mechanism of the catalysis (Fig. 4B). This conclusion received support from EMSA experiments using the SdC4-analogue which showed that the K_d values of these ribozymes (i.e. varying between 1.1 to 1.6 nM) were similar to that of δRD-Rz.
DISCUSSION

δRD-Rz catalyzes the cleavage of a model substrate with a constant of specificity ($k_2/K_{M'}$) similar to that of its all-RNA counterpart. This suggests that the free energy of the transition-state stabilisation ($\Delta G^\#$) is similar for both δR- and δRD-Rz (Fig. 5). The large number of deoxyribonucleotides present in δRD-Rz (i.e. 26 out of 57 nt) provides an RNA-DNA mixed ribozyme that is both more efficiently synthesized and more affordable than the all-RNA version, and, therefore, constitutes an interesting tool for further progress in the elucidation of the interaction network within the catalytic core by means of site-specific functional modifications. For example, in order to investigate the importance of the 2’-OH of all residues present in δRD-Rz, a collection of ribozymes including 2’-H substitutions was synthesized.

In order to progress in the analysis of the data, the differences in terms of the free energy of the transition-state stabilisation ($\Delta \Delta G^\#$) between several ribozymes substituted in the catalytic center and δRD-Rz were calculated (see the legend of Fig. 5 and ref. 25). According to the $\Delta \Delta G^\#$ values, the substituted ribozymes could be separated into four groups (Fig. 5): (i) Those with $k_2/K_{M'}$ values virtually identical to that of δRD-Rz and therefore possess a $\Delta \Delta G^\#$ of, or near, zero ($\Delta \Delta G^\# = +/- 0.5$ kcal/mol). In these cases the introduction of a deoxyribonucleotide(s) did not significantly affect the catalytic activity (e.g. δRD-dP1.1). Minimal differences may result from local structural modifications, such as a sugar pucker, that can adopt various conformations. Usually deoxyribooses favor the C2’-endo conformation, while riboses adopts the C3’-endo conformation due to steric hindrance in the helix structure created by the 2’-OH groups (23). (ii) A group of ribozymes whose $\Delta \Delta G^\#$ varied between -0.5 to -1.5 kcal/mol and are most likely those for which the RzS transition-state complex lost one hydrogen bond (H-bond). δRD-dU10 and -dG18 are at the limit of being considered as belonging to this group as they possess $\Delta \Delta G^\#$ of
The group of three ribozymes with $\Delta \Delta G^\# < -1.5$ kcal/mol, which most likely represent those that have lost two H-bonds within their RzS transition state complexes. δRD-dC47 was classified in the previous group (-1 H-bond), but had an intermediate $\Delta \Delta G^\#$ of -1.42 kcal/mol so it is not impossible that it may have lost two H-bonds. (iv) δRD-dG51 has a positive $\Delta \Delta G^\#$ of 0.68 kcal/mol which suggests that its transition state complex is stabilised by an additional H-bond. To our knowledge this is the first demonstration of the introduction of deoxyribose residues enhancing the activity of a catalytic RNA. In summary, ten ribonucleotides clustered in a small region formed by the J4/2 junction, the adjacent G46 of the homopurine base pair and the P3-L3 stem-loop harbor the critical 2'-OH groups (Fig. 6A). Based on the $\Delta \Delta G^\#$ values, these 2'-OHs are involved in the formation of 13 H-bonds. It should be noted that this number may be smaller if two 2'-OHs are used to form the same H-bond. Unfortunately, the approach used in this work does not permit the identification of the chemical groups that form an H-bond with a given 2'-OH.

In a previous study, we tested a collection of RNA/DNA mixed substrates in which a single ribonucleotide was substituted by a deoxyribonucleotide at each position of the 11-mer (24). With the exception of the nucleotide adjacent to the cleavage site that is essential for the chemical step, no 2'-OH in the substrate contributes to the catalysis. All of these substrates were cleaved at a level ranging from one equivalent to that of the native substrate to one either 2 fold more or 2 fold less. It was suggested that the variability in activity resulted from differences in the binding. In summary, with the exception of the 2'-OH at position C4 on the substrate, no 2'-OH of the P1 stem is critical for the cleavage.

Important 2'-OHs have been identified from the crystal structure of a δ ribozyme (3,7), and, therefore, could be compared with the results reported here. Unfortunately, the coordinate
error of the crystal structure was 0.3 to 0.4 angstroms, consequently all hydrogen bonds were not necessarily observed in this structure. Regardless, nine ribose’s 2’-OHs were suggested to form 11 H-bonds (Fig. 6B). Discrepancies in the important 2’-OHs may not only be due to the fact that we compared results from a crystal study with ones performed in solution, but also to other factors including the fact that the crystal structure was from: (i) a cis-acting form of a δ ribozyme rather than a trans-acting version; (ii) a self-cleavage product rather than the RzS active complex; and, (iii) a sequence derived from the genomic HDV strand rather than the antigenomic strand. These maps of important 2’-OHs show several common features, as well as some differences (Fig. 6). For example, the 2’-OHs from residues C21 and the G40 were suggested to form H-bonds with the CAA sequence of the J1/4 junction (Fig. 6B). As this triplet is only found in the genomic version, the equivalent 2’-OHs (positions C11 and G29) in the antigenomic ribozyme could be substituted by deoxyribonucleotides without affecting the catalytic activity (Fig. 6A). One of the important novelties arising from the crystal structure was the presence of a ribose-zipper between the J4/2 junction and the proximal strand of the P3 stem (3,7). Specifically, the 2’-OH of riboses A77 and A78 form two H-bonds with the 2’-OH of C18 and C19. It appears that this structural motif contributes to the positioning of the P3 stem in the catalytic core. If the antigenomic δ ribozyme includes a ribose-zipper, the participation of 2’-OH from the J4/2 junction would be limited to only one (i.e. the 2’-OH of A50). As a consequence, the presence of such a motif appears unlikely. However, five 2’-OHs out of the six residues forming the P3 stem in the antigenomic ribozyme are suggested to form seven H-bonds (Fig. 6A). These 2’-OH groups may serve the same purpose of positioning the P3-L3 stem-loop within the catalytic core, thereby explaining why the ribozymes with a P3 stem formed by either 4 or 6 deoxyribonucleotides did not exhibit any detectable activity. A similar function of the
positioning of helices in the active structure has been suggested for a cluster of important 2’-OHs in the Neurospora VS ribozyme (15). The formation of several H-bonds involving 2’-OH groups, rather than classical base pairs, in the positioning of the P3-L3 stem-loop might be considered as an innovative strategy. While it allows for the critical positioning of the stem-loop to take place, it is probably not too stable and thereby preserves the flexibility required for the L3 loop contribution to subsequent steps in the folding pathway, such as the formation of the P1.1 pseudoknot. Such a situation might help to explain the increases in K_{M^*} observed with δRD-dA7 and -dC9, and the K_d increase with δRD-dG17 among the substituted-Rz studied. In these cases, the absence of a 2’-OH most likely results in a slower step in the formation of the active transition-state complex, yielding a higher binding constant. These K_{M^*} and K_d increases were the only significant variations of these two parameters detected for all of the ribozymes tested. The effect of the absence of other important 2’-OHs was to decrease the k_2^* values, suggesting a perturbation within the transition-state complex (although the exact molecular mechanism of this remains to elucidated).

In the L3 loop of the genomic ribozyme only the 2’-OH of U20 appears to be important, interacting with the base of C75 (which corresponds to U10 and C47 in the antigenomic Rz). In the antigenomic ribozyme U10 possesses an important 2’-OH that could be involved in an equivalent interaction with C47. In addition, the 2’-OH of U13 appears to be important in the antigenomic ribozyme. However, neither the identity of the nucleotide interacting with this 2’-OH, nor the H-bond in which it is involved (i.e. that equivalent to the one formed between C22 and the CAA triplet of the genomic ribozyme), are known. According to the crystal structure the G74 of the homopurine base pair has an important 2’-OH that contributes to one H-bond, while the equivalent 2’-OH in the antigenomic Rz is proposed to participate in the formation of 2 H-
bonds. Finally, the C47 of the antigenomic ribozyme appears to be important, while the equivalent base (C75) in the genomic version does not form an H-bond (according to the crystal structure). The 2’-OH of the C47 may help in the positioning of the catalytic residue in close proximity to the scissile phosphate. Finally, in both maps of the important 2’-OHs, none of those in the P1 stem appears to be important for the structure, while that at the cleavage site in the substrate is essential for the chemical step. Clearly, some 2’-OH groups are important for both the antigenomic and genomic ribozymes, while others are only important for one or the other suggesting the existence of minor differences between two forms. More importantly, the 2’-OHs are key components of both catalytic centers, suggesting that they are involved in several tertiary interactions essential for the adoption of the active conformation.

It has been suggested that δ ribozyme has an absolute requirement for the presence of divalent metal ions in order for self-cleaveag to occur under standard conditions (26). The presence of essential metal ion coordination site(s) in this catalytic RNA is supported by several observations including: (i) the displacement of lead ion(s) within a δ ribozyme by both neomycin and magnesium (27); (ii) the monitoring of three Mg$^{2+}$ ions in a two-pieces δ ribozyme by circular dichroism (28); (iii) the fact that magnesium supports structural rearrangements within a genomic δ ribozyme (based on chemical probing experiments, ref. 29); (iv) the fact that Mg$^{2+}$ induced a specific cleavage at position G52 at the bottom of the P2 stem occurring solely within an antigenomic-derived, catalytically active RzS complex (24); and, (v) that an NMR spectroscopic analysis of an antigenomic δ ribozyme version suggests that a catalytic Mg$^{2+}$ ion binds to the pocket formed by P1 and L3 (30). The magnesium appears to be essential to the δ ribozyme activity, although it is unclear whether this(these) cation(s) plays an indispensable role in both the folding and active site chemistry. However, according to the crystal structure of
the δ ribozyme, no tightly bound metal ion is located within the catalytic center (3,7), suggesting that it is stabilized entirely by base-pairing, stacking, non-canonical base-backbone and backbone-backbone interactions. Furthermore, we provide evidence that no 2’-OH contributes to the binding of Mg$^{2+}$ ions. In order to explain this discrepancy we envisaged that one, or less likely more than one, Mg$^{2+}$ ion is located in a groove of the P3 stem either at or near the junction of the bottom of the P2 stem. This localizes the Mg$^{2+}$ ion close enough to be responsible for the specific metal-ion induced cleavage at G52. Moreover, this may explain why the introduction of deoxyribonucleotide at positions 7 to 9 within one strand of the P3 stem showed small reductions in the K_M values. The resulting RNA/DNA heteroduplex base pairs are slightly less stable, probably slightly opening the stem and thereby allowing a better binding of the Mg$^{2+}$ by a base. This Mg$^{2+}$ ion would be stabilized in this location by interactions formed with the bases, thereby explaining why no 2’-OH are involved. With such a localisation, that is relatively far from the scissile phosphate, this Mg$^{2+}$ ion would most likely have a role in the folding rather than in the chemical step. The lack of Mg$^{2+}$ in the crystal structure could be explained by the fact that it was eliminated through the stabilization of some tertiary interactions, for example a ribozyme-zipper, or, alternatively, a situation comparable to that found in the lead-catalysed specific cleavage of tRNAPhe (31). In the uncleaved structure Pb$^{2+}$ was observed to be bound with high frequency at the cleavage site, but once the tRNA has been cleaved the Pb$^{2+}$ dissociates, and is not observed in the cleaved structure. A similar scenario appears to be plausible as an explanation for the lack of Mg$^{2+}$ in the cleaved form of the cis-acting δ ribozyme. Although this hypothesis, which remains to be supported by physical evidence, localizes only one Mg$^{2+}$ ion but it does not exclude the possibility that several cations might be bound to the δ ribozyme.
In summary, this work identified all 2’-OH groups that are important for the catalytic activity of a *trans*-acting δ ribozyme. None of the 2’-OH seem to coordinate a magnesium cation. However, they are clearly essential components of the network of interactions forming the active catalytic core of the δ ribozyme.
Acknowledgments

The authors acknowledge Audrey Lapierre for her technical assistance in the binding shift assays. In addition, the authors acknowledge Drs Jennifer Doudna and Jeremy Murray (from Yale University), as well as François Major and Nancy Bourassa (from Université de Montréal), for their help in the identification of the important 2’-OH groups within the δ ribozyme crystal structure. The RNA group is supported by grants from both the Canadian Institutes of Health Research (CIHR) and Fonds FCAR (Québec). This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) to J.P.P. K.F was a recipient of a pre-doctoral fellowship from the Fonds pour la formation de Chercheurs et Aide à la Recherche (FCAR) and Fonds de la Recherche en Santé du Québec (FRSQ). J.P.P is a CIHR scholar.
REFERENCES

FIGURE LEGENDS

FIG. 1. Secondary structure of the engineered antigenomic \textit{trans}-acting \(\delta\) ribozyme (\(\delta R\)). This \textit{trans}-acting \(\delta\) ribozyme system was reported previously (e.g. see ref. 16,17). The dashed line represents a single-stranded region joining the substrate (S) and the ribozyme (Rz) molecules present in the \textit{cis}-form (namely J1/2) that was eliminated in order to produce this \textit{trans}-acting ribozyme. The pseudoknot P1.1 is illustrated by dotted lines. The homopurine base pair at the top of the P4 stem is represented by two large dots (G \(\bullet\) \(\bullet\) G), while the wobble base pair is represented by a single large dot (G \(\bullet\) U). The arrow indicates the cleavage site.

FIG. 2. Structure and cleavage activity of \(\delta RD-Rz\) as compared to \(\delta R-Rz\). \textit{Panel A:} Sequence and secondary structure of \(\delta RD-Rz\). The nomenclature is according to \(\delta R-Rz\) (Fig.1), except that the outline letters represent deoxyribonucleotides. \textit{Panel B:} Graphical representation of time courses for the cleavage reactions catalysed by \(\delta R-Rz\) (opened circles) and \(\delta RD-Rz\) (closed circles). The insets shows a typical autoradiogram of the denaturing PAGE gel for the analysis of the cleavage reaction with \(\delta RD-Rz\). The positions of the bromophenol blue (BPB), the 11 nt substrate (S) and the 4 nt product (P) are indicated.

FIG. 3. Autoradiograms of the cleavage assays with various substituted \(\delta\) ribozymes. The regions composing the \(\delta\) ribozyme were studied separately. The Rz containing deoxyribonucleotides in the J4/2 junction and P2 stem (\textit{panel A}), the P3 stem (\textit{panel B}), the L3 loop (\textit{panel C}), and the P1.1 pseudoknot and the homopurine base pair (\textit{panel D}) are shown. In each case, ribozymes (100 nM) were incubated 2 hr with a trace amounts of 5’-end-labeled
substrate (< 1 nM) and the reaction analyzed by denaturing 20% PAGE. The position of bromophenol blue (BPB), the 11 nt substrate (S) and the 4 nt product (P) are indicated.

FIG. 4. Analysis of the substitutions performed within the binding domain of δRD-Rz.

Panel A: In each case, ribozymes (100 nM) were incubated with a trace amounts of 5’-end-labeled substrate (< 1 nM) for 2 hr and the mixtures analyzed by 20% PAGE. The position of the bromophenol blue (BPB), the 11 nt substrate (S) and the 4 nt product (P) are indicated. *Panel B:* Kinetic parameters of the ribozyme containing substitutions within the ribozyme’s strand of the P1 stem.

FIG. 5. Differences in the free energy of the transition-state stabilisation (ΔΔG#) for the cleavage reaction catalyzed by various substituted δRD-Rz. The representation of ΔΔG# is according to an energy profile of the proposed reaction pathway. The ΔΔG# was calculated from

\[-RT \ln \left(\frac{k_2/K_{M'} \text{ substituted-Rz}}{k_2/K_{M'} \text{ δRD-Rz}} \right)\],

where T is 310.15 K and R is 1.987 cal·K⁻¹·mol⁻¹ (25). When available k₂/Kₘ’ values were used for this calculation, whereas for some ribozymes, which are denoted by a star (*), kₗₒₜ values were used. These calculations provide ΔΔG# values that are clustered in four groups: ES# (+/- 0.5 kcal·mol⁻¹) like δRD-Rz, ES# plus one H-bond (+1H; >0.5 kcal·mol⁻¹), ES# minus one H-bond (-H; between –0.5 and –1.5 kcal·mol⁻¹) and ES# minus two H-bonds (–2H; > -1.5 kcal·mol⁻¹).

FIG. 6. Schematic representation of the important 2’-OHs identified in the catalytic center of δ ribozymes. *Panel A:* map of the important 2’-OHs of the antigenomic δ ribozyme according to the results presented in this paper. *Panel B:* map of the important 2’-OHs of the genomic
ribozyme based on the crystal structure (3,7). Red and blue circles indicate that the 2’-OH of the residue is suggested to form one or two H-bonds, respectively. The guanosine at position 51 (panel A) is circled in green in order to indicate that the absence of its 2’-OH allowed the formation of an additional H-bond as compared to δRD-Rz. The black circles show the 2’-OH adjacent to the cleavage site that was previously reported to be essential for the chemical step (16). Lower-case letters mark different nucleotides between the genomic and antigenomic forms (3,32-34). In panel B, dotted lines indicate the partner residues forming an H-bond with a 2’-OH.
TABLE I

Kinetic parameters of δR-Rz, the δRD-Rz and their dC47 counterpart

<table>
<thead>
<tr>
<th>Kinetic parameters</th>
<th>δR</th>
<th>δR-dC47</th>
<th>δRD</th>
<th>δRD-dC47</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_M' (nM)</td>
<td>9.1 ± 1.6</td>
<td>19.4 ± 4.0</td>
<td>2.8 ± 1.0</td>
<td>5.0 ± 2.0</td>
</tr>
<tr>
<td>k_2 (min⁻¹)</td>
<td>0.19 ± 0.01</td>
<td>0.018 ± 0.001</td>
<td>0.060 ± 0.003</td>
<td>0.010 ± 0.001</td>
</tr>
<tr>
<td>k_2/K_M' (10⁷ min⁻¹ M⁻¹)</td>
<td>2.1</td>
<td>0.1</td>
<td>2.1</td>
<td>0.2</td>
</tr>
<tr>
<td>K_M (mM)</td>
<td>3.3 ± 0.8</td>
<td>1.1 ± 0.3</td>
<td>3.2 ± 1.3</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>K_d (nM)</td>
<td>3.0 ± 0.4</td>
<td>2.2 ± 0.3</td>
<td>1.0 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
</tbody>
</table>
TABLE II
Kinetic parameters of various substituted δRD-Rz

<table>
<thead>
<tr>
<th>δRD-Rz</th>
<th>K_{M} (nM)</th>
<th>k_{2} (min^{-1})</th>
<th>k_{2}/K_{M} (10^{-3} min^{-1} M^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>δRD</td>
<td>2.8 ± 1.0</td>
<td>0.060 ± 0.003</td>
<td>2.1</td>
</tr>
<tr>
<td>dJ4/2</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dC47</td>
<td>5.0 ± 2.0</td>
<td>0.010 ± 0.001</td>
<td>0.2</td>
</tr>
<tr>
<td>dU48</td>
<td>1.6 ± 0.4</td>
<td>0.030 ± 0.001</td>
<td>1.9</td>
</tr>
<tr>
<td>dA49</td>
<td>1.6 ± 1.0</td>
<td>0.023 ± 0.001</td>
<td>1.4</td>
</tr>
<tr>
<td>dA50</td>
<td>1.2 ± 0.6</td>
<td>0.005 ± 0.001</td>
<td>0.4</td>
</tr>
<tr>
<td>dG51</td>
<td>2.9 ± 0.5</td>
<td>0.17 ± 0.01</td>
<td>5.9</td>
</tr>
<tr>
<td>dC6-dG52</td>
<td>1.2 ± 0.6</td>
<td>0.032 ± 0.002</td>
<td>2.7</td>
</tr>
<tr>
<td>dP3</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dC8-dG18-dC9-dG17</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dA7</td>
<td>6.8 ± 1.2</td>
<td>0.030 ± 0.001</td>
<td>0.4</td>
</tr>
<tr>
<td>dC8</td>
<td>2.8 ± 1.7</td>
<td>0.008 ± 0.001</td>
<td>0.3</td>
</tr>
<tr>
<td>dC9</td>
<td>8.2 ± 4.4</td>
<td>0.010 ± 0.001</td>
<td>0.1</td>
</tr>
<tr>
<td>dG17</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dG18</td>
<td>2.0 ± 0.5</td>
<td>0.014 ± 0.001</td>
<td>0.7</td>
</tr>
<tr>
<td>dU19</td>
<td>1.1 ± 0.6</td>
<td>0.011 ± 0.001</td>
<td>1.0</td>
</tr>
<tr>
<td>dU10</td>
<td>1.0 ± 0.5</td>
<td>0.007 ± 0.001</td>
<td>0.7</td>
</tr>
<tr>
<td>dU13</td>
<td>3.1 ± 1.1</td>
<td>0.017 ± 0.001</td>
<td>0.5</td>
</tr>
<tr>
<td>dC14</td>
<td>2.7 ± 1.4</td>
<td>0.023 ± 0.002</td>
<td>0.9</td>
</tr>
<tr>
<td>dG15</td>
<td>3.6 ± 0.9</td>
<td>0.074 ± 0.002</td>
<td>2.1</td>
</tr>
<tr>
<td>dC16</td>
<td>2.2 ± 0.4</td>
<td>0.049 ± 0.001</td>
<td>2.2</td>
</tr>
<tr>
<td>dP1.1</td>
<td>2.8 ± 1.1</td>
<td>0.045 ± 0.003</td>
<td>1.6</td>
</tr>
<tr>
<td>dG29-dG46</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dG46</td>
<td>n.d</td>
<td>n.d</td>
<td>n.d</td>
</tr>
<tr>
<td>dG29</td>
<td>1.9 ± 1.0</td>
<td>0.017 ± 0.001</td>
<td>0.9</td>
</tr>
</tbody>
</table>

n.d: not determined
TABLE III
Dissociation and magnesium constants
for various substituted δRD-Rz

<table>
<thead>
<tr>
<th>δRD-Rz</th>
<th>K_d (nM)</th>
<th>K_{Mg} (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δRD</td>
<td>1.0 ± 0.1</td>
<td>3.2 ± 1.3</td>
</tr>
<tr>
<td>dJ4/2</td>
<td>0.7 ± 0.1</td>
<td>n.d</td>
</tr>
<tr>
<td>dC47</td>
<td>0.6 ± 0.1</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>dU48</td>
<td>0.8 ± 0.1</td>
<td>4.6 ± 1.2</td>
</tr>
<tr>
<td>dA49</td>
<td>0.9 ± 0.1</td>
<td>4.7 ± 2.0</td>
</tr>
<tr>
<td>dA50</td>
<td>0.4 ± 0.1</td>
<td>2.3 ± 0.8</td>
</tr>
<tr>
<td>dG51</td>
<td>0.8 ± 0.1</td>
<td>2.1 ± 0.6</td>
</tr>
<tr>
<td>dC6-dG52</td>
<td>0.40 ± 0.04</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td>dP3</td>
<td>0.5 ± 0.1</td>
<td>n.d</td>
</tr>
<tr>
<td>dC8dG18dC9dG17</td>
<td>0.40 ± 0.04</td>
<td>n.d</td>
</tr>
<tr>
<td>dA7</td>
<td>0.5 ± 0.1</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td>dC8</td>
<td>1.0 ± 0.1</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>dC9</td>
<td>1.0 ± 0.1</td>
<td>0.6 ± 0.6</td>
</tr>
<tr>
<td>dG17</td>
<td>3.6 ± 0.3</td>
<td>n.d</td>
</tr>
<tr>
<td>dG18</td>
<td>0.6 ± 0.1</td>
<td>2.1 ± 0.4</td>
</tr>
<tr>
<td>dU19</td>
<td>0.9 ± 0.1</td>
<td>1.5 ± 0.6</td>
</tr>
<tr>
<td>dU10</td>
<td>1.0 ± 0.1</td>
<td>2.0 ± 1.0</td>
</tr>
<tr>
<td>dU13</td>
<td>0.7 ± 0.1</td>
<td>2.9 ± 0.9</td>
</tr>
<tr>
<td>dC14</td>
<td>0.8 ± 0.1</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td>dG15</td>
<td>1.1 ± 0.5</td>
<td>5.5 ± 0.5</td>
</tr>
<tr>
<td>dC16</td>
<td>0.7 ± 0.1</td>
<td>3.4 ± 0.5</td>
</tr>
<tr>
<td>dF1.1</td>
<td>0.9 ± 0.2</td>
<td>4.5 ± 1.2</td>
</tr>
<tr>
<td>dG29-dG46</td>
<td>0.5 ± 0.1</td>
<td>n.d</td>
</tr>
<tr>
<td>dG46</td>
<td>0.40 ± 0.04</td>
<td>n.d</td>
</tr>
<tr>
<td>dG29</td>
<td>0.7 ± 0.1</td>
<td>1.1 ± 0.5</td>
</tr>
</tbody>
</table>

n.d: not determined
FIGURE 1
FIGURE 2
FIGURE 3
<table>
<thead>
<tr>
<th>δRD-Rz</th>
<th>(K_M') (nM)</th>
<th>(k_2) (min(^{-1}))</th>
<th>(k_2/K_M') (10(^{-5}) min(^{-1})M(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>δRD</td>
<td>2.8 ± 1.0</td>
<td>0.060 ± 0.003</td>
<td>2.1</td>
</tr>
<tr>
<td>dC21-dC20</td>
<td>2.0 ± 0.2</td>
<td>0.023 ± 0.002</td>
<td>1.2</td>
</tr>
<tr>
<td>dG22</td>
<td>5.7 ± 1.2</td>
<td>0.028 ± 0.001</td>
<td>0.5</td>
</tr>
<tr>
<td>dA23</td>
<td>4.1 ± 0.8</td>
<td>0.033 ± 0.002</td>
<td>0.8</td>
</tr>
<tr>
<td>dC24</td>
<td>3.7 ± 1.2</td>
<td>0.033 ± 0.002</td>
<td>0.9</td>
</tr>
<tr>
<td>dC25</td>
<td>5.1 ± 0.9</td>
<td>0.032 ± 0.001</td>
<td>0.6</td>
</tr>
<tr>
<td>dU26</td>
<td>1.7 ± 0.3</td>
<td>0.045 ± 0.001</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Evolution of reaction

Relative ΔG

ΔG^*

dG17 = -1.96*
dG46 = -1.93*
dC9 = -1.85

dC47 = -1.42
dC8 = -1.17
dA7 = -0.99
dA50 = -0.99
dU13 = -0.85
dG18 = -0.65
dU10 = -0.65
dC14 = -0.48
dG29 = -0.49
dA49 = -0.42
dU19 = -0.42
dU48 = 0
dG15 = 0
dC16 = 0
dP1.1 = 0
dC6-dG52 = 0.3
dG51 = 0.68

FIGURE 5
Kinetic and binding analysis of the catalytic involvement of ribose moieties of a trans-acting delta ribozyme
Karine Fiola and Jean-Pierre Perreault

J. Biol. Chem. published online May 15, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M203468200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts