MOLECULAR CONTROL OF PHENOLOXIDASE-INDUCED MELANIN SYNTHESIS IN AN INSECT
Hongnan Kan1,3, Chan-Hee Kim1, Hyun-Mi Kwon1, Ji-Won Park1, Kyung-Baeg Roh1, Hanna Lee1, Bum-Joon Park2, Rong Zhang3, Jinghai Zhang3, Kenneth Söderhäll4, Nam-Chul Ha1 and Bok Luel Lee1
From the 1National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan 609-735, Korea; 2Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea; 3School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China; 4Department of Comparative Physiology, Evolutionary Biology Center, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
Running title: Regulation of phenoloxidase-induced melanization
Address correspondence to: Bok Luel Lee, National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Korea, Tel:+82-51-510-2809; FAX:+82-51-513-2801; E-mail: brlee@pusan.ac.kr

The melanization reaction induced by activated phenoloxidase in arthropods must be tightly controlled because excessive formation of quinones and excessive systemic melanization damage to the hosts. However, the molecular mechanism by which phenoloxidase-induced melanin synthesis is regulated in vivo is largely unknown. It is known that the Spätzle processing enzyme is a key enzyme in the production of cleaved Spätzle from proSpätzle in the Drosophila Toll pathway. Here, we provide biochemical evidence that the Tenebrio molitor Spätzle processing enzyme converts both the 79 kDa Tenebrio prophenoloxidase and Tenebrio clip-domain serine protease homologue 1 zymogen to an active melanization complex. This complex, consisting of 76 kDa Tenebrio phenoloxidase and an active form of Tenebrio clip-domain serine protease homologue 1, efficiently produces melanin on the surface of bacteria and this activity has a strong bactericidal effect. Interestingly, we found the phenoloxidase-induced melanization reaction to be tightly regulated by Tenebrio pro-phenoloxidase, which functions as a competitive inhibitor of melanization complex formation. These results demonstrate that the Tenebrio Toll pathway and the melanization reaction share a common serine protease for the regulation of these two major innate immune responses.

The Drosophila Toll signaling pathway is responsible for defending against Gram-positive bacteria and fungi by inducing the expression of antimicrobial peptides via NF-κB-like transcription factors (1,2). The recognition of lysine-type peptidoglycan (PG) by the Drosophila PG recognition protein-SA and Gram-negative binding protein 1 complex has been suggested to cause activation of the serine protease cascade leading to the processing of Spätzle and subsequent activation of the Toll signaling pathway (2,3). The elegant genetic studies in Drosophila have been and remain very powerful for characterizing and arranging the components of the Drosophila Toll pathway (4). Recently, we found that three serine proteases were involved in the activation of the Toll pathway in a large beetle, Tenebrio molitor, and we indicated the sequence in which they are activated in vitro (5). This three-step proteolytic cascade linking the PG recognition complex and subsequent Spätzle processing is essential for the peptidoglycan-dependent Toll signaling pathway (5).

The phenoloxidase (proPO) activation cascade is known to be one of the major innate immune responses in arthropods (6-8), even though the role of the proPO activation cascade remains controversial in Drosophila and mosquito innate immunity (9,10). Upon injury or infection, proPO in the blood plasma is activated to phenoloxidase (PO) by clip-domain

Copyright 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
serine proteases, which are called proPO-activating factors or enzymes (PPAFs or PPAEs), or alternatively proPO-activating proteins (11-14). We recently determined crystal structures of two PPAFs and their functional roles of the clip-domains during proPO activation cascade (15,16). PO, the active form of proPO, catalyzes the production of quinones, which can non-specifically cross-link neighboring molecules to form melanin at the injury site or all over the surface of invading microorganisms (17,18). Quinones may also be involved in the production of cytotoxic molecules such as superoxides and hydroxyl radicals, which could help to kill the invading microorganisms (6,19). PO-induced melanin synthesis is thought to be essential for defense and development, but it must be tightly controlled, since systemic hyper-activation of the proPO system, excessive production of quinones, and excessive melanin synthesis are harmful to the host. This implies that proPO activation and melanin synthesis are tightly regulated by melanization-regulatory molecules (6,7). However, the molecular regulatory mechanism of melanin synthesis is unclear.

Recently, we reported that a soluble fragment of lysine (Lys)-type PG, a long glycan chain with short stem peptides, is a potent activator of the Drosophila Toll pathway and the Tenebrio proPO activation cascade (20). The fact that the same elicitor activates both the proPO system and Toll pathway, and that the clustering of T. molitor PG recognition protein-SA (Tm-PGRP-SA) molecules on the PG is followed by activation of the proPO cascade suggests that there are obvious possibilities for molecular cross-talk between these two innate immune responses. Consistent with this possibility, we showed that partial lysozyme digestion of highly cross-linked Lys-type PG dramatically increases the binding of Tm-PGRP-SA, presumably by inducing clustering of Tm-PGRP-SA, which then recruits the Tm-Gram-negative binding protein 1 (Tm-GNBP1) and Tm-modular serine protease (20). In that study, we suggested that formation of the Lys-type PG/Tm-PGRP-SA/Tm-GNBP1 complex leads to the activation of downstream PPAEs or PPAFs. However, that study did not investigate the detailed molecular cross-talk between the proPO and Toll cascades.

We and other groups reported the biochemical properties of clip-domain serine protease and clip-domain serine protease homologues (SPH) that function as PPAEs or PPAFs (21-25). All these serine proteases are known to consist of a trypsin-like domain at the C-terminus and one or two clip-domains at the N-terminus, but all SPHs lack proteolytic activity due to substitution of the catalytic Ser residue of Gly (16). We reported the detailed characterization of three PPAFs purified from the larvae of a large beetle, Holotrichia diomphalia (26). Two of these PPAFs have been crystallized, and these structural studies have provided details about the activation mechanism (15,16). For example, they showed that proPO cleavage alone is insufficient to produce active PO. In fact, an activated SPH homologue--reported to be PPAF-II--is needed to lead to enzymatically active PO. Furthermore, the structural studies showed that when an active PPAF cleaves an SPH homologue, the activated SPH oligomerizes and the clip-domain of SPH acts as a module for binding PO (16). This probably serves to ensure that the active PO is under tight control and does not spread through the hemolymph in an uncontrolled manner, but rather remains in the vicinity of the original trigger of the activation cascade. These findings provided some of the clues about how the proPO cascade and melanin synthesis are tightly regulated, but they were unable to provide detailed insights.

To provide compelling biochemical evidence for the regulatory control of melanin synthesis and to search for possibilities of molecular cross-talk between the Toll pathway and proPO activation, we purified Tm-proPO, T. molitor spätzle processing enzyme (Tm-SPE), and two different SPH zymogens (Tm-SPH1 and Tm-SPH2) to homogeneity. By performing in vitro reconstitution experiments with these purified proteins, we provide clear biochemical evidence that the active form of Tm-SPE and a specific Tm-SPH1 tightly regulate the activation of proPO and melanin synthesis in the T. molitor proPO-system.
EXPERIMENTAL PROCEDURES

Insect and antibodies. T. molitor larvae (mealworm) were maintained on a laboratory bench in terraria containing wheat bran. Hemolymph was collected as previously described (27). Briefly, to harvest the hemolymph, a larva was pricked using a 25-gauge needle and then a 10 µl drop of hemolymph was collected in 50 µl of a modified anti-coagulation buffer (136 mM trisodium citrate, 26 mM citric acid, 20 mM EDTA, and 15 mM sodium chloride, pH 5.0). The collected crude hemolymph was centrifuged at 200,000 x g for 15 min at 4 °C. The supernatant was then stored at -80 °C until use. Rabbit anti-sera against Tm-proPO, Tm-SPE and Tm-SPH1 raised previously (5,21,28) were used after affinity-purification as previously described.

Determination of melanin synthesis. Estimation of PO-induced melanin synthesis was carried out according to our previously published method (29). In brief, the mixture of active form of Tm-SPE (150 ng), Tm-proPO (3 µg), and Tm-SPH1 zymogen (1 µg) in 50 µl of 20 mM Tris-HCl (pH 8.0) containing 10 mM CaCl2 was pre-incubated at 30 °C for 5 min, after which 150 µl of the substrate solution (20 mM Tris-HCl, pH 8.0, containing 1 mM dopamine and 10 mM CaCl2) were added and the mixture was incubated at 30 °C for 30 min. The increase in absorbance at 400 nm, which occurred in parallel with the synthesis of melanin, was measured using a Shimadzu spectrophotometer.

Purification of Tm-proPO, active Tm-SPE and Tm-SPH2 zymogen. Detailed procedures to purify Tm-proPO, active and zymogenic forms of Tm-SPE, and Tm-SPH2 from the hemolymph (insect blood) of T. molitor larvae are described in Supplementary Methods 1-3.

In vitro reconstitution experiments and peptide sequencing. To determine the cleavage sites of Tm-proPO and Tm-SPH1 induced by active Tm-SPE, in vitro reconstitution experiments were performed as described previously (5). In order to map proteolytic cleavage sites, the reaction mixtures following enzyme treatment were analyzed on SDS-PAGE under reducing conditions, blotted onto a polyvinylidene difluoride (PVDF) membrane, and stained with a solution containing 0.1% Coomassie Brilliant Blue R-250 and 50% methanol. The membrane was de-stained with 50% methanol containing 10% acetic acid (v/v) until the protein bands became visible. The zymogen cleavage products were identified by their amino-terminal sequences using a gas phase protein sequencer (Applied Biosystems).

Immunofluorescence microscopy. Melanin-coated bacterial cells were fixed in ice-cold 100% methanol. After washing twice with ice-cold phosphate-buffered saline (PBS), bacteria were incubated in PBS containing 0.3% Tween 20 (PBST, blocking buffer) containing 3% skim milk for 1 hr. After washing, cells were sequentially incubated with mouse monoclonal anti-His antibody (H-3, Santa Cruz) and anti-Tm-proPO antibody (polyclonal rabbit) (1:100 in blocking buffer) for 2 hr. Then, fluorescein 5-isothiocyanate (FITC)-conjugated goat anti-mouse antibody (Santa Cruz) or rhodamine-conjugated goat anti-rabbit antibody (Santa Cruz) (1: 200 in blocking buffer) was added and then incubated for 1 hr. After washing twice with PBST, stained cells were observed using fluorescence microscopy (Zeiss).

Expression and purification of recombinant Tm-SPH1. A DNA fragment encoding Tm-SPH1 (21) was amplified by PCR using the primers 5’-CCCGGATTCGCAAAAAGATGTCGATGATGCT-3’ and 5’-CCCTCTAGATCATATCAGGTAAGAGGATGTACCA-3’ with BamH1 and Xba1 at the 5’ and 3’ termini, respectively. These sites were later used to add a C-terminal tobacco etch virus (TEV) protease cleavage site and a hexa-histidine tag. The PCR products were subcloned into pFastBac-SEa vector. The resulting plasmid was transformed into DH10Bac cells, and the transformation mixture was spread on Luria-Bertani (LB) agar culture medium containing isopropyl-beta-D-thiogalactoside (IPTG), 3-indolyl-beta-D-
galactopyranoside (X-Gal), gentamicin, kanamycin, and tetracycline. The white colonies were selected and cultured for amplification, and the bacmid DNA was extracted. After bacmid verification, Sf9 cells were transfected with the bacmid DNAs, and the resulting viruses were harvested and amplified as described in the Bac-to-Bac baculovirus expression system manual (Invitrogen). For protein expression, Sf9 cells in 1 L of suspension culture were infected with recombinant baculovirus. For purification of the expressed protein the medium was first concentrated to approximately 100 ml by ultrafiltration through a membrane filter, and then dialyzed at 4 °C against 10 L of 20 mM Tris-HCl, 150 mM NaCl, pH 8.0. After centrifugation at 20,000 x g at 4 °C for 15 min to remove precipitates, the supernatant was mixed with 3 ml of pre-charged nickel-nitrilotriacetic acid-agarose (Ni-NTA, Qiagen) and gently rotated at 4 °C for 1 hr. Unbound proteins were allowed to pass through the resin, which was then washed with 200 ml of the same buffer containing 20 mM imidazole. Bound proteins were eluted with 200 mM imidazole in the same buffer, and then analyzed by SDS-PAGE under reducing conditions. For His-tag removal, the fraction containing expressed proteins were incubated with TEV protease (Invitrogen). His-tagged removed recombinant Tm-SPH1 was purified using a size exclusion HPLC column (TSK G3000SW) equilibrated with 50 mM Tris-HCl containing 150 mM NaCl, pH 8.0. The fractions containing expressed proteins were pooled and concentrated on a Centricon-YM10 to a final concentration of 0.1 mg/ml. The N-terminal amino acid sequencing of the recombinant Tm-SPH1 protein was carried out to verify the identities of the purified proteins.

Inhibition experiments using Tm-proPO. The reaction mixture containing Tm-proPO (3 μg), Tm-SPH1 zymogen (1 μg), and active form of Tm-SPE (150 ng) in 50 μl of buffer (20 mM Tris-HCl, pH 8.0, containing 10 mM CaCl₂) was incubated at 30 °C for 60 min, and then the reaction mixtures were cooled on ice for 5 min and divided into three equal portions. One portion was mixed with 200 μl of substrate solution (20 mM Tris-HCl, pH 8.0, containing 1 mM dopamine and 10 mM CaCl₂) at 30 °C for 15 min and then the melanin synthesis activity was estimated. To the second portion, benzamidine was added to a final concentration of 5 mM, the mixture was incubated at 37 °C for 1 hr, and then the melanin synthesis activity was examined. The third portion was incubated by simultaneously adding benzamidine to a final concentration of 5 mM and 30 μg of Tm-proPO, incubating the mixture at 37 °C for 1 hr, then estimating the melanin synthesis activity as described above.

Assay of antibacterial activity. Antibacterial activity was assayed essentially as previously described (30). Briefly, bactericidal activity of melanin-concentrated bacteria was assayed using Staphylococcus aureus (strain Cowan 1) and Escherichia coli (strain K 12). Bacteria grown in antibiotic medium were collected during the exponential phase of growth and suspended in 10 mM sodium phosphate buffer containing 130 mM NaCl, pH 6.0. The bacterial cells (10⁶) were incubated with a mixture of active Tm-SPE (150 ng), Tm-proPO (3 μg), and Tm-SPH1 (1 μg) in the presence of 1 mM L-dopamine in 200 μl assay buffer (20 mM Tris-HCl, pH 8.0, 10 mM CaCl₂) for 40 min at 30 °C. Melanin-coated bacteria were diluted 500-fold with assay buffer and aliquots of 50 μl were spread on Bacto-agar (Difco). The plates were incubated for 18 hr at 37 °C and then colony numbers on test and control plates were compared.

RESULTS

The active form Tm-SPE induces melanin synthesis in vivo. Recently, we reported that the active form of Tm-SPE cleaves the 24 kDa Spätzle-propprotein between Arg124 and Phe125. The cleaved 14 kDa Spätzle, a ligand of the Toll receptor, induced strong antimicrobial activity when injected into Tenebrio larvae (5). In addition, we previously observed that an unidentified serine protease specifically cleaves the 79 kDa Tm-proPO between Arg50 and Phe51, and the resulting molecule of cleaved
Tm-76 kDa PO was concentrated in the residues of the melanized cell clump/adhesion region (28). To examine the possibility that active Tm-SPE can cleave Tm-proPO between Arg50 and Phe51 and thereby induce melanin synthesis in vivo, we injected the active form of Tm-SPE into Tenebrio larvae. The active form of Tm-SPE induced high levels of melanin synthesis after 4 days (Fig. 1A). These results suggest that the active form of Tm-SPE may convert Tm-proPO to Tm-PO, and the activated Tm-PO then induces melanin synthesis in vivo.

To confirm whether active Tm-SPE cleaves Tm-proPO between Arg50 and Phe51 and then induces melanin synthesis in vitro, we incubated purified Tm-proPO (lane 2 in Fig. 1B) with purified active Tm-SPE (lane 1) and then ran the reaction samples on SDS-PAGE under reducing conditions (lanes 3 and 4). Surprisingly, the active Tm-SPE generated three new bands (bands a, b, and c). N-terminal sequencing of these three newly generated bands (Fig. 1C) revealed sequences identical to those deduced for the Tm-proPO zymogen (28). This result suggests that the 79 kDa Tm-proPO was cleaved by the active Tm-SPE at two different sites: one at Arg51 and another at Arg281 (Fig. 1D). To examine whether the cleaved products of Tm-proPO induce melanin synthesis, we mixed incubated with active Tm-SPE and Tm-proPO in the presence or absence of Tm-SPH1 (lanes 1 and 2 in Fig. 1E). Interestingly, only a 76 kDa band was generated in the presence of Tm-SPH1 (lane 1); performing the SDS-PAGE under reducing conditions led to the appearance of an additional high molecular weight band (e) at the top of the gel (lane 1 in Fig. 2B). However, this band (e) was not generated in the presence of Tm-SPH2 (lane 2). These results suggest that the active form of Tm-SPE completely converted 79 kDa Tm-proPO to 76 kDa Tm-PO by cleaving at the first site (Arg50), but not at the second one (Arg281). This cleavage subsequently led to production of the chemically cross-linked high molecular weight band (e). To explore what kind of proteins are engaged in this high molecular weight band (e), we performed western blot analysis by using anti-Tm-proPO, anti-Tm-SPE, and anti-Tm-SPH1 antibodies (Fig. 2C). The band (e) was recognized by antibodies against both Tm-proPO and Tm-SPH1 (lanes 3 and 6 in Fig. 2C), but not by an antibody against Tm-SPE (lane 9). This result supports the idea that band (e) is a covalently cross-linked protein complex consisting of active Tm-PO and active Tm-SPH1.
Chemically cross-linked adducts are generated by the melanization complex. To conduct further tests of whether covalently cross-linked high molecular weight complexes consist of active Tm-PO and active Tm-SPH1, we tried to isolate this complex using size exclusion column chromatography. First, as a control, the mixture of Tm-proPO and active Tm-SPE was loaded on a size exclusion column, and each fraction of peak 1 was analyzed by SDS-PAGE under reducing conditions (Fig. 3A and 3B). As previously shown in Fig. 2A, the mixture of Tm-proPO cleavage products co-eluted in peak 1 (lanes 2 to 4 in Fig. 3B). However, when we loaded the mixture of Tm-proPO, active Tm-SPE, and Tm-SPH1 zymogen to the same column, the proteins eluted as two peaks (Fig. 3C). When we examined the melanin synthesis activities of the two peaks, peak 2 was quite active in synthesizing melanin, but peak 3 was not under the same conditions (Fig. 3D). This result suggests that peak 2 contains protein components capable of melanin synthesis.

To identify the protein components involved in melanin synthesis, we performed SDS-PAGE analysis and western blot on fractions from peak 2. The high molecular weight band (e) and the 76 kDa PO band (a) were mainly observed in peak 2 by SDS-PAGE analysis (lane 1 in Fig. 3E), and both bands were strongly recognized by antibodies against Tm-proPO and Tm-SPH1 (lanes 2 and 3). These results demonstrate that the protein complex containing active Tm-PO and active Tm-SPH1 is responsible for melanin synthesis, which is similar to our observations in Holotrichia (16). Therefore, we named this protein complex a melanization complex.

Insect PO catalyzes the formation of quinone adducts and other reactive intermediates in melanin synthesis, and these adducts and intermediates help to kill invading microbial pathogens, cause cuticle sclerotization, and promote wound healing (7,31). To examine whether the melanization complex can increase the production of quinone-mediated cross-linked molecules of high molecular weight in the presence of PO substrates such as 4-methylcatechol (4-MC), we added 4-MC to the melanization complex and tracked the appearance of high molecular weight complex by western blotting with antibody against Tm-proPO (lane 2 in Fig. 3F). This result indicates that the quinone generated by the melanization complex leads to the formation of chemically cross-linked molecules of high molecular weight.

Locally concentrated melanin on the surface of bacteria shows bactericidal effect. Reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI) generated during melanin synthesis have been implicated in insects’ ability to kill invading bacteria or parasites (32,33). To ascertain whether PO-induced melanin can be accumulated on the surface of bacteria and to examine whether this elevated concentration of surface melanin has antibacterial activity, we incubated S. aureus or E. coli with the melanization complex in the presence of L-dopamine. Strong melanin synthesis was induced on the surface of bacteria (Fig. 4B and 4D), but not when the melanization complex was omitted (Fig. 4A and 4C). Furthermore, when we plated melanin-concentrated bacteria on agar plates, the bacteria were unable to grow (columns 6 and 12 in Fig. 4E). Interestingly, some bactericidal activity against E. coli was observed when E. coli was incubated with Tm-proPO and dopamine, or when the bacteria were incubated with Tm-proPO, active Tm-SPE, and dopamine (columns 3 and 5). In contrast, the bactericidal activity against S. aureus was completely dependent on the melanization complex. These results clearly demonstrate that melanin produced in response to the melanization complex can kill invading bacteria, at least in vitro. This is the first biochemical evidence that the melanization complex assembled from purified proteins possesses bactericidal activity.

Active Tm-PO and active Tm-SPH1 co-localize on the melanin enriched areas of the surface of bacteria. In order to ascertain whether active Tm-PO and active Tm-SPH1 co-localize on melanin-concentrated on the surface of bacteria, we performed immunofluorescence localization studies using polyclonal and anti-
His monoclonal antibodies against Tm-proPO and Tm-SPH1 (recombinant Tm-SPH1 was expressed with an N-terminal His-tag), respectively. The secondary antibodies were FITC-conjugated goat anti-mouse antibody for detection of Tm-SPH1 and rhodamine-conjugated goat anti-rabbit antibody for detection of Tm-proPO. The melanin-concentrated bacteria (A-s in Fig. 5) and intact bacteria (A-c) were fixed on glass coverslips. Tm-SPH1 and Tm-PO were visualized by indirect immunofluorescence due to the FITC- and rhodamine-conjugated antibodies, respectively. Superposition of the fluorescence signals showed that Tm-SPH1 and Tm-PO co-localized on the melanin enriched areas of the surface of bacteria (D-s in Fig. 5). Combined with our results showing cross-linking between the melanization complex and its product, these results suggest that the melanization complex is covalently attached to the bacteria.

Tm-proPO functions as a competitive inhibitor of melanization complex formation. In naïve insect hemolymph, the formation of the melanization complex should be tightly regulated because excessive production of melanin pigment is harmful to insects. This prompts speculation that a competitive inhibitor exists in the hemolymph to prevent the formation of excessive amounts of melanization complex. We assumed that if active Tm-PO can complex with active Tm-SPH1, Tm-proPO zymogen, which is present at a high concentration in the hemolymph, may also bind to the active Tm-SPH1 to competitively inhibit formation of the melanization complex. If this assumption is correct, melanin synthesis ability should decrease when Tm-proPO is added to pre-formed melanization complex *in vitro* if newly added Tm-proPO would not be cleaved by existing active Tm-SPE. In order to block the proteolytic activity of the active Tm-SPE and thereby prevent conversion of newly added Tm-proPO to active Tm-PO, benzamidine, a well-known serine protease inhibitor, was added to a mixture of melanization complex and active Tm-SPE. Comparison of the melanin synthesis activity of the benzamidine-treated melanization complex with that of the non-treated complex shows no differences (columns 2 and 3 in Fig. 6), suggesting that benzamidine has no effect on the melanization complex. However, adding Tm-proPO to this benzamidine-treated but still fully functional melanization complex abolished melanin synthesis nearly completely (column 4). This result suggests that Tm-proPO can easily bind the active Tm-SPH1 *in vitro*. Since Tm-SPH1 is required for PO-induced melanin synthesis, addition of new Tm-proPO reduces the number of Tm-SPH1 molecules available to form melanization complex, resulting in a dramatic decrease in melanization activity. These results strongly support the idea that Tm-proPO works as a competitive inhibitor of melanization complex formation in naïve hemolymph.

DISCUSSION

The Toll signaling pathway is known to be the most important invertebrate defense system against Gram-positive bacteria and fungi (2,34,35). The importance of the melanization remains controversial in at least flies and mosquitoes because successful defense against some pathogens seems to be independent of PO activity in these organisms (9,10). Nevertheless, the melanization reaction is assumed to be an important immune response in invertebrates (7,36). Indeed, PO activity was reported to be redundant in *Drosophila* and *A. gambiae* for the clearance of many bacterial and fungal pathogens. In this study, we provide biochemical evidence that SPE, previously described as the terminal protease in the Toll signaling pathway (37), is the enzyme that activates both proPO and its cofactor SPH1 in the proPO cascade of the insect *Tenebrio*. The injection of Lys-type PG or Gram-positive bacteria into *Tenebrio* larvae induces both antimicrobial peptides and melanin formation (20). This finding strongly suggests that a cooperative—at the very least redundant—relationship between the Toll signaling pathway and the proPO activation cascade in our insect system. Combining the results of the present study and our previous work (5) clearly demonstrates that in *Tenebrio*, one unique clip-domain serine protease participates in the
regulation of both the Toll signaling pathway and the proPO activation cascade. Based on these results, we propose that the PO-dependent melanization reaction and the Toll signaling pathway in our insect both use Tm-SPE to activate the proPO zymogen and proSpätzle, respectively, in response to infection with Gram-positive bacteria. In addition, a highly specific non-catalytic SPH regulates melanin production and functions as a regulatory protein for showing antibacterial activity against microbial invaders (Fig. 7). Genetic evidence for the molecular cross-talk between Drosophila Toll activation and the melanization reaction was also provided by using Drosophila Serpin27A mutant fly (38), providing that the melanization reaction requires Toll pathway activation and depends on the removal of the Serpin27A.

Recently, several groups, including our own, have demonstrated that the SPHs bind tightly to microbial cell wall components (23,27) or pathogenic bacteria (39). We found that Tm-SPH1 specifically binds to curdlan polymers [β-1,3-glucan fungal polymer, (27)]. These observations may explain why Tm-SPH1 is required for melanin synthesis. When Gram-positive bacteria entry the invertebrate body, the host should recognize these microbes and subsequently kill them. To accomplish this process, the SPH zymogen in hemolymph may first localize and adhere to the invading bacteria; at the same time, microbial cell wall components induce the production of the active forms of Tm-modular serine protease (MSP), and Tm-SPE activating enzyme (SAE), which participate in an serine protease cascade to activate the Tm-SPE zymogen in hemolymph. The active Tm-SPE cleaves Tm-proPO and Tm-SPH1 zymogen to form active Tm-PO and Tm-SPH1, respectively, resulting in formation of the melanization complex in the hemolymph. This probably serves to ensure that the active PO can complex with the active form of Tm-SPH1 and that the active enzyme, Tm-PO, does not diffuse through the hemolymph in an uncontrolled manner, but rather stays in the vicinity of invading microorganisms. However, the melanization complex is easily replaced with Tm-proPO, which exists at a high concentration in the naïve hemolymph. If excess Tm-proPO is incorporated into the melanization complex, melanin synthesis decreases since the specific active Tm-SPH1 is absorbed by the Tm-proPO, causing the remaining active Tm-PO to lose its melanization activity. This would constitute an important regulatory mechanism to control the activity of the active PO and of the melanization complex in order to prevent production of reactive quinone derivatives in inappropriate places. Finally, the melanization complex is immobilized via reactive quinone adducts on bacteria and kill the invading microorganisms using generated cytotoxic molecules such as superoxides and hydroxyl radicals.

In summary, our biochemical studies shed further light on of how the Lys-type PG recognition signal leads to an activation of proPO and ultimately to melanin synthesis. Our work supports a model in which melanin synthesis is triggered by sequential activation of three serine protease zymogens. As a result of this three-step proteolytic cascade, proPO and SPH1 zymogen are processed and form active melanization complex on the surface of bacteria. The presence of these complexes on the bacterial surface allows the invading microbes to be immobilized and destroyed by innate immune responses.

REFERENCES

FOOTNOTES

*This work was supported by the programs of the National Research Laboratory (M10400000028-04J0000-02) of MOST/KOSEF. This work was also partially supported by BK21 program and Pusan National University post-doctor fellow grant (Kim Chan-Hee), 2007.

The abbreviations used are: PG, peptidoglycan; PGRP, PG recognition protein; GNBP1, Gram-negative binding protein 1; SPE, Spätzle-processing enzyme; SPH, serine protease homologue; proPO, prophenoloxidase

FIGURE LEGENDS

Fig. 1. Melanin synthesis induced by injection of active Tm-SPE and the cleavage patterns of Tm-proPO and melanin synthesis activity induced by the active form of Tm-PO and Tm-SPHs.
A, Melanin synthesis was estimated after injection of 100 ng of active Tm-SPE into *Tenebrio* larvae. Within 4 days, the larvae were assayed for the production of melanin pigment.
B, Lanes 3 and 4 indicate the SDS-PAGE analysis pattern for the cleaved products following incubation with Tm-proPO (1 μg) and 30 ng of active Tm-SPE or 300 ng of active Tm-SPE, respectively.
C, Partial amino acid sequences determined for the cleavage products; (a), (b), and (c) are compared to the sequence of Tm-proPO.
D, The diagram of the cleavage sites of Tm-proPO by active Tm-SPE is shown.
E, Columns 1, 2, 3, and 4 show melanin synthesis activity during *in vitro* reconstitution experiments involving four different purified proteins in the presence of L-dopamine.

Fig. 2. The patterns of Tm-SPH cleavage by active Tm-SPE, and analysis of the protein composition of the melanization complex.
A, Lanes 2 and 4 indicate the SDS-PAGE analysis pattern for the reaction mixture after incubation of active Tm-SPE (30 ng) with Tm-SPH1 (1 μg) or Tm-SPH2 (1 μg), respectively. The N-terminal amino acid sequence of band (d) was aligned with the Tm-SPH1 sequence.
B, Lanes 1 and 2 indicate the SDS-PAGE analysis pattern for the reaction mixture of Tm-proPO (1 μg), Tm-SPH1 (1 μg), and active Tm-SPE (30 ng); or of active Tm-proPO (1 μg), Tm-SPH2 (1 μg), and active Tm-SPE (30 ng), respectively.
C, Western blotting of the reaction mixture corresponding to lane 1 in Fig. 3B carried out using anti-Tm-proPO antibody (Ab, lanes 1-3), anti-Tm-SPH1 Ab (lanes 4-6) and anti-Tm-SPE Ab (lanes 7-9) for different incubation times.

Fig. 3. The melanization complex generates chemically cross-linked adducts *in vitro.*
A, Elution profile of the mixture of Tm-proPO (20 μg) and active Tm-SPE (1 μg) on a Superdex S-200 HR 10/30 (Amersham) size exclusion column.
B, SDS-PAGE analysis pattern for each fraction of Fig. 4A under-reducing conditions.
C, Elution profile of the mixture of Tm-proPO (20 μg), active Tm-SPE (1 μg) and Tm-SPH1 zymogen (10 μg) on a Superdex S-200 HR 10/30 size exclusion column.
D, Melanin synthesis activities of peaks 2 and 3 in Fig. 4C.
E, Lanes 1, 2 and 3 indicate the SDS-PAGE
analysis (lane 1) of peak 2 and western blot analyses of peak 2 using anti-Tm-proPO Ab (lane 2) and anti-Tm-SPH1 Ab (lane 3). F, Lanes 1 and 2 indicate the Western blot analysis of peak 2 using anti-Tm-proPO Ab in the absence (lane 1) or presence of the PO substrate 4MC (lane 2).

Fig. 4. Bacterial agglutination induced by melanization production and the bactericidal effects of melanin on the surface of bacteria. (A) and (C) indicate E. coli and S. aureus incubated with dopamine, respectively. (B) and (D) show the bacterial agglutination induced by the assembly of the melanization complex on the surface of E. coli and S. aureus after incubation of bacteria (10⁶ cells) with L-dopamine (1 mM), Tm-proPO (3 μg), Tm-SPH1 zymogen (1 μg), and active Tm-SPE (150 μg). E, Columns 1 to 6 indicate the colony forming numbers of E. coli after incubation with the same amounts of proteins described in Fig. 4B. Columns 7 to 12 indicate the colony forming units of S. aureus after incubation with the same amounts of proteins described in Fig. 4D.

Fig. 5. Immunofluorescence microscopy. Samples B-s, C-s and D-s indicate the melanin-coated bacteria cells treated with anti-His monoclonal Ab, anti-Tm-proPO polyclonal Ab, and the merge image of B-s and C-s, respectively. A-s shows the image of a positive control. Samples B-c and C-c indicate S. aureus by itself, treated with the same Abs as described in B-s and C-s. Anti-His Ab and anti-Tm-proPO Ab were used to detect the recombinant His-tagged Tm-SPH1 and active Tm-PO, respectively.

Fig. 6. The inhibition of melanin synthesis by newly added Tm-proPO in vitro reconstitution experiments. After preparation of melanization complex as described above, the reaction mixtures were cooled on ice for 5 min and divided into three equal portions. One portion was mixed with 200 μl of substrate solution (20 mM Tris-HCl, pH 8.0, containing 1 mM dopamine and 10 mM CaCl₂) at 30 °C for 15 min and then the melanin synthesis activity was estimated (column 2). To the second portion, benzamidine was added to a final concentration of 5 mM, and the mixture was incubated at 37 °C for 1 hr. Next, substrate solution was added, the mixture was incubated at 30 °C for 15 min, and the melanin synthesis activity was estimated (column 3). To the third portion, benzamidine was added to a final concentration of 5 mM simultaneously with 30 μg of Tm-proPO, then the mixture was incubated at 37 °C for 1 hr. Substrate solution was added, and the mixture was incubated at 30 °C for 15 min, after which the melanin synthesis activity was estimated as described above (column 4). One μg of Tm-proPO and dopamine was incubated under the same conditions, with column 2 serving as a negative control (column 1).

Fig. 7. The Toll pathway and the proPO activation cascade rely on a common serine protease for their activation in the larvae of the mealworm T. molitor. When presented to the host immune system, the processed Lys-type PG from Gram-positive bacteria is bound by Tm-PGRP-SA, which then recruits Tm-GNBP1 and the Tm-modular serine protease zymogen. In the presence of Ca²⁺, the PG/Tm-PGRP-SA/Tm-GNBP1 complex induces activation of the Tm-modular serine protease zymogen (proMSP). The active form of Tm-MSP activates Tm-SPE activating enzyme zymogen (proSAE) to activate Tm-SPE activating enzyme, which subsequently converts the Tm-SPE zymogen (proSPE) to activate Tm-SPE protease. The active Tm-SPE cleaves Spätzle proprotein (proSpz) into processed Spätzle (Spz), leading to the production of antimicrobial peptide (AMP). Also, active Tm-SPE cleaves Tm-proPO and Tm-SPH1, leading to formation of a stable melanization complex. This complex induces local melanin synthesis on the surface of bacteria and enables the insect host to kill the invading microbe.
Molecular control of phenoloxidase-induced melanin synthesis in an insect
Hongnan Kan, Chan-Hee Kim, Hyun-Mi Kwon, Ji-Won Park, Kyung-Baeg Roh, Hanna Lee, Bum-Joon Park, Rong Zhang, Jinghai Zhang, Kenneth Söderhäll, Nam-Chul Ha and Bok Luel Lee

J. Biol. Chem. published online July 15, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M804364200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2008/07/16/M804364200.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2008/07/15/jbc.M804364200.citation.full.html#ref-list-1