MAMMALIAN SELENOPROTEIN THIOREDOXIN/GLUTATHIONE REDUCTASE: ROLES IN DISULFIDE BOND FORMATION AND SPERM MATURATION

Dan Su‡§, Sergey V. Novoselov‡§, Qi-An Sun‡§¶, Mohamed E. Moustafa‖, You Zhou**, Richard Oko‡‡, Dolph L. Hatfield‖, and Vadim N. Gladyshev‡‡§§

From ‡Department of Biochemistry and **Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, †National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, ‡‡Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6

(Running title: TGR as disulfide isomerase)

§ These authors contributed equally to this work.
¶ Present address: Department of Medicine, Duke University Medical Center, Durham, NC 27710.
§§ To whom correspondence should be addressed. Dept. of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664. Tel: 402-472-4948; Fax: 402-472-7842; E-mail: vgladyshev1@unl.edu

Thioredoxin reductases (TRs) are important redox regulatory enzymes, which control the redox state of thioredoxins. Mammals have cytosolic and mitochondrial TRs, which contain an essential selenocysteine residue and reduce cytosolic and mitochondrial thioredoxins. In addition, thioredoxin/glutathione reductase (TGR) was identified, which is a fusion of an N-terminal glutaredoxin domain and the TR module. Here we show that TGR is expressed at low levels in various tissues, but accumulates in testes after puberty. The protein is particularly abundant in elongating spermatids at the site of mitochondrial sheath formation, but is absent in mature sperm. We found that TGR can catalyze isomerization of protein and inter-protein disulfide bonds and localized this function to its glutaredoxin domain. TGR targets include proteins that form structural components of the sperm, including glutathione peroxidase GPx4/PHGPx. Together, TGR and GPx4 can serve as a novel disulfide bond formation system. Both enzymes contain a catalytic selenocysteine consistent with the role of selenium in male reproduction.

Thioredoxin reductases (TRs)† are members of the pyridine nucleotide disulfide oxidoreductase family (1). In mammals, TRs are selenoproteins that contain a C-terminal penultimate selenocysteine (Sec) (2,3), the 21st amino acid encoded by UGA. These enzymes are key components of the thioredoxin system, which is one of major redox systems in cells. They control the redox state of thioredoxin, but were also implicated more broadly in redox regulation, cell growth and other functions (4,5). Two TRs, TR1 (also known as TrxR1 and Txnrd1) and TR3 (also known as TrxR2 and Txnrd2), have been characterized in detail and are components of cytosolic and mitochondrial thioredoxin systems, respectively. Both proteins have recently been shown to be essential for embryogenesis (6,7).

Our search for new redox enzymes resulted in identification of thioredoxin (Trx)/glutathione (GSH) reductase (TGR) (8,9), a new member of the TR family. Like TR1 (2-4), TGR contains a pyridine nucleotide disulfide oxidoreductase sequence and the Sec residue encoded by UGA (Fig. 1) (8). However, compared to the 55 kDa-subunit homodimeric TR1, TGR is composed of two 65 kDa subunits because it has an additional N-terminal glutaredoxin (Grx)-like domain (9). TGR was found to exhibit broad substrate specificity: it could act as TR, glutathione reductase (GR) and Grx in in vitro assays (9). A Grx-containing form of TR1 was recently identified (10,11), however, it displayed no activities characteristic of TGR (11).

1 Abbreviations: TR, thioredoxin reductase; TGR, thioredoxin/glutathione reductase; Grx, glutaredoxin; GPx4, glutathione peroxidase 4; Sec, selenocysteine; SECIS, selenocysteine insertion sequence; tPA, tissue plasminogen activator; PDI, protein disulfide isomerase; ODF, outer dense fiber.

Copyright 2005 by The American Society for Biochemistry and Molecular Biology, Inc.
Phospholipid hydroperoxide glutathione peroxidase (GPx4/PHGPx) is another selenium-containing protein: it reduces lipid hydroperoxides with GSH (12). This protein was found to also be a structural component of sperm (13). In elongating spermatids, the formation of the mitochondrial sheath in the sperm midpiece is thought to involve oxidative crosslinks of structural proteins by GPx4, which itself becomes oxidatively crosslinked in mature sperm and changes its function from an enzyme to a structural protein of the mitochondrial capsule (13). In addition, structural features of the sperm flagella are stabilized by disulfide bonds, which appear to be regulated by testis-specific thioredoxins (14,15). In the spermatid nucleus, chromatin condenses and histones are replaced with protamines, which are stabilized by disulfide bonds that are thought to be generated by the nucleus-specific isoform of GPx4 (16). As a result of these and other processes, various nuclear and accessory structures in mature sperm become crosslinked by specific intra- and inter-molecular disulfide bonds, which are preserved in the sperm until their reduction in fertilized eggs (17).

In spite of the important roles that disulfide bond formation and isomerization play in sperm development, little is known about how these processes are accomplished or regulated and what cellular components are involved in redox-dependent sperm maturation. In the present work, functional characterization and localization of TGR revealed its disulfide bond isomerization activity and its close functional relationship to GPx4. These data implicated TGR in the process of sperm maturation.

EXPERIMENTAL PROCEDURES

Isolation of Proteins—Mouse and rat TR1 and TGR were isolated from liver and testes using a three-step procedure (8,18). The fragment encoding the Grx domain of mouse TGR was amplified with primers 5’- GAGATTCCATATGGCGTCGCCACCGCCGCCG-3’ and 5’- CGGAATTCTTAGTCATTTGAAGCGTTGCA-3’ and cloned into pET28a (Novagen). The recombinant protein was expressed in BL21(DE3) and purified using Ni-NTA column (QIAGEN) according to manufacturer’s manual.

TGR Expression Analyses—Approximately 0.2 g of various mouse tissues was sonicated in 5 volumes of 25 mM Tris-HCl, pH 7.5, containing 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 5 µg/ml aprotinin, 5 µg/ml leupeptin, and 5 µg/ml pepstatin A (buffer A). After centrifugation at 13,000 g for 20 minutes at 4 °C, the supernatants were analyzed by immunoblots using antibodies specific for the C-terminal extension of TGR. Polyclonal antibodies that were raised against full length mouse TGR (unpublished) were also used.

Enrichment of Tissue TGR and TR1 on ADP-Sepharose—0.2-0.35 g of wild type mouse muscle, kidney, brain, prostate, lung, heart, liver, testes and 1.0 ml of mouse blood was sonicated and TGR was enriched on ADP-Sepharose (Amersham Biosciences) according to manufacture’s manual. The ADP-Sepharose eluted fractions were analyzed by immunoblot assays with antibodies specific for TR1, TGR C-terminal peptide and entire TGR protein.

Microscopy—Frozen sections (8 µm) were generated from wild type mouse testes and used for immunofluorescence labeling of TGR and GPx4. The sections were fixed in 4% paraformaldehyde in PBS, rinsed in PBS, and extracted with cold methanol at -20 ºC for 5 minutes, followed by 3 washes in PBS and 1 h blocking in 3% bovine serum albumin in PBS in the presence of 0.05% Tween-20 (PBST). The samples were then incubated for 2 h in PBST-containing 1% bovine serum albumin and primary antibodies against recombinant TGR and internal peptide of mouse GPx4. The samples were washed 3 times in PBST, incubated in Cy5-conjugated donkey anti-rabbit secondary antibodies (1:100 dilution) (Jackson ImmunoResearch) in PBST containing 1% BSA for 1 h, washed twice in PBST and stained with 1 mM Sytox-green (Molecular Probes). After a 5 minute rinse in PBS, they were mounted and examined on a Bio-Rad MRC1024ES confocal microscope using 488/647 nm excitation lasers and simultaneous display mode of the BioRad LaserSharp imaging program.
Regulation of TGR Expression by Dietary Selenium—To obtain Se-deficient mice, wild type weanling mice were maintained on a Se-deficient Torula-yeast-based diet (Harlan Teklad). To obtain Se-sufficient mice, wild type mice were placed on a Se-deficient diet that was supplemented with 0.4 ppm Se as sodium selenite. After the indicated times on the diets, the mice were sacrificed and tissues extracted. Transgenic mice overexpressing i6A mutant Sec tRNA (19) were maintained similarly on either Se-deficient or Se-sufficient diets. To label mice with 75Se, 0.5 mCi [75Se]selenite was injected intraperitoneally and mice sacrificed 60 h later.

Isomerization of Inter-Protein Disulfide Bonds Involving GPx4 by TGR—Mouse or rat epididymal spermatozoa were solubilized with 0.1 M 2-mercaptoethanol and 6 M guanidine hydrochloride, followed by removal of low molecular weight compounds according to Ursini et al. (13). GSH, TR1 and NADPH or TGR and NADPH at indicated concentrations were added to the 20 µg aliquots of solubilized sperm mixture, followed by incubation of the mixtures with 80 µM H2O2 for 15 minutes. Samples were then subjected to SDS-PAGE under reducing and non-reducing conditions followed by immunoblot assays using anti-GPx4 antibodies.

Formation and Isomerization of Disulfide Bonds in Ribonuclease A by GPx4 and TGR—Denatured reduced ribonuclease A (drRNase A) was prepared as follows: ~5 mg of native ribonuclease A was incubated in 1 ml of 100 mM Tris-HCl, pH 8.0, 6 M guanidine hydrochloride, 120 mM DTT, 0.2 mM EDTA, for 1.5 h at 37 °C. Low molecular weight compounds were removed using a PD-10 column that was pre-equilibrated with 0.1% acetic acid. RNase A and drRNase A were quantified using absorbance coefficients ε275.5 = 9.8 mM⁻¹ cm⁻¹ and ε275.5 = 9.3 mM⁻¹·cm⁻¹, respectively.

The RNase A activity was determined by following the hydrolysis of cCMP as an increase in absorbance at 296 nm (Δε296 = 0.19 mM⁻¹·cm⁻¹). 5 mM cCMP was incubated with 1 µM drRNase A and either 2 µM H2O2-oxidized recombinant Lycopersicon esculentum GPx4 homolog, 2 µM oxidized glutathione (GSSG) or 2 µM H2O2, which were used as oxidants in the assay. The mixtures were also supplied with either 1 µM TGR, 1 µM TR1 or 7 µM reduced recombinant Grx domain of TGR (which provided isomerization/reduction function) in 0.5 ml PBS, pH 7.4, for 45 min to 1 h, as shown in Fig. 4. The differences in absorbance at 296 nm were used to calculate RNase A activity. Analogous experiments in which one or more of the components were absent were negative controls, and native RNase A was used as a positive control in the activity assays.

Isomerization of Disulfide Bonds by the Grx Domain of TGR in E.coli Periplasm—The construct encoding the Grx domain of TGR targeted to periplasm (pPelTG) was cloned into a modified pET28 vector, in which the N-terminal His-tag sequence was removed and replaced with an N-terminal alkaline phosphatase periplasmic signal. Wild type strain and strains carrying pTrcStIItPA (expresses periplasmic tPA), pPelTG or both plasmids were grown in LB medium at 30 °C until OD600 reached 0.8, arabinose was added to 0.2%, 30 min later IPTG was added to 1 mM and cells were grown for an additional 4 h. The periplasm was extracted according to the pET system manual (Novagen). Protein concentration was determined by the Bradford method (Bio-Rad).

Plasminogen activation assay was performed as described (20). Briefly, in a microtiter plate, 2.5 µg of a periplasmic protein fraction was added to wells containing 50 mM Tris-HCl, pH 7.4, 0.01% Tween 80, 0.04 mg/ml human glu-plasminogen and 0.4 mM Spectrozyme PL (American Diagnostica), in a 260 µl final volume. The plate was incubated at 37 °C, and absorbance at 405 nm was read after 2 or 3 h. The activity was directly proportional to ΔA405 (absorbance after subtracting the background of a strain expressing an empty vector).

Identification of TGR Substrates—Recombinant TGR Grx domain was immobilized on CNBr-activated Sepharose 4B (Amersham Biosciences) according to the
manufacturer’s protocol. Rat sperm was solubilized as described above, followed by removal of denaturing and reducing agents by dialysis. The Grx resin was placed in a tube containing a sperm sample, rolling head to tail for 30 minutes at room temperature. The unbound proteins were removed and the resin was washed 3 times with 0.1 M Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Triton X-100. The bound proteins were then eluted with 10 mM DTT, subjected to SDS-PAGE and visualized by staining with Coomassie Blue. Protein bands were cut and protein identities determined by tandem mass-spectrometry sequencing at the University of Nebraska mass-spectrometry facility.

RESULTS

TGR is Abundant in Testes after Puberty and Expressed at Low Levels in Other Organs—TGR mRNA was previously detected in testes by northern blot analyses (8). We tested expression of this protein by immunoblot assays (Fig. 2A). TGR was abundant in mouse testes, but was not detected in crude extracts of brain, heart, kidney, liver, spleen or stomach. To test whether TGR expression might be relevant to testis function, we examined its levels in mice at different ages. TGR was not detected in the testes of a 20-day old mouse, while it was highly expressed in 7 month-old mouse testes (Fig. 2B). Control experiments with GPx4, a selenoprotein involved in male reproduction (13,21), also revealed puberty-dependent expression (Fig. 2B).

Although these experiments suggested a possible exclusive presence of TGR in post-pubertal testes, analyses of NCBI EST database revealed a number of human, mouse and rat TGR ESTs from other organs and tissues, in addition to those from testes that accounted for the majority of TGR ESTs. To test whether TGR was present in other tissues at levels not detectable by northern and immunoblot assays, we employed ADP-Sepharose affinity chromatography to enrich for possible TGR in each of the analyzed tissue samples. This procedure allows selective enrichment of NADPH-dependent oxidoreductases, including TRs (22). When the enriched fractions were tested for the presence of TGR by immunoblot assays, the enzyme was detected in heart, lung and liver samples (Fig. 2C). Using this approach, we found TGR in all mouse tissues studied, including liver, kidney, brain, lung, heart, muscle and prostate (detected as 65 or 70 kDa species on SDS-PAGE gels) (Fig. 2D). As expected, TGR levels in the testes were dramatically higher than in any other examined tissues, and this enzyme could be seen as one of the major Coomassie Blue-stained bands in the ADP-Sepharose-enriched testis fraction (Fig. 2D). In contrast, TR1 was more uniformly distributed in mouse tissues. The pattern of low abundance of TGR in most tissues and its high expression in testes was reminiscent of that of GPx4 (23).

Effects of Se Deficiency and Defects in Sec Biosynthesis on TGR Expression—Because TGR is a selenoprotein, we tested roles of dietary selenium and a defect in Sec biosynthesis in the regulation of TGR expression. Sec biosynthesis requires a unique tRNA\(^{[\text{Ser}]_{\text{Sec}}}\), a cis-acting SECIS element and several trans-acting components (24). We previously generated a mouse model of selenoprotein deficiency by overexpressing an \(i^6\text{A}')\) mutant Sec tRNA\(^{[\text{Ser}]_{\text{Sec}}}\) that resulted in reduced selenoprotein expression under normal dietary levels of selenium (19). TGR expression in testes appeared to be little affected, even when \(i^6\text{A}')\) mice were maintained on the Se-deficient diet for 3 months, and this pattern was again similar to that of GPx4 (25) (Fig. 2E). However, a prolonged Se-deficiency (6 months) of \(i^6\text{A}')\) mice decreased both TGR and GPx4 levels in testes (Fig. 2F). Interestingly, sperm from \(i^6\text{A}')\) mice that were maintained on the Se-deficient diet for 6 months had lower motility and a higher proportion of abnormal morphology compared to sperm from control mice (~75% versus ~15% abnormal sperm, respectively), and the most common defects were seen in the midpiece region of the Se-deficient \(i^6\text{A}')\) sperm (Fig. 2G). These results were consistent with the previously suggested role of selenium in sperm motility and midpiece stability (26).

To determine if TGR, similarly to GPx4 (13), was maintained after completion of spermiogenesis, we tested the presence of both enzymes in epididymal sperm. Immunoblot assays revealed the lack of TGR in sperm, whereas GPx4 was present in large quantities (Fig. 2E and 2F).
Spermatid Location of TGR—We further employed light (Fig. 3A) and confocal (Fig. S1) microscopy to determine the location of TGR in testes. Spermatids exhibited a strong TGR signal, but the enzyme was also detected in spermatocytes. Consistent with the immunoblot data, no TGR signal was detected in sperm. Control experiments with GPx4 revealed that this enzyme accumulated in spermatids; it was abundant in the midpiece of mature sperm (Fig. S1) as previously reported (13). Thus, TGR and GPx4 accumulated during spermatid development. However, TGR was lost and GPx4 remained after the spermatids differentiated into mature sperm. Light and confocal microscopy also revealed that TGR had a broad distribution, including the cytoplasm and nucleus, as previously reported for GPx4 (16,23,27).

We next used electron microscopy to determine the specific location of TGR in late spermatids. The enzyme appeared very abundant in the cytoplasm of step 15-17 spermatids, at the time of mitochondrial sheath formation in the sperm tail midpiece. Moreover, in these spermatids TGR accumulated near the site of mitochondrial sheath assembly (Fig. 3B).

Disulfide Bond Isomerization by TGR—Parallels in temporal and spatial expression patterns between TGR and GPx4, as well as dependence of these redox enzymes on selenium, suggested that functions of TGR and GPx4 might be linked. To test this hypothesis, we solubilized epididymal sperm and used H2O2 to induce oxidative crosslinks between GPx4 and sperm proteins (13). GPx4 efficiently participated in oxidative crosslinks, migrating as heterogeneous high-molecular weight species in non-reducing SDS-PAGE gels (first lane in the upper panel in Fig. 4A). However, in reducing SDS-PAGE gels, such crosslinks were disrupted and GPx4 migrated as a ~17 kDa monomeric protein (lower panel in Fig. 4A). Heterogeneous oxidative crosslinks could be completely reduced by 5 mM GSH (Fig. 4A, lane 4). This observation provided an important control but was unlikely to be of physiological significance as GSH levels are extremely low in sperm (26). Purified testis TR1 in the presence of NADPH had no effect on the GPx4 crosslinks (upper panel in Fig. 4A, lane 2).

However, TGR in the presence of NADPH dramatically affected the crosslinking pattern, generating a ~46 kDa GPx4-containing species in place of the heterogeneous high molecular weight species (Fig. 4A, lane 3). This effect could not be attributed exclusively to GPx4 reduction by TGR, as no significant monomeric GPx4 was detected. The 46 kDa species also had a different mass than either a possible GPx4 dimer or a GPx4/TGR complex and were formed by TGR in a concentration-dependent manner (Fig. 4B). Therefore, these data suggested that TGR promoted isomerization of disulfide bonds formed between GPx4 and certain sperm protein(s), generating a 46 kDa species containing GPx4 from high molecular weight non-specific crosslinks.

GPx4 was reported to be involved in disulfide bond formation in sperm proteins (13,26), and its homologs and other thiol peroxidases were implicated in regulating cellular processes by H2O2-dependent disulfide bond formation. For example, yeast GPx4 homolog, Hylr1/Gpx3, formed a specific disulfide bond in transcription factor Yap1 in response to H2O2 treatment in S. cerevisiae (28). However, for generation of correct disulfide bonds, both disulfide bond formation and isomerization processes are necessary, and the latter process is dependent on availability of an electron donor. GPx4 is unlikely to isomerize disulfide bonds because of its peroxidase function. In contrast, NADPH-dependent TGR would fit the disulfide bond isomerase function.

We directly tested if TGR had disulfide bond isomerization activity by using denatured reduced RNase A as substrate and a recombinant H2O2-oxidized L. esculentum GPx4 homolog as a thiol oxidant. When used separately, GPx4 and TGR had little effect on RNase A activation (Fig. 4C). However, the use of both of these enzymes resulted in RNase A activity, demonstrating that TGR indeed catalyzes disulfide bond isomerization (Fig. 4C). In contrast, TR1 alone, TR1 in combination with GPx4, GSSG or H2O2 did not generate functional RNase A. The Grx domain of TGR in combination with GPx4 could also isomerize disulfide bonds in RNase A (Fig. 4D), suggesting that this domain directly attacked disulfides generated by GPx4 in RNase A and that
it was responsible for the disulfide reshuffling activity of TGR.

To test whether TGR could promote disulfide bond isomerization in an in vivo system, we expressed the Grx domain of TGR in E. coli and targeted it to the periplasm by using a signal peptide. To assay disulfide bond isomerization, we expressed human tissue plasminogen activator (tPA), which has 17 disulfide bonds, in E. coli periplasm. Co-expression of tPA and an E. coli disulfide bond isomerase DsbC is known to increase tPA activity (29). Targeting mammalian protein disulfide isomerase (PDI) to the E. coli periplasm also can partially stimulate tPA activity. We found that when co-expressed with the Grx domain of TGR, tPA had higher activity compared to cells expressing tPA only, consistent with the disulfide isomerase activity of the Grx domain (Fig. 4E).

We further reasoned that in the absence of the natural electron donor (the TR portion of TGR), the mixed disulfides formed between the Grx domain and natural substrates would be stable. We explored this idea by using the Grx domain as a bait to trap and identify natural TGR targets. We prepared an affinity column containing the Grx domain and used it to bind proteins from a solubilized rat sperm extract. After extensive washing, the proteins were eluted with DTT, visualized by SDS-PAGE (Fig. 5A) and identified by mass-spectrometry sequencing (Table 1). Eight proteins were identified by this procedure. Interestingly, among these, mitochondrial capsule selenoprotein (30), two outer dense fiber (ODF) proteins (31,32) and glutathione-S-transferase M5 (33) are known as structural components of the midpiece and tail regions of sperm, and expression of all identified target proteins except one (hemoglobin) dramatically increases in elongating spermatids. Consistent with our findings that GPx4 is a substrate of TGR, this enzyme was among the proteins trapped by the Grx affinity column (Fig. 5A, 5B and Table 1).

DISCUSSION

Selenium has long been known to be necessary for male reproduction. Initial studies suggested that a mitochondrial capsule selenoprotein mediated this effect, whereas recent studies revealed that this effect is due to antioxidant and structural functions of GPx4 (13,34). Our study now indicates a role for an additional selenoprotein, TGR, in sperm maturation. We propose that this protein may isomerize disulfide bonds in spermatids, thus promoting formation of structural components of sperm.

Formation of disulfide bonds in proteins is a catalytic process that involves multiple designated redox proteins. Known pathways for disulfide bond formation operate in the endoplasmic reticulum (ER) of eukaryotic cells and bacterial periplasm (35), and an additional viral pathway has been described in infected mammalian cells (36). These pathways are similarly organized. In particular, in each pathway, the formation and isomerization of disulfide bonds in substrate proteins is catalyzed by a thiol/disulfide oxidoreductase that exhibits thioredoxin fold and possesses a catalytic CxxC motif. The disulfide bonds in thiol/disulfide oxidoreductases are further donated to adaptor redox proteins, which are often membrane-bound, and finally to an electron transport chain or directly to molecular oxygen (35).

The periplasmic and ER pathways of disulfide bond formation and isomerization, however, do not explain how disulfide bonds are formed in many other locations in cells and tissues. For example, in testes, the process of sperm development and maturation is dependent upon formation of disulfide bonds in structural proteins. Our findings suggested a role of TGR in this process as a disulfide isomerase. The experiments also established that TGR and GPx4 may constitute a novel disulfide bond formation and isomerization system that operates during spermiogenesis.

During later stages of spermiogenesis, mitochondria attach to ODF proteins of axoneme in the sperm midpiece region, and the structure is stabilized by numerous disulfide bonds in various proteins. Thereafter, the spermatid cytoplasm shrinks and the plasma membrane is attached to the midpiece of sperm. Two plasma membrane proteins, phosphatidylethanolamine-binding
protein and lipid binding protein, which are highly expressed in late spermatids, were found as TGR targets, suggesting that these proteins might also be involved in disulfide-linked sperm structures. Overall, our data suggested that the disulfide bond formation system involving GPx4 and TGR may play an important role in arranging a complex network of spermatid proteins via structural disulfide bonds.

Our current view on the mechanism of disulfide bond formation and isomerization in substrate sperm proteins, which involves thiol peroxidase GPx4 and disulfide bond isomerase TGR, is shown in Fig. 6. This novel disulfide forming system is principally different from those operating in either eukaryotic ER (37) or bacterial periplasm (38), which employ CxxC motif-containing thiol/disulfide oxidoreductases for both disulfide bond formation and isomerization and oxygen or electron transport chain as electron acceptors (39). Substrate specificity of the GPx4/TGR system also suggests a source of electron acceptors for disulfide bond formation (i.e., H_{2}O_{2} or other hydroperoxides) and electron donors for disulfide bond isomerization/reduction (i.e., NADPH) in testes. Moreover, the presence of TGR and GPx4 in various tissues and cellular compartments points to possible roles of these proteins in disulfide bond formation, which are not limited to mitochondrial sheath assembly.

ACKNOWLEDGEMENTS

We thank Gautam Sarath and Ronald Cerny for proteomic analyses, and Paul Copeland, Donna Driscoll, Han Asard, Martin Dickman, Jonathan Beckwith and George Georgiou for providing antibodies, strains or constructs. This work was supported by NIH GM065204 (to V.N.G.). The use of {sup}75{sup}Se is supported by DoE DE-FG07-02ID14380.

REFERENCES

FIGURE LEGENDS

Figure 1. Domain Organization of TGR and TR1. Both enzymes contain a pyridine nucleotide disulfide oxidoreductase domain, which includes binding sites for FAD and NADPH as well as the thiol/disulfide active site. TGR and TR1 also contain a dimerization (dimer interface) domain and a C-terminal GCUG (U is selenocysteine) active site. In addition, TGR has an N-terminal glutaredoxin domain. Conserved cysteine and selenocysteine residues that are involved in electron transfer are shown in red.

Figure 2. Expression pattern of TGR and its regulation by selenium. (A) TGR abundance in various mouse tissues. Crude extracts of indicated mouse tissues were separated by SDS-PAGE and analyzed by immunoblot assays with antibodies specific for the C-terminal peptide of TGR (upper panel) or actin (lower panel). (B) Expression of TGR in adult mouse testes. Crude extracts of mouse testes from 7 month-old (adult) and 20 day-old (young) mice were separated by SDS-PAGE and analyzed by immunoblot assays with antibodies specific for TGR (upper panel), GPx4 (middle panel) or actin (lower panel). (C) Enrichment of TGR using ADP-Sepharose. Crude extracts from indicated mouse tissues were applied to an ADP-Sepharose column, and bound and unbound fractions were analyzed by immunoblot assays. TGR could be seen in ADP-Sepharose bound fractions as 65 (TGR) and/or 70 kDa (upper TGR) species. (D) Detection of TGR in mouse tissues. TGR samples were enriched using ADP-Sepharose and detected by immunoblot assays using antibodies specific to either TR1 (top panel), C-terminal peptide of TGR (second panel from top) or recombinant TGR (third panel from top), followed by Coomassie blue staining (bottom panel). (E) TGR and GPx4 expression in testes and epididymal sperm. Immunoblot analyses of TGR (upper panel) and GPx4 (middle panel) and protein staining with amido black (lower panel) in testes and sperm samples from a wild type mouse maintained on the Se-sufficient diet (WT), an i6A- mutant Sec tRNA^{Ser}[Sec] mouse maintained on the Se-sufficient diet for 3 months (TGi6A + Se) and in a i6A- mutant Sec tRNA^{Ser}[Sec] mouse maintained on the Se-deficient diet for 3 months (TGi6A - Se) are shown. (F) Prolonged selenium deficiency in transgenic mice. Immunoblot analyses were done as in (E) except that mice were maintained on the diets for 6 months. (G) Epididymal sperm from i6A- transgenic mice maintained on the Se-deficient diet for 6 months. The sperm was characterized by abnormalities associated with the sperm midpiece (shown by arrows).

Figure 3. Localization of TGR in mouse testes. (A) Light microscopic localization of TGR revealed by immunoperoxidase staining with anti-TGR antibodies. RS-round spermatids; ES-elongated spermatids; P-pachytene spermatocytes; Sp-spermatogonia. There is intense TGR immunostaining in the cytoplasm of elongated spermatids. Roman numerals indicate stages of the cycle of the seminiferous epithelium. Bar, 50 µm. (B) Immunogold localization of TGR near the midpiece in elongating spermatids. In Step 16 spermatids (stages II-III), TGR immuno-labeling was seen in the vicinity of the assembling mitochondrial sheath. Labeling was also associated with the periphery of the mitochondria and was occasionally seen within the mitochondria. In Step 17 spermatids (stage IV), when mitochondria begin to condense, elongate and helically wind around the axoneme, TGR labeling was randomly localized throughout the cytoplasm and was still associated with the mitochondrial sheath. Bar, 0.5 µm.

Figure 4. Disulfide bond isomerase activity of TGR. (A) Isomerization of GPx4 crosslinks by TGR. Epididymal sperm was solubilized according to Ursini et al. (13) and treated with either water (used as control; lane 1), 2.5 µM purified testis TR1 in the presence of 15 mM NADPH (lane 2), 2.5 µM purified testis TGR in the presence of 15 mM NADPH (lane 3), or 5 mM GSH (lane 4). 80 µM H₂O₂ was then added to each sample, followed by incubation at room temperature for 15 minutes. The samples were resolved by SDS-PAGE under non-reducing (upper panel) and reducing (lower panel) conditions, followed by immunoblot assays with anti-GPx4 antibodies. Locations of the GPx4 monomer and ~46 kDa species are indicated on the right and migration of protein standards on the left of the gels. (B) Concentration dependence of isomerization of GPx4 crosslinks by TGR. This experiment was performed as in (A), except that the samples were treated with indicated concentrations of TR1 and TGR. (C)
Isomerization of disulfide bonds in RNase A by TGR. 5 mM cCMP was incubated with 1 µM denatured and reduced RNase A (drRNase A) in 0.5 ml PBS, pH 7.4, for 45 to 60 minutes. RNase A activity is shown, which was determined by following the hydrolysis of cCMP as an increase in absorbance at 296 nm (Δε296 = 0.19 mM⁻¹ cm⁻¹). These experiments were performed in the presence of 2 µM H₂O₂-oxidized *L. esculentum* GPx4, as isolated 1 µM TGR, 1 µM TR1, or combinations of GPx4 with either TGR or TR1 as described in Experimental Procedures. In control experiments, 2 µM GSSG or 2 µM H₂O₂ were used as alternative oxidants. (D) Disulfide bond isomerase activity of TGR is located in its Grx domain. This set of experiments was performed as in (C), except that 7 µM recombinant Grx domain of TGR was used. (E) Grx domain of TGR stimulates activity of an *E.coli*-expressed tissue plasminogen activator (tPA). The periplasmic fractions of wild type cells expressing periplasmic tPA and WT cells expressing both tPA and the Grx domain of TGR in the periplasm were subjected to plasminogen activation assays (tPA activity as expressed as a change in absorbance at 405 nm) as described in Experimental Procedures. The periplasmic fractions of WT cells and WT cells expressing the Grx domain alone were used as controls and their background tPA activities were not significantly different from that of WT cells expressing tPA alone. Standard deviation is shown as error bars based upon 4 independent measurements.

Figure 5. TGR targets in rat sperm. (A) Identification of TGR targets in rat sperm. The purified recombinant TGR Grx domain was immobilized on a column and used as bait to bind target proteins in solubilized sperm as described in Experimental Procedures. The targets were eluted with DTT and visualized by Coomassie Blue staining on an SDS-PAGE gel. Lane 1, protein standards; lane 2, solubilized sperm; lane 3, DTT-eluted fraction from a control column that lacked the Grx domain; and lane 4, DTT-eluted fraction from the Grx domain column. The proteins indicated by the numbers were identified and are listed in Table 1. The lower bands represent the Grx domain. (B) GPx4 is a TGR target. Protein fractions shown in (A) were subjected to a western blot analysis with antibodies against GPx4. Lane 1, solubilized sperm; lane 2, DTT-eluted fraction from a control column; and lane 3, DTT-eluted fraction from a Grx domain affinity column. The location of GPx4 band is indicated.

Figure 6. A model for disulfide bond formation by TGR. The proposed mechanism of disulfide bond formation in substrate proteins involves thiol peroxidase GPx4 and disulfide isomerase/reductase TGR. GPx4 is initially oxidized to selenenic acid by H₂O₂ (or other peroxides), followed by reduction of the selenenic acid by a substrate protein, generating a disulfide bond in this protein. If the disulfide bond is formed incorrectly, TGR attacks it by the catalytic thiol located in the Grx domain to form a mixed Grx (TGR)-substrate protein disulfide. This intermolecular disulfide can either collapse into a correct disulfide bond in the substrate protein and a reduced Grx domain (isomerase function), or result in reduction of a non-productive inter-molecular disulfide bond (reductase function). The latter is accomplished by the NADPH-dependent reduction of the C-terminal penultimate selenocysteine center (via FAD and a thiol/disulfide active site), followed by the attack by the selenolate on the intermolecular disulfide. Since GPx4 is itself a substrate for disulfide bond isomerization by TGR, this system could also reshuffle disulfide bonds between GPx4 and other substrate proteins.
Table 1. TGR targets in rat sperm

<table>
<thead>
<tr>
<th>Protein band</th>
<th>Band size (kDa)</th>
<th>Protein size (kDa)</th>
<th>Protein ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>~80</td>
<td>74.1</td>
<td>Outer dense fiber of sperm tails 2 (ODF2)</td>
</tr>
<tr>
<td>2</td>
<td>~26</td>
<td>27</td>
<td>glutathione S-transferase M5 (GSTM5)</td>
</tr>
<tr>
<td>3</td>
<td>~24</td>
<td>29.6</td>
<td>Phosphatidylethanolamine binding protein</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>20</td>
<td>Outer dense fiber protein (ODF1)</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>15.3</td>
<td>Mitochondrial capsule selenoprotein</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>16</td>
<td>Phospholipid hydroperoxide glutathione peroxidase (GPx4)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Testis lipid binding protein</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Hemoglobin beta chain</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Mouse TGR Grx domain (bait protein)</td>
</tr>
</tbody>
</table>

Proteins were enriched using the Grx domain affinity column as shown in Fig. 5A and their identities determined by mass-spectrometry and shown in the table.
Fig. 1

![Diagram of TGR and TR1 domains with their respective domain labels and FAD binding sites.]

- **TGR**: Glutaredoxin domain with sequence CPHS and Pyridine nucleotide-disulfide oxidoreductase domain with sequence CVNVGC.
- **TR1**: Pyridine nucleotide-disulfide oxidoreductase domain with sequence CVNVGC and Dimerization domain with sequence GCUG.

FAD binding sites are indicated by arrows pointing to the respective domains.
Fig. 2
Figure S1. Spermatid Location of TGR in Mouse Testes.

TGR (A1) and GPx4 (B1), shown in red fluorescence, were localized to seminiferous tubules by staining with specific antibodies. TGR pre-immune serum and secondary antibodies alone showed no signal (data not shown). TGR could be seen in the layers consisting of spermatids (A2-A5), but not in mature sperm (shown by arrows in A3-A4), as determined by stained nuclei (green fluorescence) (A1-A4) and phase contrast images (A5). In contrast, GPx4 was detectable in all stages of spermatogenesis with highest levels in the midpieces of the tails of mature spermatozoa (B1-B5). Scale bars: 20 μm (A1 and B1) and 25 μm (A2-A5 and B2-B5).
Mammalian selenoprotein thioredoxin/glutathione reductase: Roles in disulfide bond formation and sperm maturation
Dan Su, Sergey V. Novoselov, Qi-An Sun, Mohamed E. Moustafa, You Zhou, Richard Oko, Dolph L. Hatfield and Vadim N. Gladyshev

J. Biol. Chem. published online May 18, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M503638200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2005/05/19/M503638200.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2005/05/18/jbc.M503638200.citation.full.html#ref-list-1