NUCLEAR TARGETING OF 6-PHOSPHOFRUCTO-2-KINASE (PFKFB3) INCREASES PROLIFERATION VIA CYCLIN-DEPENDENT KINASES

Abdullah Yalcin1,2, Brian F. Clem1, Alan Simmons1, Andrew Lane1, Kristin Nelson1, Amy L. Clem1, Erin Brock1, Deanna Siow1, Binks Wattenberg1, Sucheta Telang1 and Jason Chesney1

1Division of Medical Oncology (Molecular Targets Group), James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
2Department of Biochemistry, School of Veterinary Medicine, Uludag University, Bursa, Turkey.

Running Head: Nuclear 6-Phosphofructo-2-Kinase (PFKFB3) Activity

The regulation of metabolism and growth must be tightly coupled in order to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose-2,6-bisphosphate (F2,6BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of F2,6BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) which inter-convert fructose-6-phosphate and F2,6BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest since they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then over-expressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of F2,6BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expressed of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of F2,6BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific T187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that F2,6BP may couple the activation of glucose metabolism with cell proliferation.

Neoplastic transformation and growth require a massive increase in glucose uptake and glycolytic flux not only for energy production but also for the synthesis of nucleic acids, amino acids and fatty acids. A central control point of glycolysis is the negative allosteric regulation of a rate-limiting enzyme, phosphofructokinase-1 (PFK-1), by ATP (i.e. the Pasteur effect) (1,2). When intracellular ATP production exceeds usage, ATP inhibits PFK-1 and glycolytic flux. Fructose-2,6-bisphosphate (F2,6BP) is a potent allosteric activator of PFK-1 that overrides this inhibitory influence of ATP on PFK-1, allowing forward flux of the entire pathway (3-5).

The steady-state cellular concentration of F2,6BP is dependent on the activities of bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB) which are encoded by four independent genes (PFKFB1-4) (6,7). The PFKFB3 mRNA is distinguished by the presence of multiple copies of an AUUUA instability motif in its 3’-untranslated region and the PFKFB3 protein product has a high kinase:phosphatase activity ratio (740:1) (8). PFKFB3 mRNA is over-expressed by rapidly proliferating transformed cells and the PFKFB3 protein is highly expressed in solid tumors and leukemias (8-11). PFKFB3 expression is increased in response to several mitogenic stimuli, including progesterone, serum, and insulin (12-14). These studies indicate that the PFKFB3 enzyme may serve an essential function
in the regulation of glucose metabolism during cell proliferation.

The PFKFB3 mRNA is spliced into several variants that encode distinct carboxy-terminal domains (9,15). Importantly, the functional consequences of the disparate carboxy-terminal variants of PFKFB3 are unknown. The mRNA splice variant 5 is the dominant PFKFB3 mRNA in human brain, several transformed cells and colon adenocarcinoma tissues (9,10). In the following series of experiments, we present data that the carboxy-terminal domain of the PFKFB3 variant 5 localizes the enzyme to the nucleus where its product, F2,6BP, increases the expression and activity of cyclin-dependent kinase-1. These data demonstrate a heretofore unidentified function of the PFKFB3 enzyme that is distinct from glycolysis, and provide a potential mechanism for the coupling of metabolism and proliferation.

Experimental Procedures

Cell culture- HeLa, HCT116, and MDA-MB-231 cells were purchased from American Type Culture Collection (Manassas, VA). The cells were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine serum (Clontech) under 5% CO2 at 37°C.

Constructs, PCR, and RT-PCR- RNA isolation and cDNA synthesis were performed using commercial kits (Qiagen) following manufacturer’s instructions. All primers were obtained from Integrated DNA Technologies. PFKFB3 splice variants were amplified from brain first-strand cDNA (Clontech) using the following primers: 5'-GTCGCTTATGGCTGCCGTGT-3' (forward) and 5'-GCCAAGCATGGTTCTCTTCG-3' (reverse). All RT-PCR amplicons were sequenced to confirm the identity of the mRNA splice variants. PFKFB3 and p27 mRNA expression was determined by SYBR Green-based Real-Time PCR analyses of cDNA synthesized. The primers used were as follows: PFKFB3, 5'-CAGTGTGGCCCTCAATATC-3' (forward) and 5'-GCTCCTATGCGACACTGTT-CC-3' (reverse); p27, 5'-ACTTGGAGAAGCACTGCAGAAGGAC-3' (forward) and 5'-TCTGGATAGAAGTCCTCAG-3' (reverse); β-actin, 5'-CCAACCGCGAGAATGCACC-3' (forward) and 5'-GGAGTCCATGCC-3' (reverse). Flag–PFKFB3 containing the complete PFKFB3 coding sequence (GenBank accession no. AF056320) and FLAG-epitope at its N-terminus was generated by PCR using brain cDNA as template and using Platinum Taq DNA Polymerase High Fidelity (Invitrogen) for the amplification. The following primers were used: 5'-TAGGATCCATTTGACATACAAGGACAGACGACAAGTGGGA-3' (forward) and 5'-TGAAGCTTGGAAATGGAATGGAACCGAC-3' (reverse), which also had BamHI and HindIII restriction sites at N and C-terminals, respectively. A BamHI/HindIII FLAG–PFKFB3 expression cassette was subcloned into pAAV-MCS plasmid (Stratagene). The pEGFP-Link vector used for generating carboxy terminal GFP fusions was prepared by PCR amplification of the enhanced green fluorescent protein open reading frame from pEGFP1 (Clontech) with the following primers: 5'-GATCAAGCCTTTAGACACTACAAGGACGACGACAGCT-3' (forward) and 5'-GCGGATCCAGAACCAGACTTGTACAGCT-3' (reverse). The resulting PCR product was then digested with HindIII and BamHI and subcloned into the corresponding sites in pcDNA3 to generate pEGFP-Link, which encodes EGFP with an N-terminal FLAG epitope tag. In order to produce chimeric EGFP proteins, each of the five cloned splice variants from brain was amplified using the following primers: 5'-TCTGGATCCGTCTGACACCTAGCAGCAGAAG-3' and 5'-CATCTAGAAGTCCTCAGGATACGT-3'. The resulting PCR products were then digested with BamHI and XbaI and subcloned into the corresponding sites of pEGFP-Link to create five constructs: pEGFP-PFKFB3-Cterm (V1, V3, V4, V5, and V6).

The pIRESneo3-6XHis–PFKFB3 mammalian expression vector was derived using a bacterial expression vector as an intermediate in order to obtain an N-terminal 6X histidine tag. Briefly, the entire open reading frame for PFKFB3 was amplified from human first-strand lung cDNA (Clontech) with the following primers: 5'-GACGACGACAAGTGGGAATCTGAC-3' (forward) and 5'-GAAGAAGCAGCCGGGAGGCGGGA-3' (reverse). The resulting PCR product was then cloned into the pET-30 Ek/LIC bacterial expression vector (Novagen).
according to the protocol for ligation-independent cloning to create pET30Ek/Lic-PFKFB3. The resulting construct was then used as a template for PCR amplification with the following primers: 5'-GTTGAATTCACTGACCATCATCATCATCATCATTCTTCTG-3' (forward) and 5'- GTAGCCGCGCAGTCAGGATTACGTTT G-3' (reverse). The PCR product was digested with EcoRI and NotI and subcloned in corresponding sites in the pRESneo3 mammalian expression vector to yield pRESneo3-6XHis-PFKFB3, which retained the N-terminal six-histidine tag and other N-terminal linker features (e.g. S-tag) present in the pET-30 vector.

Site-directed mutagenesis- Site-directed mutagenesis was carried out using the QuikChange® II XL Site-Directed Mutagenesis Kit (Stratagene) to generate stop codons in the carboxy terminal encoding region of Flag- and 6XHis-PFKFB3. The following primer pairs were used to produce the indicated mutations, which were all verified by DNA sequencing: L502X, 5'-GGAGGTGCCCACGCAGTAACCTGGACAAAACA-3' (forward) and 5'-CCCTTTCATGTGGTGTCCAGTGTTGGC-3' (reverse); F479X, 5'-CCTCGCATCAACAGCTAAGAGGAGCATGTGGC-3' (forward) and 5'-GGCCACATGCTCCTCTTAGCTGTTGACGG-3' (reverse); K472X, 5'-CCCCGAACCCCACCTAAAAGCCTCGCATCAACAGCT-3' (forward) and 5'-GTTGATGCGAGGCTTTTAGGCTGCGGTGGGTTCGGGG-3' (reverse); R458X, 5'-GACCTAACCCGCTCATGTAACGCAATAGTTTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The cytoplasmic mutant K472/473A was created using the following primers: 5'-CCCCGAACCCACCGCACCTGAACAGCT-3' (forward) and 5'-AGCTTGTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). R458X, 5'- GACCTAACCCGCTCATGTAACGCAATAGT GTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The kinase-inactive R75/76A mutant was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). R458X, 5'-GACCTAACCCGCTCATGTAACGCAATAGT GTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The cytoplasmic mutant K472/473A was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). R458X, 5'-GACCTAACCCGCTCATGTAACGCAATAGT GTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The kinase-inactive R75/76A mutant was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). R458X, 5'-GACCTAACCCGCTCATGTAACGCAATAGT GTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The kinase-inactive R75/76A mutant was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). The kinase-inactive R75/76A mutant was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse). R458X, 5'-GACCTAACCCGCTCATGTAACGCAATAGT GTC-3' (forward) and 5'-GGGGTGACACTATTGCGTTACATGAGCGGGTT-3' (reverse). The kinase-inactive R75/76A mutant was created using the following primers: 5'-CCCCGAACCCACCGCGACCTGCATCAACAGCT-3' (forward) and 5'-AGCTGTTGTGCTGAGGGTCGCTCGGTGTCCGGGG-3' (reverse).

Transfections- HeLa cells were grown in collagen-coated plates and transient transfection of the plasmid constructs was achieved with Lipofectamine 2000 reagent (Invitrogen) following the manufacturer’s instructions. For immunofluorescence studies, cells were grown on fibrinogen-coated coverslips and transfected with Fugene 6 transfection reagent (Clontech).

3H-Thymidine incorporation- Thymidine incorporation experiments were conducted as described (16). 36 h after transfection with the PFKFB3 constructs, cells were pulsed with [methyl-3H]-thymidine (1µCi/ml) for 2 h. The cells were then washed with PBS and fixed in 5% trichloroacetic acid (TCA) for 5 min and then washed twice in 5% TCA. The acid insoluble material was dissolved in 2 N NaOH and counted for radioactivity by liquid scintillation counter.

Confocal/Fluorescence microscopy- Transfected cells grown on coverslips were fixed in paraformaldehyde and processed as described previously (17). The wild type and mutant PFKFB3 forms that were expressed from pRESneo3-6XHis construct were detected with Alexa Fluor® 488-labeled Penta-His™ monoclonal antibody (Qiagen). HeLa cells that were transfected with PFKFB3 carboxy c-terminal GFP fusions were directly examined for the localization of GFP under fluorescence. Immunofluorescence images were acquired with Zeiss Axiovert 200 microscope. To visualize Flag-PFKFB3 (splice variant 5) expression by confocal microscopy, cells were incubated with anti-FLAG® rabbit polyclonal primary antibody (Sigma) and then with an Alexa Fluor® 488-labeled secondary antibody (Molecular Probes), each for one hour. Slides were analyzed with FluoView 500 confocal laser microscope (Olympus).

Cytoplasmic and nuclear fractionation- Nuclear and cytosolic fractions were extracted using NE-PER Nuclear and Cytoplasmic Extraction Kit (Pierce). Extraction procedure was conducted according to the manufacturer’s protocol with minor modifications. The nuclear pellet was first briefly lysed in a protein lysis buffer (50 mM Tris-HCl, pH 7.5, 1mM EDTA, 150 mM NaCl, 5 mM MgCl2, 0.5% NP-40, and 0.5% Triton-X-100) and then immediately denatured in 2X Laemmli Buffer containing β-Mercaptoethanol (final concentration, 1X). Before boiling, lysate was thinned using first 22-gauge and then 28-gauge needles.

Western Blot- For preparation of total cell lysates, cells were washed in cold PBS and lysed with a lysis buffer (50 mM Tris-HCl, pH 7.5,
1 mM EDTA, 150 mM NaCl, 5 mM MgCl₂, 0.5% NP-40, and 0.5% Triton-X-100) containing protease and phosphatase inhibitors (Sigma). Samples were separated through a 12.5 % SDS-PAGE gel under reducing conditions, and proteins were then transferred to Immobilon P membranes. Mouse polyclonal and monoclonal PFKFB3 antibodies raised against the C-terminal domain were obtained from Novus Biologicals (#, H00005209-A01 and H00005209-M08). Mouse monoclonal anti-α-tubulin was purchased from NeoMarkers. Rabbit polyclonal anti-PFKFB4, PFKFB2, and PFK-1 were purchased from Abgent (PFKFB4, # AP8154c; PFKFB2, #AP8146a; PFK-1, #AP8135b). Rabbit polyclonal anti-Oct-1 was purchased from Santa Cruz Biotechnology. Rabbit polyclonals anti-Rb, phospho(S780)-Rb, phospho(S795)-Rb, Cdc25C, Cdk1, mouse monoclonal anti-cyclin D3, and HRP-conjugated goat anti-rabbit and anti-mouse IgG antibodies were purchased from Cell Signaling Technology. Antibodies specific for total and phospho(T187)-p27 were purchased from Calbiochem. Mouse monoclons anti-Flag and anti-β-actin were purchased from Sigma. For detection of immunoreactive bands, ECL and ECL Plus were used (Amersham).

Cell cycle antibody array- Antibody array on total lysates obtained from cells transfected with either empty vector (control) or a construct carrying PFKFB3 (pIRESneo3-6XHis-PFKFB3) was performed by Full Moon BioSystems, Inc. (Sunnyvale, CA). The assay is based on the incubation of biotin-labeled total cell lysates with array slides on which antibodies are immobilized and the detection of the biotin labeled-protein/antibody complexes by Cy3-Streptavidin.

Cell cycle synchronization- HeLa cells were synchronized at the G1/S boundary by double-thymidine block as previously described (18,19). Exponentially growing cells were arrested at the G1/S boundary by treatment with thymidine (2 mM) for 17 h, and were released from the arrest by washing twice with fresh medium. Cells were grown in fresh medium for 9 h and then re-treated with thymidine (2 mM) for 15 h. Cells were then released from the second block simply by replacing the thymidine containing media with fresh growth media. Cells enriched in S, G2/M, and G1 phases were collected at 3, 7, and 12 h after release from the block, respectively.

F2,6BP assay- Intracellular F2,6BP concentration was determined as previously described (20). Briefly, cells were centrifuged at 200 x g, resuspended in 20 volumes of 0.05 N NaOH and then one volume of 0.1 N NaOH to obtain a pH>11, vortexed for 10 sec, incubated at 80 °C for 5 min and cooled in an ice bath. Cell extracts were neutralized to pH 7.2 with ice-cold acetic acid in the presence of 20 mM Hepes. Samples were incubated at 25 °C for 2 min in the following assay mixture: 50 mM Tris, 2mM Mg²⁺, 1mM F6P, 0.15 mM NAD, 10u/l PPi-dependent PFK1, 0.45 kU/l aldolase, 5 kU/l triosephosphate isomerase, and 1.7 kU/l glycerol-3-phoshate dehydrogenase (Sigma). 0.5 mM pyrophosphate was added and the rate of change in absorbance (OD=339 nm) per min was followed for 5 min. F2,6BP was calculated based on a calibration curve produced by measuring 0.1 to 1 pmol of F2,6BP (Sigma) and normalized to total cellular protein.

Spectrophotometry- Concentrations of glucose and lactate in media were determined spectrophotometrically using Glucose Assay Kit (Sigma) and Lactate Assay Kit (Trinity Biotech), respectively, following manufacturers' instructions.

One dimensional nuclear magnetic resonance spectroscopy (1D-NMR)- NMR analysis was carried out as described (21,22). Briefly, cells were grown in media containing uniformly labeled 13C-glucose (2 g/L) (Cambridge Isotopes Laboratories). Media was frozen in liquid nitrogen and extracted with 10% TCA and lyophilized. Dried extract samples were redissolved in 100% D₂O. NMR spectra were recorded at 800 MHz on a Varian Inova Spectrometer. Spectra were obtained at 20 °C using PRESAT with a 90° excitation pulse with an acquisition time of 2 s and a recycle time of 5 s. Spectra were processed with 0.5 Hz line broadening and an unsuppressed Gaussian window function. Concentrations were determined by reference to internal DSS (2,2-dimethyl-2-silapentane-5-sulfonate sodium) present at a known concentration, and normalized to cell numbers. The concentrations of ¹³C glucose, ¹²C and ¹³C lactate, ¹²C and ¹³C Alanine, ¹²C Thr and ¹²C Val were determined by integration of the H-1 resonance of glucose and the methyl resonances of the other metabolites, respectively. Glucose consumption was
determined from the difference in the concentration of 13C glucose at zero time and the end of the experiment (48 hrs). The enrichment in lactate and alanine was determined from the area of the 13C satellite peaks of the methyl resonances compared with the unlabeled species as described elsewhere (21): $F = \frac{[^{13}\text{C-Lac}]/(^{13}\text{C-Lac})}{[^{13}\text{C-Lac}]/(^{12}\text{C-Lac})}$, where F is the fraction of glucose consumed that is converted to secreted lactate. The NMR experiments were done by the Structural Biology Program's NMR Core at the University of Louisville James Graham Brown Cancer Center.

Bacterial expression and in vitro kinase assay -

The PFKFB3 encoding region was PCR amplified from the pET30Ek/Lic-PFKFB3 vector using the following primer pair: 5'-CTTCATATGCCGTTGGAACTGACGCA-3' and 5'-CTTCTCGAGGTGTTTCCTGGAGGAGTCAGC-3'. The resultant 1.56 kb PCR product was then digested with XhoI and NdeI and ligated into the corresponding sites within the pET30b(+) vector. The final construct, pET30b(+)-PFKFB3, encoded full-length PFKFB3 with a C-terminal 6X histidine tag. The K472A/K473A substitution was then introduced into this parent construct using the same primers described above for site directed mutagenesis. Both parent and double mutant (K472A/K473A) constructs were then transformed into the BL21 strain of *E. coli*. One liter cultures of both transformed strains in LB media were shaken for 16 hours at 37°C. The temperature was then reduced to 30°C and an additional liter of fresh LB containing 2 mM IPTG was added to both cultures for induction in 1mM IPTG. After 4 hours of induction at 30°C, cells were pelleted, washed once with PBS, and resuspended in 8ml per pellet gram wet weight of lysis buffer as described in the Qiagen protocol for native purification of bacterial expressed proteins with 5mM beta-mercaptoethanol. The resuspended bacterial cells were then lysed by sonication, and the lysate was clarified by centrifugation. The clarified lysate was then mixed with 6 mL of Ni-NTA agarose equilibrated in 6X-His wash buffer and purified according to the Qiagen protocol.

The reaction conditions for the enzymatic assay for wild type and K472A/K473A PFKFB3 were as described elsewhere except that a coupled enzyme assay system was employed to detect the F2,6BP (23). Briefly, 5 µg of purified enzyme was added to a final 50 µL reaction containing 100 mM Tris-HCl (pH 7.5), 2 mM DTT, 0.1 mM EDTA, 5 mM ATP, 1mM Fru-6-P, 5 mM potassium phosphate (KH$_2$PO$_4$) and 10 mM MgCl$_2$. The reaction was then incubated at 30°C for 40 minutes, and the reaction was terminated by placing the reactions on ice. The reactions were then centrifuged through a Centricon-30 filter (Millipore) and the filtrate was assayed for F2,6BP as described above.

In vitro 6-phosphofructo-2-kinase assay on purified nuclei -

Nuclei for the in vitro 6-phosphofructo-2-kinase activity were isolated from HeLa cells using a Nuclei Isolation Kit (Sigma, #NUC-101) following the manufacturer's instructions. The purity of nuclei was confirmed to be over 95% based on trypan blue staining. The following assay was developed to measure the generation of F2,6BP by relatively intact pure nuclei. Approximately 1x107 nuclei were incubated at 30 ºC for 10, 20, and 30 min while shaking in a 200 ul kinase buffer containing 100 mM Tris-HCl (pH 7.5), 0.5 mM DTT, 0.1 mM EDTA, 5 mM ATP, 1 mM Fru-6-P, 5 mM KH$_2$PO$_4$ and 10 mM MgCl$_2$. Aliquots from supernatant were used to measure F2,6BP production (see F2,6BP assay above). A no substrate (Fru-6-P) control was included to correct for background signal.

Phosphorylation of p27 in total lysates -

The *E. Coli*-expressed recombinant full-length human p27 with N-terminal GST tag was obtained from SignalChem (#C28-30G-50). Immobilized Glutathione SwellGel Discs, spin cups, and collection tubes were purchased from Pierce Biotechnology (#89855). F2,6BP (Sigma, #F7006) was dissolved in 10 mM NaOH for use. Exponentially growing HeLa cells were washed in cold PBS and proteins were extracted with lysis buffer (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM MgCl$_2$, 1% NP-40, 1mM DTT, and 5% glycerol) containing protease inhibitors (Sigma). 3.5 µg GST-p27 (~40 µl) was absorbed onto a glutathione disc in a spin column and then 2 mg lysate was added (total volume of 600 µl). NaOH (vehicle control) or F2,6BP was immediately added onto the lysate (final concentration of 200 µM). Columns were incubated/rotated at room temperature for 25 min. Glutathione beads were then centrifuged and washed three times with PBS. Proteins were eluted under denaturing conditions using Laemmli buffer.
RESULTS

PFKFB3 mRNA splice variant 5 localizes to the nucleus- PFKFB3 splice variant 5 previously was found to be the dominantly expressed splice variant in transformed cells (9,10). We confirmed that HeLa, HCT116, and MDA-MB-231 transformed cells expressed the PFKFB3 splice variant 5 and, to a far lesser extent, the splice variant 6, and did not express variants 1-4 using RT-PCR analyses (data not shown).

The six human PFKFB3 mRNA splice variants differ only at their carboxy-terminal domains (24). We hypothesized that these carboxy-terminal domains may confer differential subcellular trafficking of the PFKFB3 protein. A full-length Flag-tagged PFKFB3 splice variant 5 construct was created using brain cDNA as template and transfected into HeLa cells. The subcellular localization was examined by confocal microscopy. Surprisingly, we observed that the PFKFB3 splice variant 5 localized to the nucleus (Fig. 1A). Next, we examined endogenous PFKFB3 protein expression in cytoplasmic and nuclear fractions extracted from HeLa, HCT116, and MDA-MB-231 cells using a monoclonal antibody that recognizes the variable carboxy-terminus present in the dominantly expressed splice variant and found that PFKFB3 immunoreactive bands only were detected in nuclear fractions (Fig. 1B). We also probed the membranes with antibodies specific for PFKFB2 and PFKFB4 enzymes, which we previously demonstrated to be expressed at mRNA levels in these cell lines (data not shown) and with an antibody specific for the rate-limiting enzyme of glycolysis, PFK-1. As seen, PFKFB2, PFKFB4, and PFK-1 localize to the cytoplasm, the site of glycolysis. The purity of the cytoplasmic and nuclear fractions was confirmed with antibodies to α-tubulin and Oct-1, respectively. This finding is consistent with the immunofluorescence data obtained with ectopically expressed PFKFB3 and confirms that PFKFB3 localizes to the nucleus.

To examine the requirement of the alternatively spliced carboxy-terminal domains for the subcellular localization specificity, we coupled each carboxy-terminal domain to green fluorescent protein (GFP) and ectopically expressed the fusion protein products in HeLa cells. Immunofluorescence analyses revealed GFP-fusion protein localization patterns consistent with high nuclear localization of the splice variants 4 and 5 (Supplementary Fig. 1; V4 and V5). These findings suggest that the alternative carboxy-terminal domains may function to differentially localize PFKFB3 variants.

We truncated the carboxy-terminal domain of full-length PFKFB3 splice variant 5 using site-directed mutagenesis in order to determine the residues required for the trafficking of PFKFB3 to the nucleus. We found that residues C-terminal of Threonine 471 were required for the trafficking of the protein to the nucleus (Fig. 2A, compare F479X to K472X). This region contains the residue sequence KKPR which fits a known nuclear localization signal consensus sequence K-K-R-X-R/K (25) and we thus examined the requirement of lysines 472 and 473 for nuclear localization by confocal microscopy. We found that the full length PFKFB3 splice variant 5 localized to the cytoplasm if lysines 472 and 473 were substituted with alanines (K472/473A) (Fig. 2B; α-tubulin was used as a cytoplasmic marker). These findings suggest that PFKFB3 localizes to the nucleus and that the residues required for nuclear trafficking reside in the carboxy-terminus.

Ectopic expression of PFKFB3 variant 5 does not increase glycolytic activity- We next transfected HeLa cells with constructs carrying either the Flag-tagged wild type (WT) PFKFB variant 5 (hereafter termed PFKFB3) or the cytoplasmic mutant PFKFB3 variant 5 (hereafter termed K472/473A PFKFB3), or with empty vector as a control. After 48 hours, we confirmed that the ectopic expression of the WT and K472A/K473A PFKFB3 was similar by Western blot analysis (Fig. 3A). A large increase in the steady-state concentration of F2,6BP was observed with the introduction of WT PFKFB3 and the 472/473A PFKFB3 mutant caused a further increase in F2,6BP production (Fig. 3B; Vector, 3.6±0.4; WT, 35±5; K472/473A, 82±9 pmol/mg protein). To confirm that the observed increase in activity with the K472/473A mutant was due to changes in sub-cellular localization and not changes in the intrinsic enzymatic activity, we produced E. coli recombinant WT and K472/473A
PFKFB3 protein and confirmed that the 6-phosphofructo-2-kinase activities were not significantly different (data not shown). We can only speculate that the increased in vivo activity obtained with the cytoplasmic localization of PFKFB3 may be due to increased substrate (F6P) availability in the cytoplasm. We were unable to detect F2,6BP in purified nuclei which is presumably due to its loss through the nuclear pores during the purification procedure. However, we were able to measure 6-phosphofructo-2-kinase activity in the purified nuclei. Nuclei isolated from cells transfected with WT PFKFB3 exhibited 6-phosphofructo-2-kinase activity that was significantly higher than the nuclei obtained from both vector and K472/473A-transfected cells (Fig. 3C). A substantial amount of F2,6BP also was detected with the K472/473A mutant. This may be due to a partial nuclear localization of this mutant, which was observed in Western blot analyses (data not shown) and also, due to partial disruption of the nuclear membrane barrier during the isolation procedure. These findings demonstrate that PFKFB3 localizes to the nucleus and has the ability to produce F2,6BP in the nucleus. We examined the supernatants of the transfected cells for glucose and lactate and found that only the K472/473A PFKFB3 mutant caused a significant increase in glucose consumption and total lactate secretion compared to cells transfected with empty vector and WT PFKFB3 (Figure 3D, 3E). Similar results were obtained in HCT116 cells (data not shown). Total lactate levels in media may not be a reliable indicator of glycolytic activity, as other sources and pathways (e.g. glutamine and the pentose phosphate pathway) can contribute to lactate formation (27,28). Therefore we examined the direct channeling of fully labeled \(^{13}\text{C}\)-glucose to lactate using 1D-NMR spectroscopy. The enrichment of glucose into \(^{13}\text{C}\)-labeled lactate and alanine were determined from the area of the \(^{13}\text{C}\) satellite peaks of the methyl resonances compared with the unlabeled species (21,22) as described in Experimental Procedures. Figure 3F shows the methyl region of three representative samples (Vector, WT and K472/473A). The relative intensity of the \(^{13}\text{C}\)-lactate compared with that of the control valine residues \([^{13}\text{C}\text{-lactate/Valine}]\) was highest in K472/473A (2.8 fold compared to vector), while \([^{13}\text{C}\text{-lactate/Valine}]\) for the WT PFKFB3 was only 1.2 fold compared to vector. As a better indicator of glycolytic flux, the percentage of glucose consumed that is converted to lactate in the vector, WT, and K472/473A samples were 15\pm2, 18\pm2, and 31\pm3, respectively. Collectively, these analyses demonstrate that expression of WT PFKFB3 in the nucleus causes no significant change in glycolytic flux, whereas the expression of PFKFB3 in the cytoplasm significantly stimulates glycolysis. That endogenous PFKFB3 appears to be predominantly expressed in the nucleus (in the three cell lines examined; Fig. 1B), suggests that this enzyme may have a function that is distinct from the regulation of glycolysis.

PFKFB3 stimulates cell proliferation in the nucleus—In order to examine the requirement of the kinase activity of PFKFB3 for a possible novel function in the nucleus, we created a mutant of PFKFB3 that is deficient in kinase activity, i.e. F2,6BP production. The recently published crystal structure of PFKFB3 (29) predicts the requirement of five arginine residues for contact with the substrate, F6P (Arg-75, 76, 98, 132, and 189). Using the full-length, Flag-tagged PFKFB3 construct as template, two consecutive arginines (Arg-75 and 76) were substituted with alanines by site-directed mutagenesis and the resulting construct (termed R75/76A) was tested for its ability to produce F2,6BP in vivo by transfection into HeLa cells followed by measurement of F2,6BP levels in total lysates. Kinase activity of the R75/76A mutant was abolished (Supplementary Fig. 2A). We also confirmed that these substitutions did not change subcellular localization of PFKFB3 (Supplementary Fig. 2B). HeLa cells were transfected with either WT PFKFB3, cytoplasmic (K472/473A), or kinase-inactive (R75/76A) mutant constructs, or with empty vector as control, and 48 hrs later, cell proliferation was determined by viable cell enumeration with trypan blue exclusion on a hemacytometer and \([^{3}\text{H}]\)-thymidine incorporation. Figure 4A demonstrates the equal expression of PFKFB3 from Flag-tagged constructs as determined by Western blot analysis. Remarkably, the WT PFKFB3-transfected cells proliferated at a significantly higher rate compared to cells transfected with empty vector (9.8\pm0.84x10^5 cells vs. 6.46\pm0.48x10^5 cells, p$<$$0.001$), whereas
expression of the K472/473A or the R75/76A mutant had no effect on cell proliferation (Fig. 4B). A nearly identical result was obtained with the $[^{3}H]$-thymidine incorporation assay and similar results were obtained in HCT116 cells (Fig. 4C; data not shown). The observation that the pro-proliferative effects of WT PFKFB3 were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrates a requirement for nuclear delivery of F2,6BP.

Ectopic expression of WT PFKFB3 increases the expression of key cell cycle proteins—A pathway-focused antibody array was conducted in order to identify cell cycle proteins that may be involved in mediating the effect of WT PFKFB3 on proliferation. HeLa cells were transiently transfected with either WT PFKFB3 or empty vector as control, and 36 hours later, cells were collected and lysed. Analysis of the array results revealed induction in protein expression of several key cell cycle proteins by PFKFB3 including cyclin-dependent kinase-1 (Cdk1; Cdc2), Cdc25, and cyclin D3 (Fig. 5A and 5B). We next confirmed these results using Western blot analyses and found that protein expression levels of Cdk1, Cdc25, and cyclin D3 were markedly upregulated by ectopic expression of WT PFKFB3 (Fig. 5C and 5D). Importantly, mutation of either the nuclear localization or active site residues of PFKFB3 attenuated the increased expression of each of the three cell cycle regulators (Fig. 5C). We also performed RT-PCR analysis and found no change in mRNA levels of each of these targets, suggesting that their regulation by PFKFB3 is posttranscriptional (data not shown).

Ectopic expression of WT PFKFB3 increases phosphorylation of the cell cycle inhibitor p27 at threonine 187 and decreases total p27 protein levels—p27 (p27Kip1; Kip1) is a member of the Kip/Cip family of proteins and a universal inhibitor of cyclin-dependent kinases (Cdk) and the cell cycle (30,31). p27 protein expression negatively correlates with cellular proliferation and Cdk activity, as p27 is also a direct substrate for phosphorylation at threonine 187 (T187) by two major cyclin/Cdk complexes (namely cyclin B1/Cdk1 and cyclin A or E/Cdk2), the most potent determinant of p27 protein instability. We therefore analyzed p27 protein levels and phosphorylation state by Western blot and found that WT PFKFB3 decreased p27 protein levels and increased the relative phosphorylation of the p27 protein at T187 compared with vector, K472/473AA, and R75/76A samples (Fig. 5E & F). These data suggest that F2,6BP production in the nucleus induces p27 phosphorylation at T187, possibly leading to its ubiquitination and subsequent degradation by the proteasome (32,33).

It has been well established that the p27 protein level oscillates during transition between cell cycle phases (34,35) and it has been found in several cell lines that the p27 protein is degraded in G1 and G1/S phases (36-42). We sought to determine if F2,6BP levels inversely correlate with p27 protein levels given that ectopic expression of PFKFB3 decreases p27. To this end, we synchronized HeLa cells at G1/S boundary using double-thymidine block and analyzed p27, PFKFB3, and F2,6BP levels in fractions enriched in S, G2/M, and G1 phases and found that the expression of the p27 protein was highest and the total cell steady-state concentration of F2,6BP was lowest in G2/M phase (supplementary Fig. 3). F2,6BP increases p27 phosphorylation at T187 in total HeLa cell lysates—Our findings suggest that F2,6BP synthesis in the nucleus is required for the effect on p27 protein levels and its phosphorylation. To rule out the possibility that p27 phosphorylation by PFKFB3 is an indirect effect (e.g. secondary changes in gene expression) and to determine if F2,6BP may directly regulate this event, we assessed p27 phosphorylation in total HeLa lysates incubated with bacterially expressed (i.e. unphosphorylated) GST-tagged p27, with or without addition of F2,6BP. Lysates were incubated for 25 minutes at room temperature and GST-p27 was pulled-down using glutathione beads followed by Western blot. As illustrated in Figure 6, compared to control (no lysate), incubation of the unphosphorylated p27 in total lysates caused a detectable phosphorylation at T187 as determined by Western blot and this was substantially enhanced by the addition of F2,6BP.
DISCUSSION

Although the PFKFB family of enzymes is not directly involved in the formation of a glycolytic intermediate, their product, F2,6BP, is considered to be essential in maintaining the high glycolytic flux as it is a potent allosteric activator of the rate limiting enzyme of glycolysis, PFK-1 (7,8,20,49,50). PFKFB3 is distinguished from other enzymes by its high kinase to bisphosphatase ratio and has been demonstrated to be upregulated in transformed cells and tumors (8,11). Therefore, it is widely held that PFKFB3 is essential for the increased glycolytic flux in transformed cells.

In the recently solved crystal structure of PFKFB3, the carboxy-terminus appears flexible and disordered (29,49), suggesting a discrete function. We have found that the dominantly expressed splice variant of PFKFB3 localizes to the nucleus and that the carboxy-terminus is required for this localization. A study performed by Telang et al. demonstrated that the intracellular concentration of F2,6BP in murine fibroblasts isolated from PFKFB3-haploinsufficient mice was lower than their wild type counterparts, but that there was no significant difference in glycolysis (51). Moreover, our observations that cells express more than one PFKFB enzyme concomitantly and, among them, PFKFB2 and PFKFB4 localize to the cytoplasm where glycolysis takes place challenges the notion that PFKFB3 is a key activator of glycolysis and suggests a heretofore unidentified function for PFKFB3. Consistent with this hypothesis, we demonstrated in this study that ectopic expression of PFKFB3 in the nucleus did not have a significant effect on total cell glycolysis but rather stimulated cellular proliferation. We should emphasize, however, that our findings should not be interpreted as an argument against the well-established role for F2,6BP in the regulation of glycolysis (50,52-57). We suspect that F2,6BP may have direct allosteric effects on Cdk1 or Cdk2 activity and future studies will be directed at this question.

Posttranslational regulation of Cdk activity and the protein levels of p27 as well as cyclin D3 and Cdc25C by F2,6BP presents a number of interesting implications. First, several small metabolites generated in the cell serve as secondary messengers (e.g. cAMP). Our study suggests that the presence of F2,6BP in the cytoplasmic mutant of PFKFB3 was able to enhance the glycolytic rate suggests the possibility for subcellular compartmentalization of F2,6BP. Concentration differences for small molecules such as calcium ions between subcellular compartments have previously been reported (60). Depending upon stimuli, there may exist a concentration gradient for F2,6BP between the cytoplasm and nucleus, so that a relative increase of F2,6BP in the cytoplasm may be necessary to activate glycolysis, whereas a relative increase in the nucleus may signal cells to more efficiently use glucose to proliferate (i.e. via the pentose phosphate pathway and oxidative phosphorylation in the mitochondria instead of anaerobic glycolysis). In line with this hypothesis, a study conducted by Vizan et al. (61) indicated that a specific K-Ras mutant (K12) markedly activated glycolysis, with only a minor effect on proliferation, whereas, another mutant (K13) forced cells to use the pentose phosphate pathway and proliferate, without affecting glycolysis significantly. This study suggested that glycolytic activity may not always correlate with proliferation.

Regulation of the cell cycle is complex and requires the coordinated actions of many key cell cycle proteins to overcome rate-limiting steps such as the G1/S restriction point (31). Transformed cells such as HeLa and HCT116 are rapidly dividing cells and the observation that the ectopic expression of a protein can further enhance their proliferation is striking. In order for nutrient signals to regulate cellular proliferation, these signals must be connected to the cell cycle machinery (62-68). Cyclin-dependent kinases promote cell cycle progression by phosphorylating substrates that control DNA replication, transcription and mitosis (69-72). Our observation that PFKFB3 and F2,6BP can directly activate Cdk to phosphorylate p27 in HeLa lysates indicates that F2,6BP may have direct allosteric effects on Cdk1 or Cdk2 activity and future studies will be directed at this question.

The observation that a large increase in F2,6BP production in cells by the ectopic expression of the wild type (i.e. nuclear) PFKFB3 did not stimulate the glycolytic flux, while the
nucleus may be required for cells to undergo cell division, which, without sufficient energy and macromolecule synthesis, can be catastrophic for cells. It can be speculated that, as a “byproduct” of glucose metabolism, the concentration of F2,6BP in the nucleus reflects the rate of glucose uptake, and therefore, the presence of F2,6BP in the nucleus may be instrumental in coupling glucose uptake with cell proliferation. However, it is important to note that a total increase in glucose uptake and F2,6BP synthesis may not be sufficient for cells to increase proliferative capacity. Rather, F2,6BP synthesis in the nucleus may be essential to this process. Second, the high expression of PFKFB3 observed in tumors may be critical for their unrestricted growth, as F2,6BP may cause deregulation of Cdks, causing them to be less sensitive to normal inhibitory effectors. For example, Cdk1 requires cyclin B1 and cyclin A as partners for maximal activity, however, the expression of these cyclins is absent or minimal in G1 phase (81,82), when Cdk1 is considered inactive. However, activation of Cdk1 by F2,6BP may result in early inactivation of p27 and Rb proteins, resulting in deregulation and shortening of G1 phase, which is a common feature of transformed cells (83-87). Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that F2,6BP may couple the activation of glucose metabolism with cell proliferation. Furthermore, these studies should enable an improved understanding of the regulatory interplay between metabolism and cellular events associated with embryogenesis, development and cancer.

REFERENCES

FOOTNOTES

We gratefully acknowledge helpful discussions with William Dean and Otto Grubraw. This work was supported by the following grant: NIH 1 R01 CA11642801 (JC).

The abbreviations used are: F2,6BP, fructose-2,6-bisphosphate; PFKFB, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; Cdk, Cyclin dependent kinase.

FIGURE LEGENDS

Fig. 1. PFKFB3 localizes to the nucleus. A, HeLa cells were plated onto chamber slides and transfected with either empty vector (vector) or a construct carrying Flag-tagged PFKFB3 (Flag-PFKFB3) and 24 hrs later, cells were fixed in paraformaldehyde and incubated with mouse anti-Flag primary and then with Alexa Fluor® 488-labeled secondary antibodies. Slides were analyzed with a confocal laser microscope. α-tubulin was used as cytoplasmic marker. B, Cytoplasmic (C) and nuclear fractions (N) were prepared from the indicated cell lines and subjected to Western blot using a PFKFB3 carboxy-terminus specific antibody. Membranes were also probed with antibodies against 6-phosphofructo-1-kinase (PFK-1), PFKFB2, and PFKFB4. The purity of cytoplasmic and nuclear fractions was confirmed by assessing the expression of α-tubulin and Oct-1 proteins, respectively.

Fig. 2. Nuclear localization of PFKFB3 mRNA splice variant 5 requires lysines 472 and 473. A, Stop codons were introduced at the indicated positions below (*) in the construct carrying the full-length, His-tagged PFKFB3 Splice Variant 5 using site-directed mutagenesis and the resultant constructs were transfected into HeLa cells, which were then fixed and stained with a FITC-conjugated monoclonal antibody against the 6X Histidine.
B, Site-directed mutagenesis was used to substitute codons encoding lysines at 472 and 473 with codons encoding alanines using the construct containing the full length, Flag-tagged PFKFB3 Splice Variant 5. HeLa cells were transfected with constructs that encode either wild type (WT) or mutant (K472/473A) PFKFB3 constructs and 24 hrs later cells were fixed in paraformaldehyde and incubated with a Flag primary and then with Alexa Fluor® 488-labeled secondary antibodies. Images were captured under a confocal laser microscope. α-tubulin was used as cytoplasmic marker.

Fig. 3. Ectopic expression of wild type PFKFB3 variant 5 does not activate glycolysis. HeLa cells were transfected with either wild type (WT) or cytoplasmic mutant (K472/473A) Flag-tagged PFKFB3 constructs, or with empty vector (Vec) as control. 48 hrs later, A, cells were lysed and subjected to Western blot using antibody specific for Flag epitope; B, cells were lysed in NaOH and analyzed for total F2,6BP levels; C, Nuclei was isolated and incubated in a kinase buffer (see Experimental Procedures) for 10, 20, and 40 min and supernatants were assayed for F2,6BP levels; D and E, media was collected and analyzed for glucose and lactate. Measurements were done in triplicate and results are presented as mean ± s.d., p<0.01; ***, p<0.001. F, For one-dimensional NMR analysis, cells were transfected with the above constructs and grown in [13C]-glucose containing media and 48 hrs later, media was TCA-extracted, lyophilized, and dissolved in 100% D2O. NMR spectra were recorded at 800 MHz on a Varian Inova Spectrometer. Shown are the methyl regions of representative samples.

Fig. 4. Ectopic expression of a kinase-active PFKFB3 in the nucleus stimulates cell proliferation. HeLa cells were transfected with either wild type (WT), cytoplasmic (K472/473A), kinase-inactive (R75/76A) Flag-tagged PFKFB3 constructs, or with empty vector (Vec) as control and 48 hrs post-transfection, A, Western blot was performed to confirm the equal expression of PFKFB3 from Flag-tagged constructs; B, the trypan blue-excluding live cells were counted; and C, [3H]-thymidine incorporation into DNA was assessed.

Fig. 5. Ectopic expression of a kinase-active, nuclear PFKFB3 regulates the expression of key cell cycle proteins and phosphorylation of the cell cycle inhibitor p27. A, HeLa cells were transfected with either a construct carrying PFKFB3, or empty vector as control and 36 hrs later, cells were lysed and subjected to antibody array. Portions of the array illustrating the differential expression of cyclin D3, Cdk1, and Cdc25 proteins between vector control (Vec) and PFKFB3-expressing (PFKFB3) cellss are shown. Each panel contains six replicates of a specific antibody-protein reaction. B, Densitometric quantitation of the average signal for each protein between samples. C and D, HeLa cells were transfected with either WT, cytoplasmic (K472/473A), kinase-inactive (R75/76A) Flag-tagged PFKFB3 constructs, or with empty vector (Vec) as control and 36 hrs post-transfection, cells were lysed and subjected to Western blot analysis using antibodies specific for cyclin D3, Cdk1, Cdc25C, and β-actin (C), and densitometric quantitation of the Western blot (D). E and F, HeLa cells were transfected as above and Western blot analysis was used to detect total and phosphorylated (Threonine 187)-p27 levels (E) and densitometric quantitation of the Western blot (F).

Fig. 6. F2,6BP increases the phosphorylation of p27 at the Cdk-specific T187 site in HeLa cell lysates. Exponentially growing HeLa cells were lysed and bacterially expressed GST-p27 (4 µg) and F2,6BP (200 µM) were added. p27 was pulled down and subjected to Western blot using total and T187-phosphorylated p27 antibodies. Densitometric quantitation of the average signal for T187-phosphorylated p27 relative to total p27 was conducted on protein preparations from three separate experiments.
Figure 2

A.

WT
L502X
F479X
K472X
R458X
K472/473A

B.

Flag α-tubulin Merge

WT
K472/473A
Figure 3

A. Western blot showing expression of Flag and β-Actin in Vec, WT, and K472/473A samples.

B. Graph showing F2,6BP levels (pmol/mg protein) for Vec, WT, and K472/473A.

C. Graph showing nuclear F2,6BP levels (pmol/10^6 nuclei/min) for Vec, WT, and K472/473A.

D. Bar graph showing glucose consumption (mg/10^6 cells) for Vec, WT, and K472/473A.

E. Bar graph showing lactate secretion (mg/10^6 cells) for Vec, WT, and K472/473A.

F. Mass spectrometry trace showing differences in 12C-Lac, 13C-Lac, Thr, and Val for K472/473A, WT, and Vec samples, with chemical shifts in ppm.
Figure 5

A.

B.

C.

D.

E.

F.
Figure 6

<table>
<thead>
<tr>
<th></th>
<th>GST-p27</th>
<th>GST</th>
<th>Lysate</th>
<th>F2,6BP</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>P-p27(T187)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases
Abdullah Yalcin, Brian F. Clem, Alan Simmons, Andrew Lane, Kristin Nelson, Amy L. Clem, Erin Brock, Deanna Siow, Binks Wattenberg, Sucheta Telang and Jason Chesney
J. Biol. Chem. published online May 27, 2009

Access the most updated version of this article at doi: 10.1074/jbc.M109.016816

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/05/27/M109.016816.DC1