Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells.

Merei Huigsloot, Ine B. Tijdens, Gerard J. Mulder and Bob van de Water†.

Division of Toxicology, Leiden Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands.

† To whom correspondence should be addressed:
Bob van de Water
Division of Toxicology
LACDR
Leiden University
Einsteinweg 55
P.O. Box 9502
2300 RA Leiden
The Netherlands
Tel.: 31-71-5276223
Fax: 31-71-5276292
E-mail: b.water@LACDR.LeidenUniv.nl
Abbreviations

AIF, apoptosis inducing factor
AMC, 7-amino-4-methylcoumarin
APC, allophycocyanin
AV, AnnexinV
CLSM, Confocal Laser Scanning Microscopy
CMXRos, Mitotracker™ Red CMXRos
DiOC₆, 3,3’-dihexyloxacyrbocyanine
Dox, doxorubicin
Eto, etoposide
FADD, Fas-Associated Death Domain
FLIP, Fas Linked interleukin-β converting enzyme Inhibitory Protein
Neo, neomycin-resistant cells
PI, propidium iodide
PS, phosphatidylycerine
PTP, permeability transition pore
Rho123, rhodamine 123
VDAC, voltage-dependent anion channel
zVAD-fmk, benzyloxy carbonyl-Val-Ala-DL-Asp-fluoromethyl ketone
Δψ, mitochondrial membrane potential
Summary

Various anticancer drugs cause mitochondrial perturbations in association with apoptosis. Here we investigated the involvement of caspase- and Bcl-2-dependent pathways in doxorubicin-induced mitochondrial perturbations and apoptosis. For this purpose we set up a novel three-color flow cytometric assay using rhodamine 123, annexin V-APC and propidium iodide to assess the involvement of the mitochondria in apoptosis caused by doxorubicin in the breast cancer cell line MTLn3. Doxorubicin-induced apoptosis was preceded by upregulation of CD95 and CD95L and a collapse of $\Delta\psi$ occurring prior to phosphatidylserine externalization. This drop in $\Delta\psi$ was independent of caspase activity since zVAD-fmk did not inhibit it. zVAD-fmk also blocked activation of caspase-8, thus excluding an involvement of the death receptor pathway in $\Delta\psi$ dissipation. Furthermore, although overexpression of Bcl-2 in MTLn3 cells inhibited apoptosis, dissipation of $\Delta\psi$ was still observed. No decrease in $\Delta\psi$ was observed in cells undergoing etoposide-induced apoptosis. Immunofluorescent analysis of $\Delta\psi$ and cytochrome c localization on a cell-to-cell basis indicates that the collapse of $\Delta\psi$ and cytochrome c release are mutually independent in both normal and Bcl-2 overexpressing cells. Together these data indicate that doxorubicin-induced dissipation of the mitochondrial membrane potential precedes phosphatidylserine externalization and is independent of a caspase- or Bcl-2-controlled checkpoint.
Introduction

Upon anticancer drug treatment, a number of cellular stress response pathways is activated. Some of these pathways are linked to mitochondrial perturbations that are often associated with apoptosis. Thus, the release of pro-apoptotic factors from the intermembrane space into the cytosol, including cytochrome c, apoptosis inducing factor (AIF) and Smac/DIABLO, occurs after cytostatic treatment (1-4). The mechanisms regulating the release of cytochrome c include specific pore formation in the outer mitochondrial membrane and opening of the permeability transition pore (PTP) (reviewed by (5)). As a consequence of both the loss of the electrochemical gradient caused by pore opening and rupture of the outer mitochondrial membrane, the mitochondrial membrane potential ($\Delta \psi$) generally collapses. There is general agreement that cytosolic cytochrome c interacts with apaf-1, ATP and pro-caspase-9 resulting in the activation of the latter, followed by caspase-3 activation and initiation of a proteolytic cascade (6). However, the exact sequence of events resulting in disruption of mitochondrial function and release of cytochrome c from the mitochondria in apoptosis caused by anticancer drugs is not yet clear.

There are two prominent pathways that may cause mitochondrial dysfunction during apoptosis. First, death receptor activation through CD95/CD95L and caspase-8 activation during apoptosis is under several circumstances upstream from mitochondrial perturbations. Thus, active caspase-8 may cause cleavage of the pro-apoptotic Bcl-2 member Bid and, as a consequence, mitochondrial dysfunction (7-9). Several anticancer agents, including doxorubicin and etoposide, can upregulate CD95 and CD95L (10-12). However, there is controversy on the relative importance of this pathway in anticancer drug-induced mitochondrial perturbations and apoptosis. Thus, in some cell types inhibition of this pathway using either FLIP, CrmA or dominant negative FADD, abrogates apoptosis whereas in other cell types little effect was observed (reviewed by (12)). Although upregulation of death
receptor pathway components was found in some solid tumor cell lines the extent of subsequent involvement of the mitochondrial pathway remains unclear (11, 13). Upregulation and/or translocation of Bax and/or other pro-apoptotic Bcl-2 family members to the mitochondria is a second major pathway for mitochondrial perturbation preceding the onset of apoptosis. At the mitochondria, Bax invokes cytochrome c release and loss of Δψ (14), possibly via direct pore formation (15, 16) or by association with VDAC (17, 18). Importantly, the anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-xL generally inhibit these mitochondrial perturbations (19, 20). Various tumor cells have increased expression of proteins that inhibit either the death receptor pathways, e.g. FLIP, or apoptosis caused by Bax, e.g. Bcl-2 or Bcl-xL (21-25). These tumor cells are generally more resistant to anticancer drug-induced apoptosis. It is unclear whether such resistance includes mitochondrial protection. Therefore, we have investigated the relative roles of caspase activation and Bcl-2-dependent pathways in mitochondrial perturbations and apoptosis caused by the anticancer drug doxorubicin.

Doxorubicin is often used in the treatment of solid tumors, including breast, liver and bone tumors (26). It causes DNA damage and formation of reactive oxygen species, eventually resulting in apoptosis (27). Although doxorubicin causes mitochondrial injury in cardiac muscle cells (28) and some other cell types, these effects were studied primarily in lymphoid cells (29, 30). The molecular mechanism of mitochondrial injury and its role in the induction of apoptosis in adenocarcinoma cells remains however largely unclear. As discussed above, the dissipation of Δψ is one of the markers for mitochondrial involvement in apoptosis. So far, dissipation of Δψ caused by doxorubicin was determined either in the total cell population (30-32) or in 'viable' cells based on scatter properties (33). These methods do not allow proper distinction of the exact cell population in which the changes in Δψ occurred: genuinely viable, apoptotic or (secondary) necrotic cells. As a consequence, the identification
of the exact sequence of events in doxorubicin-induced apoptosis was precluded. In the present study we set up three-color flow cytometry with rhodamine 123, annexin V-APC and propidium iodide to assess the involvement of the mitochondria in doxorubicin-induced apoptosis. For this purpose, we used the rat mammary adenocarcinoma cell line MTLn3, which is often used as a model to study molecular mechanisms of metastasis formation (34, 35) and responses to drug therapy both in vitro and in vivo (36-38). We have previously characterized in detail the induction of apoptosis by anticancer drugs in these cells (38).

In the present study, we show that the doxorubicin-mediated collapse of \(\Delta \psi \) is a primary event preceding PS externalization. Moreover, despite the fact that doxorubicin causes upregulation of CD95 and CD95L, prevention of caspase-8 activation does not prevent loss of \(\Delta \psi \). Furthermore, although Bcl-2 inhibits apoptosis, dissipation of \(\Delta \psi \) is still observed. Analysis of \(\Delta \psi \) and cytochrome c localization on a cell-to-cell basis indicates that the collapse of \(\Delta \psi \) and cytochrome c release are mutually independent in both normal and Bcl-2 overexpressing cells. Together these data indicate that doxorubicin-induced dissipation of the mitochondrial membrane potential precedes PS externalization and is independent of a caspase- or Bcl-2-controlled checkpoint.
Experimental procedures

Chemicals

Alpha modified minimal essential medium with ribonucleosides and deoxyribonucleosides (α-MEM), Fetal Bovine Serum (FBS), penicillin/streptomycin, Lipofectamin Plus and geneticin (G418 sulphate) were from Life Technologies (Rockville, MD). Collagen (type I, rat tail) was from Upstate Biotechnology (Lake Placid, NY). Doxorubicin, propidium iodide (PI), 7-amino-4-methylcoumarin (AMC), DiOC₆, rhodamine 123 and RNAse A were from Sigma (St. Louis, MO). Benzyloxy carbonyl-Val-Ala-DL-Asp-fluoromethylketone (zVAD-fmk), Acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin, (Ac-DEVD-AMC) were from Bachem (Bubendorf, Switzerland). Annexin V was from Boehringer Mannheim (Basel, Switzerland). Hoechst 33258, the Alexa™ 488 protein labeling kit and Mitotracker™ Red CMXRos were from Molecular Probes (Leiden, the Netherlands). Allophycocyanin (APC) was from Prozyme (San Leandro, CA). All other chemicals were of analytical grade.

Cell culture

MTLn3 rat mammary adenocarcinoma cells were originally developed by Dr. D.R. Welch (Jake Gittlen Cancer Research Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA) and used between passages 46 and 56. They were cultured in α-MEM supplemented with 5% (v/v) FBS (complete medium). For experiments, cells were plated at a density of 4*10³ cells/cm² in Corning plates (Acton, MA) and grown for three days in complete medium supplemented with 50 U penicillin/L and 50 mg streptomycin/L (penicillin/streptomycin). Cells were exposed to doxorubicin for one hour in Hanks’ Balanced Salt Solution (137 mM NaCl, 5 mM KCl, 0.8 mM MgSO₄.7H₂O, 0.4 mM
Na₂HPO₄.2H₂O, 0.4 mM KH₂PO₄, 1.3 mM CaCl₂, 4 mM NaHCO₃, 25 mM HEPES, 5 mM D-glucose; pH 7.4). After removal of doxorubicin, cells were recovered in α-MEM containing 2.5% (v/v) FBS and penicillin/streptomycin for the indicated periods. In some experiments cells were recovered in α-MEM containing 2.5% (v/v) FBS, penicillin/streptomycin and 100 µM zVAD-fmk.

Construction of Bcl-2 overexpressing cells

Subconfluent MTLn3 cells were transfected with pcDNA3 (Neo) or pcDNA3 containing human Bcl-2 (gift from Dr. James L. Stevens) using Lipofectamin Plus reagent and after reaching confluence they were selected for neomycin resistance (G418, 100 µg/ml). For both vectors, three clones were selected and used for up to 6 passages during which they stably expressed Bcl-2 in over 95% of cells based on immunofluorescence.

In some experiments we used porcine renal proximal tubular cell line LLC-PK1 expressing either Bcl-2 (pkBCL-2 clone 6) or the empty vector (pkNEO clone 1) that have been described previously (39). LLC-PK1 cells were cultured in Dubelco’s Modified Eagle’s Medium (DMEM) containing 10% (v/v) FBS and penicillin/streptomycin. For experiments cells were plated overnight in DMEM plus penicillin/streptomycin without FBS on collagen coated 6 cm culture dishes to form a subconfluent monolayer as described previously (40). Thereafter, cells were treated with varying concentrations of doxorubicin in DMEM/penicillin/streptomycin for 24 hr.

Determination of cell death

For Annexin V/propidium iodide (AV/PI) staining, cells were washed twice in PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na₂HPO₄.2H₂O, 1.4 mM KH₂PO₄; pH 7.4) containing 1 mM EDTA (PBS-EDTA) and subsequently trypsinized with 0.13 g/L Trypsin in PBS-EDTA.
Medium, washes and cells were combined, centrifuged (5 min, 200 g, 4 °C) and the pellet was washed once with PBS-EDTA. Cells were allowed to recover from trypsinization in complete medium (30 minutes, 37 °C). Externalized phosphatidylserine (PS) was labeled (15 minutes, 0 °C) with Alexa488™-conjugated Annexin V in AV-buffer (10 mM HEPES, 145 mM NaCl, 5 mM KCl, 1.0 mM MgCl₂·6H₂O, 1.8 mM CaCl₂·2H₂O; pH 7.4). Propidium iodide (2 μM) in AV-buffer was added one minute prior to analysis by flow cytometry on a FACScalibur (Becton Dickinson).

For cell cycle analysis, trypsinized and floating cells were pooled, washed with PBS-EDTA and fixated in 70% (v/v) ethanol (30 minutes, -20 °C). After two washes with PBS-EDTA, cells were incubated with PBS-EDTA containing 50 µg/ml RNAse A and 7.5 μM PI (45 minutes, RT) and subsequently analyzed by flow cytometry.

Caspase-3-like activity was determined as described previously (38). Briefly, cells were trypsinized as described for AV/PI, washed once in PBS-EDTA and resuspended in lysis buffer (10 mM HEPES, 40 mM β-glycerophosphate, 50 mM NaCl, 2 mM MgCl₂, 5 mM EGTA; pH 7.0). Cells were lysed by four cycles of freezing and thawing followed by centrifugation (30 min, 13000 g, 4 °C). To 10 μg cell lysate protein, 80 μl assay buffer was added (100 mM HEPES, 10% (w/v) sucrose, 0.1% (v/v) Nonidet P40, 10 mM dithiothreitol, 25 μM Ac-DEVD-AMC; pH 7.25) and the release of AMC was monitored (45 min, 37 °C) in a fluorescence plate reader (HTS 7000 Bio assay reader, Perkin Elmer, Norwalk, CT). Free AMC was used as a standard and caspase activity was expressed as pmol AMC/min/mg protein.

Determination of mitochondrial membrane potential

Mitochondrial membrane potential was essentially performed as described before (41, 42) with some modifications. Briefly, cells were harvested as described for AV/PI staining.
Following recovery in complete medium, cells were incubated with 1 μM rhodamine 123 (Rho123) and APC-conjugated Annexin V (43) in AV-buffer (30 min, 37 °C). Cells were centrifuged (30 seconds, 400 g, RT) and the pellet was resuspended in AV-buffer containing 2 μM propidium iodide one minute prior to analysis by confocal laser scanning microscopy (CLSM, BioRad) or flow cytometry. As an alternative method to determine the mitochondrial membrane potential we used DiOC₆ (0.1 μM) instead of Rho123 (30, 44, 45). Selective localization of DiOC₆ at the mitochondria was confirmed by CLSM.

Soft agar colony assay.

MTLn3 Neo and Bcl-2 cells were treated with varying concentrations of doxorubicin as described above. After 24 hours, cells were trypsinized and viable cells (trypan blue exclusion) were counted. Next, 12,500 cells were plated in 1 ml of topagar (0.33 % (w/v) agarose in complete medium in the presence of amphotericin B (250 ng/ml)) on top of 2.5 ml of bottomagar (0.66 % (w/v) agarose in complete medium in the presence of amphotericin B (250 ng/ml)) in duplicate in 6-wells plates, as described by (35). After one week, a toplayer of 2.5 ml of bottomagar was added. After 14 days, 150 μl of a 5 μg/ml MTT-solution in medium was added to the wells and after overnight incubation (37 °C), digital images of the wells were taken with a Nikon CCD camera. Colonies were counted using a particle-counting option in Image Pro (Media Cybernetics, Silver Spring, MD).

Immunoblotting

Attached cells were scraped in ice-cold TSE+ (10 mM Tris-HCl, 250 mM sucrose, 1 mM EGTA, pH 7.4, containing 1 mM dithiothreitol, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 mM sodium vanadate, 50 mM sodium fluoride, 1 mM phenylmethylsulfonyl fluoride). Floating cells in the medium and in one wash of PBS were pelleted (5 min, 200 g, 4 °C) and
pooled with scraped cells in TSE+. The protein concentration in the supernatant was determined using the BioRad protein assay using IgG as a standard. Fifteen µg of total cellular protein was separated by SDS-PAGE and transferred to PVDF membrane (Millipore, Etten Leur, The Netherlands). Blots were blocked with 5% (w/v) non-fat dry milk in TBS-T (0.5 M NaCl, 20 mM Tris-HCl, 0.05% v/v Tween-20; pH 7.4) and probed for Bcl-2 (C-2; Santa Cruz Biotechnology, Santa Cruz, CA), p53 (pAb 240, Santa Cruz Biotechnology), CD95 (FL335, Santa Cruz Biotechnology), CD95L (clone 33, Transduction Laboratories), caspase-8 (kindly provided by Prof. J. Borst (46)), active caspase-3 (CM-1, kindly provided by Dr. A. Srinivasan (47)), followed by incubation with secondary antibody containing HRP and visualization with ECL reagent (Amersham Pharmacia Biotech, Uppsala, Sweden).

Cytosolic fractions for cytochrome c immunoblotting

Cytosolic fractions were prepared as described by (46). Briefly, floating cells in the medium and one wash of mitobuffer (50 mM PIPES-KOH (pH 7.4), 220 mM mannitol, 68 mM sucrose, 50 mM KCl, 5 mM EGTA, 2 mM MgCl2, 1 mM dithiothreitol and 1 mM phenylmethylsulfonyl fluoride) were pelleted (5 min, 200 g, 4 °C) and pooled with attached cells scraped in 100 µl ice-cold mitobuffer. Cells were pelleted (1 min, 400 g, RT), resuspended in 100 µl mitobuffer and allowed to swell on ice for 30 min. Cells were homogenized by passing the suspension through a 25-gauge needle (10 strokes). Homogenates were centrifuged (15 min, 13000 g, 4 °C) and supernatants were collected. Thirty µg of cytosolic protein was separated on a 15% SDS-PAGE gel and transferred to PVDF membrane. Cytochrome c was detected with anti-cytochrome c mAb (7H8.2C12, Pharmingen) using the Western Star kit (Tropix, Bedford, MA).
Immunocytochemistry

Cells were cultured on 12 mm collagen-coated glass coverslips and fixated in fresh 4% (w/v) paraformaldehyde in PBS. Coverslips were blocked in TBP (0.5% (w/v) BSA and 0.05% (v/v) Tween-20 in PBS; pH 7.4) (1 hr, RT) and subsequently incubated with primary antibody in TBP (1 hr, RT). Coverslips were washed twice in PBS containing 0.05% Tween-20 and incubated with Alexa^488^, Cy3 or Cy5-conjugated secondary antibodies in TBP (45 min, RT). After washing, coverslips were incubated with 2 μg/ml Hoechst 33258 in PBS (15 min, RT), washed in PBS and mounted in Aqua PolyMount (Polysciences, Warrington, PA). In some experiments, cells were incubated with 200 nM MitoTracker Red CMXRos in complete medium (15 min, 37 °C) prior to fixation. Primary antibodies used were Bcl-2 (C-2; Santa Cruz Biotechnology, Santa Cruz, CA) and Cytochrome C (6H2B4; Pharmingen; San Diego, CA). Imaging occurred by confocal laser scanning microscopy (BioRad).

Statistical analysis

Student's *t* test was used to determine if there was a significant difference between two means (*p* < 0.05). When multiple means were compared, significance was determined by one-way analysis of variance (ANOVA; *p* < 0.05). For ANOVA analysis, letter designations are used to indicate statistically significant differences. Means with a common letter designation within one figure are not different; those with a different letter designation are significantly different from all other means with different letter designations. For example, a mean designated as a is significantly different from a mean designated b, but neither is different from a mean designated a,b.
Results

Doxorubicin decreases the mitochondrial membrane potential ($\Delta \psi$) prior to the onset of phosphatidylserine (PS) externalization.

The mitochondria are key organelles in the control of apoptosis. Therefore, we investigated the involvement of mitochondrial dysfunction in doxorubicin-induced apoptosis. The mitochondrial membrane potential ($\Delta \psi$) is a sensitive measure for mitochondrial functioning (reviewed by (49)). Previously, we reported on the apoptotic effects of doxorubicin on MTLn3 cells (38). Doxorubicin induced apoptosis in a time-dependent manner, as determined by Annexin V-staining, analysis of DNA content and caspase activity. The onset of apoptosis occurred between 8 and 16 hr after exposure, with maximal caspase-3 activity at 24 hr.

In the present study, we analyzed $\Delta \psi$ after doxorubicin treatment by flow cytometry using rhodamine 123 (Rho123). Initially, Rho123 fluorescence was only quantified in the PI- (i.e. viable) population, gated as indicated in Fig. 1A. Doxorubicin caused a decrease in $\Delta \psi$ in PI- cells (Fig. 1B). PI- cells, however, include two cell populations: genuinely viable cells as well as early apoptotic cells. These cells can be distinguished by the absence or presence of externalized phosphatidylserine (PS) (viable and apoptotic cells, respectively) as identified by annexin V staining. Therefore, the possibility existed that the drop in $\Delta \psi$ was mainly present in cells that were already apoptotic, i.e. have externalized PS. Alternatively, apoptotic cells may have a disturbed intracellular distribution of Rho123 that does not reflect the mitochondrial membrane potential. To investigate these possibilities in more detail, MTLn3 cells were stained with Rho123, propidium iodide as well as APC-labeled annexin V (AV). This enabled us to determine the relationship between loss of $\Delta \psi$ and onset of apoptosis in PI- cells. Using confocal laser scanning microscopy (CLSM, Fig. 2), we observed that in control cells the Rho 123 staining is intense and strictly located at the mitochondria; little variability
is observed between cells (panels A-C). In contrast, in doxorubicin-treated cells there is considerable variability in Rho123 staining (panels G-I). Thus, while in all AV+/PI- cells Rho123 is located at mitochondria, some of these cells have a markedly decreased Δψ. In contrast, in AV+/PI- cells the Rho123 staining is more diffuse (asterisks).

Because of the variability in Rho123 staining in AV+/PI- cells and the more diffuse localization of Rho123 in AV+/PI- cells, we re-evaluated the Rho123 fluorescence intensity measurements by flow cytometry. Doxorubicin caused a clear increase in the percentage of AV+/PI- cells as determined by three-color flow cytometry with Rho123, PI and APC-Annexin V (Fig. 3A and B). Moreover, in accordance with the CLSM observations, the decrease of Δψ caused by doxorubicin was already present in AV+/PI- cells, i.e. prior to PS externalization (Fig. 3C and D). Similar observations were made with an other structurally unrelated fluorescent dye, DiOC₆ (Fig. 4), that is also often used to determine the mitochondrial membrane potential in living cells (30, 44, 45). We also investigated whether the collapse of Δψ in MTLn3 cells was restricted to doxorubicin. The anticancer agent etoposide did not induce dissipation of Δψ under conditions which resulted in comparable levels of apoptosis (Fig. 3E and F).

Doxorubicin-induced dissipation of Δψ is independent of caspase activation.

Next we wanted to determine the mechanism for the early mitochondrial perturbations in doxorubicin-induced apoptosis. Upregulation of CD95/CD95L, which may occur in a p53-dependent manner, and subsequent activation of caspase-8 have been implicated in doxorubicin-induced apoptosis (12, 50, 51). Therefore, we examined the kinetics of expression and/or cleavage of these proteins. Treatment of MTLn3 cells with doxorubicin rapidly induced upregulation of p53, CD95 and CD95L (Fig. 5A). Caspase-8 cleavage was first observed at 12 hours after exposure and may therefore be responsible for the collapse of
the mitochondrial membrane potential. To investigate the involvement of caspases in the dissipation of Δψ, we treated MTLn3 cells with the pan-caspase inhibitor zVAD-fmk. zVAD-fmk protected against doxorubicin-induced apoptosis (Fig. 3D) and, importantly, abrogated the cleavage of caspase-8 as well as caspase-3 (Fig. 5B). In contrast, in the presence of zVAD-fmk the dissipation of Δψ caused by doxorubicin in viable cells was also about 35% (Fig. 3D). Also, evaluation of the intracellular Rho123 localization by CLSM revealed that the Rho123 distribution within either AV+/PI or AV+/PI cells was similar in the absence or presence of zVAD-fmk (Fig. 2G and J, asterisks). These combined data indicate that the decrease in Δψ caused by doxorubicin in viable cells occurs independent of CD95/CD95L upregulation and caspase-8 activation.

Overexpression of Bel-2 in MTLn3 cells inhibits doxorubicin-induced apoptosis.

If caspases are not involved in doxorubicin-induced collapse of Δψ, which pathway(s) may then be responsible? Anti-apoptotic Bel-2 family members, including Bel-2 and Bel-xL, inhibit apoptosis by preventing mitochondrial perturbations during the apoptotic process. Therefore, we tested whether the decrease of Δψ in genuinely viable cells upon doxorubicin treatment also occurred in MTLn3 cells overexpressing Bel-2. We constructed MTLn3 cells stably overexpressing Bel-2 and characterized the protective action of Bel-2 in doxorubicin-induced apoptosis. Three different clones were obtained which all showed strong overexpression of Bel-2 (Fig. 6A). Immunofluorescent staining for Bel-2 together with the mitochondrial marker Mitotracker red (CMXRos), indicated that most of the Bel-2 was located at the mitochondria (Fig. 6A). Very little Bel-2 staining was detectable in Neo control cells. In Bel-2 overexpressing (Bel-2) cells, doxorubicin did not induce statistically significant DNA fragmentation at concentrations up to 25 μM whereas in Neo control cells 39% apoptosis was observed (Fig. 6B). DNA-fragmentation is a late, caspase-dependent
event in apoptosis. Therefore, we also determined the effect of Bcl-2 overexpression on caspase activation. Doxorubicin caused a clear induction of caspase-3-like activity in Neo cells (control: 156 ± 11 vs. doxorubicin: 528 ± 76 pmol DEVD-AMC/min/mg protein). Although some induction of caspase activity was observed in Bcl-2 cells (control: 25 ± 11 vs. doxorubicin: 120 ± 6 pmol DEVD-AMC/min/mg protein), the absolute activity was less than 25% of doxorubicin-treated Neo cells.

In a previous report (38) we demonstrated that inhibition of caspases using zVAD-fmk did not completely block doxorubicin-induced PS externalization in MTLn3 cells. This indicated that part of the PS externalization occurred in a caspase-independent, possibly Bcl-2 sensitive manner. Therefore, we next investigated whether Bcl-2 was able to block doxorubicin-induced PS externalization. While inhibition of caspases reduced DNA-fragmentation to control levels in Neo cells (Fig. 7A), PS externalization caused by doxorubicin treatment was only marginally affected by zVAD-fmk (Fig. 7B). In contrast, Bcl-2 overexpression protected against DNA-degradation as well as PS externalization induced by doxorubicin (Fig. 7). zVAD-fmk had only a slight additional protective effect on DNA fragmentation but it had no effect on PS externalization. Importantly, while the resistance of Bcl-2 cells to doxorubicin was not due to inhibition of the induction of p53, CD95 or CD95L expression, caspase-8 and caspase-3 activation were markedly reduced in Bcl-2 cells (Fig. 7C). The inhibition of caspase-8 cleavage in Bcl-2 cells further strengthens the notion that caspase-8 cleavage occurs secondary to mitochondrial perturbations. These observations indicate clear differences in the regulation of several apoptotic features in doxorubicin-induced apoptosis by Bcl-2 on the one hand and caspases on the other hand.

Bcl-2 does not protect against doxorubicin-induced dissipation of Δψ.
In many cell types Bcl-2-mediated protection against apoptosis is associated with preservation of mitochondrial homeostasis (19). Since Bcl-2 protected against PS externalization, we next checked whether Bcl-2 could also prevent the decrease in \(\Delta \psi \) induced by doxorubicin as observed in AV-/PI MTLn3 (see Fig. 3C and D). Flow cytometric analysis (Rho123, PI and Annexin V-APC staining) of Neo cells indicated that doxorubicin induced a dissipation of \(\Delta \psi \) of approximately 60 % in AV+/PI- cells. Surprisingly, doxorubicin caused a similar dissipation of \(\Delta \psi \) in AV+/PI- Bcl-2 cells (Fig. 8A). The \(\Delta \psi \) of apoptotic AV+/PI- cells remained unchanged under all conditions in both Neo and Bcl-2 cells (Fig. 8B). As mentioned above, doxorubicin still caused some activation of caspases in Bcl-2 cells. Therefore the possibility existed that low caspase activity contributes to the dissipation of \(\Delta \psi \). To exclude this possibility both Neo and Bcl-2 cells were treated with doxorubicin in the presence of zVAD-fmk. Co-incubation with zVAD-fmk did not affect the doxorubicin-induced decrease of \(\Delta \psi \) in both Neo and Bcl-2 cells. Next we investigated whether these findings our also applicable to other cells. For thus purpose we used the immortalized porcine renal proximal tubular epithelial cell line LLC-PK1 that is also sensitive to doxorubicin (40). As expected LLC-PK1 cells stably transfected with Bcl-2 (pkBcl2 clone 6) were resistant to doxorubicin-induced apoptosis compared to empty vector control cells (pkNEO clone 1). In addition, cells that were not yet apoptotic after doxorubicin treatment (e.g. AV-/PI- cells) had a decreased \(\Delta \psi \) (Table I). z-VADfmk did block the doxorubicin-induced apoptosis of pkNEO and pkBcl2 cells, however, no protection was observed against the decrease of \(\Delta \psi \) (Table I). In conclusion, these data indicate that the dissipation of \(\Delta \psi \) caused by doxorubicin is an event that occurs upstream of a checkpoint controlled by either the Bcl-2 family or caspases.

Bcl-2 does not protect against longterm survival of MTLn3 cells after doxorubicin treatment.
Bcl-2 clearly protected against doxorubicin-induced apoptosis. However, the fact that no protection was observed against the doxorubicin-induced dissipation of the mitochondrial membrane potential suggested that compromised mitochondrial function may affect long-term survival. Indeed, in MTLn3 cells overexpressing Bcl-2, doxorubicin still caused a strong reduction in clonogenic survival in a soft-agar assay (Fig. 9).

Cytochrome c release is not strictly correlated with loss of Δψ.

Cytochrome c release from the mitochondria is a critical event in formation of the apoptosome and subsequent activation of caspase-9 and -3 (6). In our cells the doxorubicin-induced loss of Δψ was not inhibited at all by caspase inhibition. Moreover, Bcl-2 did not protect against the dissipation of Δψ either. It has been reported that in various models of apoptosis the protective effect of Bcl-2 occurs through inhibition of mitochondrial cytochrome c release (52, 53). This suggests that the loss of Δψ on the one hand, and cytochrome c release with subsequent caspase-activation on the other hand, may be independent events in doxorubicin-induced apoptosis of MTLn3 cells. We first characterized the cytochrome c release in Neo cells. To investigate the relationship between the loss of Δψ and cytochrome c release we used the mitochondrial membrane potential-sensitive dye CMXRos (54) in combination with immunofluorescent staining of cytochrome c. For this purpose cells were incubated with CMXRos just prior to fixation of the cells. This procedure allowed us to evaluate Δψ, cytochrome c localization and caspase-3 activation in individual attached cells by CLSM. In Neo control cells cytochrome c was clearly visible as a punctuate staining that clearly co-localized with CMXRos, indicating mitochondrial localization (Fig. 10A). Exposure to doxorubicin caused a decreased staining of CMXRos; in some cells no mitochondrial localization of CMXRos was evident (arrowhead). Also the punctuate localization of cytochrome c staining was lost (Fig. 10A; arrowhead and asterisk), which was
evident in approximately 15% of the cells (Fig. 10B). To determine whether this cytochrome c translocation correlated with dissipation of $\Delta \psi$, we further discriminated between cells with high or low $\Delta \psi$. This revealed that cytochrome c release was not strictly correlated with loss of $\Delta \psi$, since also cells with still high $\Delta \psi$ showed cytochrome c release, although to a lesser extent than cells with low $\Delta \psi$ (Table II). In addition, there were also cells that had almost completely lost $\Delta \psi$ (little or no CMXRos staining, +) but still showed mitochondrial cytochrome c staining. The release of cytochrome c as well as the loss of $\Delta \psi$ as visualized with CMXRos always preceded the onset of caspase activity: no active caspase-3 staining could be observed in any of the attached cells after doxorubicin treatment (data not shown). In contrast, staurosporin (50 nM, 6 hr) was capable of induction of caspase-3 activation prior to cell detachment, probably due to the rapid induction of apoptosis (data not shown).

Bcl-2 only partially inhibits the release of cytochrome c.

Next we investigated the protective role of Bcl-2 against doxorubicin-induced release of cytochrome c. Despite the fact that Bcl-2 protected against apoptosis, doxorubicin induced cytochrome c release in cells that were still attached to a similar extent in Bcl-2 cells as in Neo cells (Fig. 10A and B). Also in Bcl-2 cells there was no direct correlation between loss of $\Delta \psi$ and cytochrome c release as in Neo cells (Fig. 10A and Table II). MTLn3 cells that become apoptotic detach from the substratum. Bcl-2 overexpression decreased the sensitivity to doxorubicin and, therefore, less detached apoptotic cells are found in the medium. Hence, the percentage of cells with cytochrome c release as judged from the immunofluorescent staining of attached cells most likely underestimates the total extent of cytochrome c release. This is predominantly the case for Neo cells. For this reason we also evaluated the total mitochondrial cytochrome c release in the pooled floating and attached cells using Western blotting (Fig. 10C). No cytochrome c release was observed in untreated cells. Yet,
doxorubicin clearly increased the extent of cytochrome c release in Neo cells, which was already evident after 16 hr. Although in some Bcl-2 cells cytochrome c release was observed after doxorubicin treatment at both 16 and 24 hr, the levels were considerably lower than for the Neo cells.

In conclusion, these combined data indicate that loss of Δψ is not necessarily preceded by cytochrome c release and that Bcl-2 is unable to completely prevent cytochrome c release and loss of Δψ in viable cells. However, Bcl-2 decreases the extent of apoptosis even though it cannot completely prevent cytochrome c release. This suggests that commitment to apoptosis, at least in part, occurs downstream of cytochrome c release.
Discussion

Our investigations on the sequence of several critical mitochondria-related events in doxorubicin-induced apoptosis in mammary adenocarcinoma cells allow several conclusions. Firstly, we found that the dissipation of the mitochondrial membrane potential ($\Delta \psi$) in doxorubicin-induced apoptosis precedes PS externalization in these cells. Importantly, this loss of $\Delta \psi$ is caspase-independent. Therefore, mitochondrial changes resulting in collapse of $\Delta \psi$ appear to be a primary event preceding caspase activation. Secondly, although overexpression of Bcl-2 protected against caspase activation, PS externalization and DNA fragmentation, Bcl-2 did not prevent the loss of $\Delta \psi$ caused by doxorubicin. Nevertheless, Bcl-2 inhibited the release of cytochrome c from the mitochondria to a large extent. Thirdly, detailed analysis of the relationship between the dissipation of $\Delta \psi$ and cytochrome c release indicated that these events are mutually independent in both normal cells and cells that overexpress Bcl-2. Altogether, these data indicate that doxorubicin causes a dissipation of the mitochondrial membrane potential, which is independent of Bcl-2 or caspase-controlled pathways.

Our data indicate that loss of $\Delta \psi$ occurs early in doxorubicin-induced apoptosis in MTLn3 cells as well as in LLC-PK1 cells. This occurs well before cell death (i.e. in PI- cells) and PS externalization, an early event generally associated with the onset of apoptosis (55, 56). In other studies this could not be established because the $\Delta \psi$ in doxorubicin treated cells was determined in a heterogeneous population of cells, containing, besides genuinely viable cells, apoptotic or even necrotic cells, which have no functional mitochondria (30-33). Thus, in another study, only the time-course of either loss of $\Delta \psi$ or annexin V binding were studied independently in doxorubicin-induced apoptosis (29). As a consequence, these studies did not make proper distinction between the population of cells: genuinely viable cells, early apoptotic cells (i.e. with externalized PS) or necrotic cells, in which loss of $\Delta \psi$ occurred.
Since, we have used confocal microscopy and three-color flow cytometry, we could show that mitochondrial changes are a primary event in doxorubicin-induced apoptosis that occur already in AV'/PI' cells. Moreover, this loss of Δψ is not inhibited by the pan-caspase inhibitor zVAD-fmk. Fulda et al. (31) reported that in SHEP neuroblastoma cells zVAD-fmk blocked doxorubicin-induced collapse of Δψ. In this study, however, dissipation of Δψ was determined in the total cell population so that necrosis may have contributed to the observed loss of Δψ. The only study to our knowledge that combined Annexin V staining with a mitochondrial membrane potential sensitive dye (but not PI), showed that etoposide-induced loss of Δψ in PC60 cells was preceded by PS externalization (33). In contrast, we showed that etoposide did not affect the mitochondrial membrane potential in viable MTLn3 cells (Fig. 3E and F).

Three main pathways for anticancer agent-induced mitochondrial perturbations have been proposed. Firstly, an indirect pathway, which is largely dependent on DNA-damage and/or stress signaling, may result in upregulation of the death receptor pathway. Activation of caspase-8 is a primary event in CD95 signaling. If this pathway is involved in doxorubicin-induced mitochondrial perturbation, then inhibition of caspases should prevent this (10-12). Secondly, cellular damage may also result in upregulation or posttranslational modification of several pro-apoptotic Bcl-2 family members that directly affect mitochondrial membrane integrity, e.g. Bax upregulation and translocation to the mitochondria or Bad phosphorylation (57-59). The consensus is that this pathway acts independent of caspase-8 activation and is generally inhibited by Bcl-2 overexpression (20). Thirdly, the effect of doxorubicin in MTLn3 cells may be a direct effect of doxorubicin on the mitochondria as has been observed in isolated mitochondria from heart and liver (28, 60).

CD95 activation would exert its effect through caspase-8 activation and Bid cleavage, which may engage the mitochondria. In MTLn3 cells, doxorubicin caused upregulation of
CD95 and CD95L. However, since zVAD-fmk prevented caspase-8 activation (Fig. 5B) without affecting the mitochondrial perturbations, the CD95/CD95L/caspase-8 pathway plays a minor role in the observed loss of $\Delta\psi$. The fact that zVAD-fmk does not inhibit the dissipation of $\Delta\psi$ also argues against a feedback mechanism in which a moderate release of cytochrome c would activate caspase-3, which in turn affects the mitochondria, thereby enhancing loss of $\Delta\psi$ and/or further release of cytochrome c (61-63).

Overexpression of Bcl-2 and Bcl-xL inhibits apoptosis induced by a variety of stimuli, in particular those that utilize the mitochondria-dependent pathway (20, 64). This is often associated with protection against the release of cytochrome c as well as collapse of $\Delta\psi$ (52, 53, 65). The Bcl-2-mediated protection of mitochondria is most likely due to the prevention of pore opening caused by Bax or Bak-dependent mechanisms. We show that in MTLn3 cells that overexpress Bcl-2, mitochondrial changes including loss of $\Delta\psi$ and a moderate cytochrome c release still occur upon doxorubicin treatment. This implies that the doxorubicin-induced loss of $\Delta\psi$ is most likely not caused by pro-apoptotic Bcl-2 family members. Similar effects have been observed in HL60 cells treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP). However, since CCCP uncouples mitochondrial respiration, Bcl-2 could not prevent a decrease in $\Delta\psi$ or cytochrome c release, despite inhibition of apoptosis (66).

Which possible pathways may then cause dissipation of $\Delta\psi$ by doxorubicin in MTLn3 cells? One possibility is that doxorubicin exerts its effect on the mitochondria through the upregulation of p53 (67). Doxorubicin clearly increased the levels of p53 in MTLn3 cells. As was to be expected, the Bcl-2-mediated protection against apoptosis did not occur through a reduction in doxorubicin-induced DNA damage, since the upregulation of p53 and G2/M arrest were similar in both Neo and Bcl-2 cells (Fig. 7C and data not shown). Moreover, the expression levels of CD95 and CD95L were also similar in Neo and Bcl-2 cells. Thus, either
p53 or other p53-regulated genes that reside in the mitochondria or translocate there during apoptosis, may cause perturbations of the mitochondria, e.g. by induction of reactive oxygen species (68-71). Alternatively, we can not exclude the possibility that doxorubicin has a direct effect on the mitochondria.

Regardless of the mechanism of loss of \(\Delta \psi \), the question remains whether collapse of \(\Delta \psi \) is causally linked to doxorubicin-induced cytochrome c release. Several findings indicate that this may not be the case. Firstly, at the cellular level there are cells, which i) have a low \(\Delta \psi \) and normal mitochondrial staining of cytochrome c or ii) have a high \(\Delta \psi \) but no mitochondrial staining of cytochrome c, or iii) have neither \(\Delta \psi \) nor mitochondrial staining of cytochrome c (Fig. 10A). Secondly, Bcl-2 largely inhibits cytochrome c release, although it is unable to prevent doxorubicin-induced collapse of \(\Delta \psi \). This is in agreement with previous observations that cytochrome c release can occur prior to loss of \(\Delta \psi \) (32, 44). Together, these results strongly suggest that the doxorubicin-induced cytochrome c release and collapse of \(\Delta \psi \) are mutually independent events.

Our data indicate that Bcl-2 was able to inhibit doxorubicin-induced apoptosis despite the fact that some cytochrome c release was observed at 16 hours after exposure. This appears to be comparable with the observation that Bcl-2 overexpression markedly reduced apoptosis caused by microinjection of cytochrome c. Such an effect may be mediated by sequestration of pro-caspase-9 by Bcl-2, thereby inhibiting formation of the apoptosome and activation of caspase-3 (72-77).

In MTLn3 cells, Bcl-2 overexpression clearly protected against doxorubicin-induced DNA fragmentation as well as PS externalization. Interestingly, zVADfmk only partially protected against PS externalization (38). This strongly suggests that PS externalization caused by doxorubicin is largely caused by a caspase-independent pathway that is inhabitable by Bcl-2. The fact that Bcl-2 does not inhibit loss of \(\Delta \psi \) further indicates that the PS
externalization is not a consequence of dissipation of the mitochondrial electrochemical
gradient. Alternatively, Bcl-2-mediated protection against pore formation and/or outer
membrane rupture, may prevent the release of unknown mitochondrial factors that induce PS
externalization.

In conclusion, our data provide the following model for doxorubicin-induced apoptosis. Doxorubicin causes cellular stress resulting in p53 upregulation/accumulation and increased levels of CD95 and CD95L. In addition, doxorubicin causes mitochondrial injury, which appears to be independent of the CD95/CD95L/caspase-8 pathway. Although Bcl-2 dependent events and caspase activation are required for the induction of apoptosis, the dissipation of $\Delta \psi$ caused by doxorubicin is independent of a caspase- or Bcl-2-controlled pathway. Further studies are required to elucidate the potential role of p53-dependent pathways in the observed disruption of $\Delta \psi$.
Acknowledgements

We thank Jannie Borst, Anu Srinivasan, Jim Stevens, Susan Jaken for providing antibodies and cDNA constructs and Lucy Peltenburg for help with the cytochrome c stainings. We are indebted to the members of our laboratory for helpful suggestions and discussions. This work was supported by a fellowship from the Royal Netherlands Academy for Arts and Sciences (to B.v.d.W.).
References

Legends

Figure 1. Doxorubicin-induced loss of mitochondrial membrane potential ($\Delta\psi$) in non-necrotic cells. MTLn3 cells were exposed to 17 μM doxorubicin or vehicle for one hour and subsequently allowed to recover for 24 hours in the absence or presence of 100 μM zVAD-fmk. $\Delta\psi$ was determined by flow cytometry in non-necrotic, PI$^-$ cells (defined as shown in A) using rhodamine 123 (R123, B and C). In B) the thick line indicates control cells and the dashed line indicates doxorubicin treated cells. RFU indicates "relative rhodamine 123 fluorescence units" and FSC indicates "forward scatter of cells". Data shown are the mean of three independent experiments ± SE. Characters indicate statistical significance as described in Experimental procedures.

Figure 2. Rhodamine 123 staining in the mitochondria decreases in AV$^-$/PI$^-$ cells upon exposure to doxorubicin. MTLn3 cells were treated as described in Fig. 1, harvested as for flow cytometry and subsequently stained with rhodamine 123 (R123, panels A, D, G and J), annexin V-APC (panels B, E, H and K) and PI (panels C, F, I and L). Samples were analyzed using CLSM. Asterisks indicate cells that are AV$^+/PI^-$ (i.e. apoptotic) and that display diffuse R123-staining. Arrowheads indicate cells that are AV$^+/PI^+$ (i.e. ‘secondary’) necrotic). Data shown are representative for three independent experiments.

Figure 3. Three-color flow cytometry shows that collapse of $\Delta\psi$ by doxorubicin occurs prior to PS exposure. MTLn3 cells were treated as described in Fig. 1 or with 50 μM etoposide under the same conditions and stained for rhodamine 123 (R123), annexin V and PI prior to analysis by flow cytometry. The plots show clear separation of viable (AV$^-$/PI$^-$, R1), apoptotic (AV$^+/PI^-$, R2) and necrotic (AV$^+/PI^+$, R3) cells in control (A) and doxorubicin-
treated cells (B). The decrease in $\Delta \psi$ is shown as the mean fluorescence intensity of R123 in doxorubicin- (C and D), or etoposide-treated AV/PI- cells (E and F). Control samples are indicated with a thick line (C and E) and doxorubicin (C) and etoposide (E) are indicated with a dashed line. The percentage DNA fragmentation in D and E indicates the percentage of cells with subG1/G0-DNA content as determined by flow cytometric cell cycle analysis. Data shown are the mean of three independent experiments ± SE. Characters indicate statistical significance as described in Experimental procedures.

Figure 4. Doxorubicin-induced dissipation of $\Delta \psi$ as determined by DiOC$_6$ staining. MTLn3 cells were treated with doxorubicin as described in Fig. 1 and stained for DiOC$_6$, annexin V and PI prior to analysis by flow cytometry as described in the Experimental procedures section. Data shown are the mean of three independent experiments ± SE. Characters indicate statistical significance as described in Experimental procedures.

Figure 5. Doxorubicin induced upregulation of CD95, CD95L and p53, which was accompanied by zVAD-fmk-inhibitable caspase-8 and -3 cleavage. MTLn3 cells were treated with vehicle or 17 μM doxorubicin for one hour and allowed to recover in the absence (A) or presence (B) of 100 μM zVAD-fmk for the indicated times (A) or 24 hours (B) and immunoblotted for CD95, CD95L, caspase-8, p53 and caspase-3. Arrowheads (>) and double lines (=) indicate the full-length proteins and cleavage fragments, respectively. Data shown are representative for three independent experiments.

Figure 6. Bcl-2 overexpression inhibits doxorubicin-induced apoptosis of MTLn3 cells. Neomycin-resistant (Neo) cells and Bcl-2 overexpressing (Bcl-2) cells were subjected to Western blotting and immunofluorescent staining with a Bcl-2 antibody and mitochondrial
staining using MitoTracker Red (MitoT, A). Neo and Bcl-2 cells were exposed to the indicated concentrations of doxorubicin for one hour and subsequently allowed to recover for twenty-four hours. Apoptosis was determined by cell cycle analysis (B). Data shown are representative for (A) or the mean of (B) three independent experiments with three individual clones ± SE. Characters indicate statistical significance as described in Experimental procedures.

Figure 7. Differential regulation of DNA fragmentation and PS externalization by Bcl-2 and caspases. Neo and Bcl-2 cells were treated as described in Fig. 1. Apoptosis was determined by cell cycle analysis (A) and AV/PI staining (B) in split samples. Western blot samples were also taken at 12 (CD95, CD95L, p53) or 24 (caspase-8 and-3) hours after exposure to 17 μM doxorubicin (C). Data represent the mean of (A, B) or are representative for (C) three independent experiments with three individual clones ± SE.

Figure 8. Bcl-2 does not inhibit loss of Δψ induced by doxorubicin in MTLn3 cells. The samples shown in figure 7A and B were also used for analysis of Δψ using R123 in viable (AV−/PI−, A) and apoptotic (AV+/PI+, B) cells. RFU indicates relative rhodamine 123 fluorescence units. Data represent the mean of three independent experiments with three individual clones ± SE. Characters indicate statistical significance as described in Experimental procedures.

Figure 9. Bcl-2 is unable to prevent the inhibition of colony formation of MTLn3 cells by doxorubicin. Both Neo- and Bcl-2-MTLn3 cells were treated with doxorubicin and plated in soft agar as described in Experimental procedures. Colony formation is expressed as the percentage of each vehicle treated cell line. Untreated Bcl-2 cells grew slightly slower than
Neo cells (747 ± 61 and 862 ± 82 colonies/well, respectively). Data shown are the mean of three independent experiments with three Neo and Bcl-2 clones ± SE.

Figure 10. Cytochrome c release and loss of Δψ are independent events in Neo and in Bcl-2 MTLn3 cells. Neo and Bcl-2 cells were grown on glass coverslips and treated with 17 μM doxorubicin or vehicle and recovered for 24 (or 16, C) hours. Cells were labeled with Mitotracker prior to fixation, stained for cytochrome c and analyzed by confocal microscopy (A). These cells were also counted (>100 cells/exp.) for cytochrome c staining and the percentage of cytochrome c negative cells is expressed in B. Alternatively, cytosolic fractions were analyzed by Western blotting for cytochrome c as described in Experimental procedures (C). Data shown are representative for (A and C) or the mean of (B) three independent experiments with three individual clones ± SE. Characters indicate statistical significance as described in Experimental procedures.
Table I

Effect of Bcl-2 overexpression on doxorubicin-induced apoptosis and loss of Δψ in LLC-PK1 cells.

<table>
<thead>
<tr>
<th>% Cell death</th>
<th>Δψ AV+/PI- (Rho123 RFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pkNEO</td>
</tr>
<tr>
<td>control</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>doxorubicin 2.5 μM</td>
<td>42 ± 4</td>
</tr>
<tr>
<td>doxorubicin 5 μM</td>
<td>49 ± 2</td>
</tr>
<tr>
<td>zVAD</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>zVAD/doxorubicin 5 μM</td>
<td>12 ± 1</td>
</tr>
</tbody>
</table>

pkNEO and pkBCL-2 cells were treated with varying concentrations of doxorubicin in the absence or presence of z-VAD-fmk (100 μM) in DMEM containing penicillin/streptomycin for 24 hr. Thereafter, total % cell death (AV+/PI- and AV+/PI+) and Δψ were determined as described in the Experimental procedures section. Data shown are the mean ± SE of three independent experiments.

¹Numbers in brackets are the % Δψ of control.
Table II

Cytochrome c release in MTLn3 cells with high or low Δψ.

<table>
<thead>
<tr>
<th></th>
<th>Neo</th>
<th>Bcl-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con</td>
<td>Dox</td>
</tr>
<tr>
<td>low Δψ</td>
<td>2.5 ± 0.5</td>
<td>10.5 ± 3.0</td>
</tr>
<tr>
<td>high Δψ</td>
<td>2.2 ± 0.9</td>
<td>4.8 ± 0.8</td>
</tr>
</tbody>
</table>

Neo and Bcl-2 MTLn3 cells were treated as described in figure 7. The percentage of cytochrome c negative cells in cells with high and low Δψ is expressed. Data shown are mean ± SE of three independent experiments (>100 cells/sample).
<table>
<thead>
<tr>
<th></th>
<th>Con</th>
<th>Dox</th>
</tr>
</thead>
<tbody>
<tr>
<td>-zVAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+zVAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-zVAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+zVAD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2

- **R123**
 - Con: ![Image A](image1)
 - Dox: ![Image G](image2)
 - Con: ![Image B](image5)
 - Dox: ![Image H](image6)

- **Annexin V**
 - Con: ![Image D](image3)
 - Dox: ![Image J](image4)
 - Con: ![Image E](image7)
 - Dox: ![Image K](image8)

- **PI**
 - Con: ![Image C](image9)
 - Dox: ![Image I](image10)
 - Con: ![Image F](image11)
 - Dox: ![Image L](image12)
Figure 4

The graph shows the ratio of AV⁺/PI⁻ (RFU DiOC₆) for different conditions:

- **Con**: 8
- **Dox**: 46
- **Con** (zVAD +): 12
- **Dox** (zVAD +): 26

The bars are labeled with letters indicating significant differences:

- **a**: Indicates a significant difference from the control (Con) without zVAD.
- **b**: Indicates a significant difference from the control (Con) with zVAD.
- **c**: Indicates a significant difference from the doxorubicin (Dox) condition without zVAD.

The x-axis represents the presence or absence of zVAD, and the y-axis represents the percentage of AV⁺/PI⁻.
Figure 5

A

CD95

CD95L

p53

casp-8

casp-3

Con

16 4 8 12 16 24 hr

Dox

B

casp-8

casp-3

Con

Dox

zVAD
Figure 7
Figure 9

![Bar graph showing colonies (% of control) for Neo and Bcl-2 with different concentrations of a substance. The graph includes bars for 0 µM, 0.05 µM, 0.17 µM, 0.5 µM, and 1.7 µM. The x-axis represents Neo and Bcl-2, and the y-axis represents colonies (% of control).]
Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells
Merei Huigsloot, Ine B. Tijdens, Gerard J. Mulder and Bob van de Water

J. Biol. Chem. published online July 9, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M200378200

Alerts:
 • When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts