An expanding appreciation for the varied functions of neutral lipids in cellular organisms relies on a more detailed understanding of the mechanisms of lipid production and packaging into cytosolic lipid droplets (LDs). Conventional lipid profiling procedures involve the analysis of tissue extracts and consequently lack cellular or subcellular resolution. Here we report an approach that combines the visualization of individual LDs, microphase extraction of lipid components from droplets, and the direct identification of lipid composition by nanospray mass spectrometry, even to the level of a single LD. The triacylglycerol (TAG) composition of LDs from several plant sources—mature cotton (Gossypium hirsutum) embryos, roots of cotton seedlings, and Arabidopsis thaliana seeds and leaves—were examined by direct organelle mass spectrometry (DOMS) and revealed the heterogeneity of LDs derived from different plant tissue sources. The analysis of individual LDs makes possible organelar resolution of molecular compositions and will facilitate new studies of LD biogenesis and functions, especially in combination with analysis of morphological and metabolic mutants. Further, direct organelle mass spectrometry could be applied to the molecular analysis of other subcellular compartments and macromolecules.

LDs are organelles that are specialized for the storage of neutral lipids and as such provide energy-rich reserves in all cellular organisms (1). Understanding LD ontogeny is of major importance to human physiology; on the one hand seed oils, packaged in LDs, make up a growing proportion of daily caloric intake around the world, and on the other hand, the regulation of lipid storage and mobilization underlies significant human health issues—obesity, diabetes and cardiovascular disease.

Although storage is considered the principal role of neutral lipids, LDs in non-fat storing tissues recently have become more appreciated for their dynamic nature and functional roles independent of storage. These roles include acyl reserves for phospholipid recycling (2), lipid signaling (3), membrane trafficking (2,4), inflammation and cancer (5), and host-pathogen interactions (6,7). These various functions attributed to LDs vary with cell type and likely are manifested by differences in droplet composition. The basic structural model of LDs in plant seeds provides a thermodynamically stable organization that is thought to be conserved throughout eukaryotes, although the nature of the lipids and proteins associated with droplets varies with cell/tissue type. The structure describes a neutral lipid core (triacylglycerols in plant seeds, and/or steryl esters in other organisms or cell types) surrounded by a phospholipid monolayer with specific proteins associated with the LD surface (8). Although the endoplasmic reticulum is considered by most to be the major cellular location for LD biogenesis, droplets associate frequently with other subcellular compartments, presumably to carry out unique functions (9).

The recent emphasis on studying the formation and turnover of these organelles and the importance of this compartment to general cellular physiology has prompted the development of advanced analytical tools for these organelles. Visualization of cytosolic LDs has commonly been carried out by conventional light microscopy and confirmed by histochemical and/or fluorescent neutral lipid specific stains (e.g. Sudan III, Nile Red, and BODIPY derivatives (10-12)). Electron microscopy, such as TEM or freeze-fracture and low-temperature SEMs have supported the description of the fine ultrastructure of LDs within...
various plant and mammalian tissues yielding information on structural variability among an assortment of mutants and under a range of environmental conditions (13-16). More recently, third-harmonic generation microscopy (THG) (17) and high-resolution, nonresonant confocal Raman microscopy (18) have been developed to selectively image unstained LDs unraveling novel interactions in complex cellular environments. In combination with two-photon and second-harmonic generation microscopy, THG offers 3D spatial resolution that can be used to visualize LDs for long periods. Raman-based microscopy can even provide some molecular composition information for LDs within single cells.

The rapidly developing field of lipidomics has led to a renewed effort to analyze triacylglycerol (TAG) prevalence and composition within LDs by mass spectrometric approaches (2). Many studies have now detailed the complex fragmentation patterns for the complete structural elucidation and quantification of TAGs (19-21). Supported by advances in bioinformatics (www.lipidmaps.org/) (22), improvements in mass spectrometry, and availability of unique purified standards, it is now feasible to achieve comprehensive lipid identification and quantification directly from complex mixtures. For lipidomics applications, lipids most often are extracted from tissues or cell lines in organic solvents, losing the spatial information of lipid organization within the original sample. Others have combined mass spectrometry with microscopy approaches such as MALDI-MS (23), SIMS (24), DESI-MS (25) to preserve spatial context with composition information, but the resolution currently remains at the cellular/tissue level, and the compositional analysis is limited and incomplete.

Here we have developed a novel technique for direct organelle mass spectrometry (DOMS) that couples direct visualization with detailed mass spectrometric analysis of organelles. A multifaceted nanomanipulator, previously demonstrated to extract peptides from a single bead (26) and extract and analyze trace fiber analytes (27), was equipped with glass nanospray emitters prefilled with organic solvent capable of extracting the lipid contents out of LDs. Here this approach is illustrated with LDs from diverse plant sources (Gossypium hirsutum and Arabidopsis thaliana). We demonstrate the capability to directly sample populations of purified LDs as well as perform single-organelle mass spectrometry (SOMS) and lipid characterization. To illustrate the utility of this approach we show a compositional shift in TAG profiles in LDs purified from modified oleic cottonseed lines previously generated in our laboratory (dominant negative expression of Bnfad2 (28,29)), the presence of cyclic fatty acids in TAGs of cotton root LDs, and the molecular comparison between Arabidopsis seed and leaf LDs. These new approaches complement existing analytical and cell biology techniques and can be extended to the analysis of LDs and organelles from other organisms. This approach will help facilitate new studies about LD heterogeneity and the molecular nature of subcellular compartments in cellular systems.

EXPERIMENTAL PROCEDURES

Plant growth conditions— Cottonseeds were propagated under air-conditioned greenhouse conditions at 30°C and supplemented with Na-vapor lamps to extend day length to 16h. Opened bolls were harvested and seeds were delinted in a table-top, 10-saw laboratory gin. Seeds were from cultivar Coker 312 (non-transgenic) or were from transgenic lines (T5 generation) in the Coker 312 background, expressing a non-functional allele of the Brassica delta-12 desaturase (Bnfad2) under the control of a seed specific promoter (28,29). These seeds displayed reduced oil, elevated oleic acid phenotype relative to Coker 312 seeds (28,29). Intact embryos (mostly cotyledon tissues) were harvested from desiccated seeds following seed coat removal. Roots were collected on ice from germinated cottonseeds (cv Coker 312) grown in the dark at 30°C for 48-72 hours. Arabidopsis wildtype (Col 0) seeds were obtained from the Arabidopsis stock center at Ohio State University and propagated in-house. Plants were grown in soil at 21°C in a 16-h light/8-h dark cycle (between 45 and 65 µmol/m²/s).

Imaging lipid droplets in situ—LDs were imaged by confocal scanning fluorescence microscopy using BODIPY493/503 to selectively visualize LDs in situ. All tissues were fixed in 4% w/v paraformaldehyde in 50 mM PIPES pH 7.0 and stained with 1-10 µg/mL BODIPY493/503. For BODIPY imaging, excitation of BODIPY was
at 493 nm. Emission wavelength for BODIPY stained LDs was 520 nm, exposed for 0.4-10 seconds, no gain. In leaves, chloroplast autofluorescence was acquired with an excitation of 493 nm and an emission wavelength at 692 nm exposed for 0.4 seconds. Images were acquired with a Zeiss 200M optical microscope fitted with a CSU-10 Yokogawa confocal scanner (McBain Instruments) and captured with a digital camera (Hamamatsu, Phoenix, AZ). LD morphology and localization were characterized using MBF (McMaster Biophotonics Facility, www.macbiophotonics.ca) and Image J software (NIH, version 1.43T).

Lipid droplet purification—LDs from unfixed embryos of mature cotton seeds were isolated and purified in 100 mM Tris-HCl, 600 mM sucrose, 10 mM KCl, 1mM EDTA, essentially as described in Chapman and Trelease (30) and based on methods developed by Huang (31). Embryos were chopped into approximately 1 mm pieces with a razor-blade in ice-cold buffer and purified through a sequential series of three flotations through 500 mM sucrose at 10,000X g (Sorvall SS-34 rotor or HB -6 rotor in a Sorvall RC 5C centrifuge, or in a Centronix Microcentrifuge 1236V for smaller sample sizes). LDs were purified in a similar manner from cotton roots (at least 500 mg fresh weight) of 48-72 h-old seedlings, Arabidopsis leaves of 40-d-old plants (about 8 g fresh weight), or Arabidopsis seeds (10 mg). LDs from Arabidopsis leaves are few in number and a final ultracentrifugation step (TLA-100 rotor at 100,000X g 1 h, Beckman TL100 ultracentrifuge) helped to enrich these organelles in the top layer. For some experiments, 50 mM PIPES–NaOH, pH 7.0, buffer was employed for homogenization and floatation. For all purifications the fat pads was carefully collected with a spatula and the LDs suspended in buffer on ice. LDs were stained with 0.1-1 µg/ml BODIPY493/503 in 50 mM PIPES buffer.

Nanomanipulator workstation—The Biometric L200 nanomanipulator workstation developed by Zyvex (Richardson, TX) and the Verbeck group combines four nanopositioners with a piezo voltage source and a PM 2000B Programmable 4-Channel Pressure Injector (Microdata Instruments, South Plainfield, NJ) situated on an inverted microscope stage (TE2000U, Nikon, Melville, NY, diagrammed in Fig. 1). The nanomanipulator has two modes of motion along the X, Y, and Z axes. The fine mode has 100 microns of travel in the X and Z axis and 10 microns of travel in the Y axis with 3.4 nm resolution controlled by piezo-electric crystals. The coarse mode has 12 mm of travel in the X axis and Z axis and 28 mm of travel in the Y axis with 100 nm resolution. The positioners consist of end-effectors made up of six isolated, low impedance electrical connections and two glass capillary attachments. The end-effectors are used for manipulation and, if needed, low impedance electrical characterization. Probes and capillaries attached to the positioners can be manually landed onto the sample and manipulated electronically using a joystick to control the end-effector’s position. The capillaries are connected by Teflon tubing to a PM 2000B Programmable 4-Channel Pressure Injector. LDs were visualized by epifluorescence, bright field or differential scanning interference optics during collection (Nikon NIS elements) and the lipids were micro-extracted in 10 mM ammonium acetate in chloroform: methanol (1:1, v/v) in the capillary before MS. For single lipid droplet analysis the extraction solution was spiked with a Tri 15:0 TAG standard at a final concentration of 2 µM.

Nanospray mass spectrometry—A Proxeon nanospray source (Proxeon Biosystems, Odense, Denmark) was mounted on a Thermo LCQ Deca XP Plus quadrupole ion trap (Thermo Fisher Scientific Inc., Waltham, MA). The lipids in the nanospray emitters (New Objective (Woburn, MA) Econo12 PicoTipTM Emitter platinum coated or PROT12 break-to-open platinum emitters (tip openings 1 ± 0.2 µm and 1-10 µm, respectively) were subjected to typical ion source conditions consisting of a potential of 0.8 to 1.5 kV, capillary temperature of 200°C, and capillary voltage of 3.0 V. Mass spectra were acquired using the LCQ Tune software program in the positive ion mode with 3 microscans and a continuous acquisition time. The mass spectra were analyzed with the XCalibur 2.0 software package. Tandem mass spectrometry (MS/MS) analyses were used to confirm the identity of the triacylglycerols by a characteristic diacylglycerol fragment. Tandem spectra were acquired in positive ion mode with a typical isolation width of 3.0 m/z, normalized collision energy of 35 %, activation Q of 0.250, and an activation time of 30 milliseconds. Quantitative estimates of molecular compositions
were calculated in Microsoft Excel with in-house algorithms integrating peak areas, correcting for isotopic overlap, and when available normalizing to internal standards.

Conventional lipid extraction—Total lipids were extracted from LDs purified from mature embryos of desiccated seeds (cv Coker312, without and with a Brassica FAD2 non-functional allele) using the method of Bligh and Dyer (32). Total lipid extracts were dissolved in 10 mM ammonium acetate in chloroform: methanol (1:1, v/v) and characterized by nanospray mass spectrometry or converted to fatty acid methyl esters and analyzed by GC-FID (30).

Fatty acid methyl ester preparation and analysis—Additional total lipid extracts of the purified LD fractions were converted into fatty acid methyl esters (FAMEs). FAMEs were prepared by transesterification with 1 N methanolic HCL at 85°C for 2 hours. A heptadecanoic acid (C17:0) standard was added to aid quantification. FAMEs were separated on a 30 m x 0.25 mm i.d. Supelcowax 10 fused silica capillary column on a HP 5890 Series II Plus Gas Chromatograph with an initial oven temperature of 200°C increasing at a rate of 1.3°C/min to a final temperature of 230°C.

Electrospray Mass Spectrometry—Since the ion trap is limited in its ability to carry out precursor-product scans, additional acyl chain information was derived from analysis of total lipid extracts of LD fractions purified from cotton (seed, root) and Arabidopsis tissues (seed, leaf) using a Waters Micromass Quattro Ultima triple quadrupole mass spectrometer (Waters, Milford, MA). Typical scanning conditions for a direct infusion rate of 10-20 µl/min were carried out in positive ion mode with a 3-3.5 kV spray voltage, 40 V cone voltage, and a scan range of 750 to 1000 m/z. The desolvation and source temperatures were maintained at 200 and 80°C, respectively, and the desolvation and cone gas flows were set at 300 and 80 L/hr, respectively. Tandem scans (MS/MS), whether detecting the precursor ions that lost a particular acyl chain in neutral loss mode or single precursor-product species, were performed with collision energy of 30V with a scan range from 400 to 1000 m/z.

RESULTS

Direct organelle mass spectrometry—Interfacing direct organelle sampling with nanospray mass spectrometry required the incorporation of nanospray emitters that could control the liquid flux at the tip opening in contact with the sample of interest while also sufficiently concentrating the extracted lipids to detect their composition with high resolution. The development of a nanomanipulator apparatus (Fig. 1) (26) coordinated the positioning of up to four emitters in a three-dimensional plane situated on the stage of an inverted light microscope for maximum working distance. Emitters, prefilled with an organic microextraction solution that served the dual purpose of extracting the lipids from the droplets and facilitating the formation of nanospray droplets, were positioned adjacent to purified LDs (Fig. 1a). Direct interfacing the emitter with a dynamic pressure injector provided the sensitivity necessary to fill nanoliter volumes (usually between 5 to 30 psi of fill pressure) and selectively capture individual organelles (Supplementary Movie 1). After sampling LDs the emitters were remounted onto the nanospray apparatus (Fig. 1b) for chemical analysis.

Lipid droplet characterization—To test the DOMS approach, LDs were purified from mature cotton embryos (cv Coker 312) due to their abundance within seed tissues, relative ease of purification and the known composition of TAGs in standard cottonseed oil (33). These LDs, suspended in approximately 100 µL, were somewhat variable in size (~0.5 to 2.0 µm diameter) (Fig. 1a) but retained similar spherical morphology to that observed in situ. A random sampling of approximately two dozen LDs produced a high-resolution spectrum of TAGs (Fig. 2a). The TAG molecular species under these conditions were of sufficient concentration to analyze by MS/MS and confirm/assign acyl chain composition (Fig. 2b, c). Tandem MS of TAG precursor ions produce diacylglycerol product ions that lead to a high confidence of acyl chain identification (34). The TAG acyl chain distribution in purified cottonseed LDs primarily consisted of linoleic (18:2), oleic (18:1) and palmitic acids (16:0).

Most LDs share a similar spherical morphology despite some significant alterations in the composition of their neutral lipid core or surrounding phospholipid/protein-lined monolayer
(8,12,29). However, the size of LDs is much more variable depending on tissue type (1) and/or metabolic state (12,29). Expression of a Brassica nonfunctional allele of a delta-12 fatty acid desaturase (Bnfad2) in a Coker 312 wildtype background produces fewer and larger LDs in cotyledons (Fig. 3a, b) (29). Purification of these LDs was verified by bright field (Fig. 3c, d) and epifluorescence microscopy (stained with a neutral lipid specific fluorescent dye, BODIPY493/503) (Fig. 3e, f). Direct sampling of these Bnfad2 LDs showed a distinct shift toward increased oleic acid (18:1) acyl chain distribution within TAG at the expense of linoleic acid (18:2) (Fig. 3g) that was confirmed qualitatively and quantitatively with conventional chemical extractions of total seed lipids (Fig. 4) and analysis of total fatty acid content by GC-FID (Supplementary Fig. 1), consistent with suppression of endogenous oleic acid desaturation by FAD2 (dominant-negative mutation). Hence, with this approach it was possible to demonstrate directly a change in molecular composition at the organelle level in these metabolic mutants.

Sampling multiple LDs resulted in sufficient TAG concentrations within the nanospray emitters to allow for detailed compositional information to be acquired through tandem MS. The overall variability in TAG composition from sampling small, random populations of cottonseed LDs (10-25 droplets per sample) was relatively low (Fig. 4c,d). Direct visualization and sampling of a single Bnfad2 LD (Fig. 5a) as demonstrated in Supplementary Movie 2 required fine-tuning the filling conditions to prevent multiple LDs from entering the tip and obscuring the final suspension of LD.

To assess the heterogeneity of individual LDs isolated from cottonseed embryos, LDs were sampled individually for both the Coker 312 and Bnfad2 (Tables 1 and 2, Fig 5). Representative TAG spectra from single Coker 312 (Fig. 5b top) and single Bnfad2 (Fig. 5b bottom) LD showed identifiable TAG profiles of single LD. There was a substantial difference in mol% of TAG species (normalized to Tri 15:0 internal standard) among individual LD, both within the Coker 312 seeds and the Bnfad2 seeds (Tables 1, 2). The average TAG molecular composition (Fig 5c; Tables 1, 2) of seven individual LDs combined were distinctly different from one another (Coker 312 vs. Bnfad2) and the average composition of each variety approached that of the composition varieties when multiple LDs were sampled together. However, there was considerable heterogeneity among purified seed lipid droplets, suggesting a complexity in the biogenesis of LD not able to be appreciated until now. In other words, the overall average lipid composition of these seeds comes from discrete LD packages with variable TAG profiles. This is new information about LDs that would not be possible were an individual droplet not able to be sampled directly by MS. These results indicate that this technique of DOMS can be used to assess organelle heterogeneity by sampling single organelles.

One advantage of this DOMS approach would be to distinguish by molecular composition between LDs of similar morphology. Cyclic fatty acids accumulate in root tissues of cotton seedlings during the early growth stages and include malvalic acid (8,9-methylene-8Z-heptadecenoic acid, 32.6% of total fatty acid), sterculic acid (9,10-methylene-9-octadecenoic acid, 11.0 %), and dihydrosterculic acid (9S,10R-methylene-octadecanoic acid, 0.6 %) (22,35). These cyclic fatty acids are enriched in the TAG fractions and presumed to be packaged into LDs in root cells. LDs in root cells (visualized by BODIPY-specific fluorescent staining) appeared to be either localized in clusters around the nucleus or dispersed throughout the cytosol in different root cells (Fig. 6a). Isolation and purification of these LDs did not affect their size and morphology (Fig. 6b), and this morphology was similar to the LDs purified from cotyledons of seed tissues (Fig. 3c). TAG profiles in root LDs were distinct from those derived from cotyledon tissues of seeds (Fig. 6c), and indeed these root TAGs were enriched in cyclic fatty acids with sterculic and dihydrosterculic acids on one or two acyl chains (confirmed by tandem MS, Fig. 7b,c). While malvalic acid is known to be prevalent in roots by GC studies (35), here by MS it was not distinguishable from linoleic acid (Fig. 7a) in the purified droplets (both fatty acids have a molecular mass of 280.45). Nonetheless, it was possible to directly distinguish LDs of differing molecular composition that were otherwise indistinguishable by morphology, illustrating that DOMS might be used to assess organelle heterogeneity within a given tissue or cell type.
A single *Arabidopsis thaliana* seed (~15-25 µg) provides more than enough LDs for direct organelle mass spectrometry (Fig. 8a) and these seed LDs can be purified by a rapid two-step procedure (Fig. 8f) reducing the time from LD purification to determination of LD TAG composition to under an hour. On the other hand, the rosette leaves (approximately 1 mg dry weight) of 40-d old Arabidopsis plants contain very few LDs per cell (Fig. 8c, e), and much more tissue was required for purification of LDs from leaves. DOMS (Supplementary Movie 3) showed that the seed LDs contained characteristic 20:1/eicosenoic fatty acids in their TAGs while the LDs from leaves instead contained more 16:3 and 18:3 fatty acids that are most characteristic of leaf acyl lipids (Fig. 8b) (36). LDs in leaves (Fig. 8c), although similar in morphology to those in seeds (Fig. 8d), likely have a function different from the long term storage function of TAGs in seeds for germination and seedling establishment. Profiling organelles by DOMS from different tissues and metabolic contexts will provide new insights into how cellular and subcellular heterogeneity contributes to cellular function—questions difficult to address directly until now.

DISCUSSION

The development of the L200 nanomanipulator supports a variety of potential analytical techniques at the cellular and subcellular level. Here we illustrate some of these capabilities by the direct visualization of LDs derived from various cell types coupled with detailed chemical analysis. Conventional lipid profiling by MS although detailed and capable of resolving highly complex compositions of molecules at a range of endogenous concentrations, relies on total extractions of lipid molecules from organs, tissues or cell types, resulting in a rich mixture of compounds that lose all spatial context. Here, the DOMS facilitates a complete, comprehensive lipidomics profiling while maintaining organelar identity of the sample source. While seed LDs contain mostly TAG molecules there are also a small proportion of phospholipids (PL) and proteins (e.g. ~97% TAG, 1% phospholipid, 2% protein in a 1 µm diameter LD) (8). While only TAG molecules were detected with DOMS it is likely that ion suppression effects prevented the detection of PL with the ion trap MS. It is possible through instrument modifications that interfacing DOMS with a triple quadrupole MS might facilitate the detection of PL and/or proteins but this remains to be determined.

This technique is versatile and could be combined for the lipid profiling of other subcellular components and combined with microscopic analysis serve as a means of evaluating detailed molecular changes at the organellar level to address arrange of biological questions intractable until now. For example, considering the low variability of sampling multiple LDs, it was surprising to uncover significant TAG compositional heterogeneity when sampling individual LDs, pointing to complexity at the subcellular level in packaging TAG into lipid droplets, that until now had not been considered in models of LD biogenesis. Further, it is possible to envision this approach expanded to support broad-based MS analysis of other macromolecules in organelar samples—such as proteomic or general metabolomic studies—placing this DOMS approach at the forefront of biochemical analysis with microscale resolution. While the positioning resolution of the L200 surpasses many commercially available nanomanipulators, the relative ease of combination of a standard robotic-controlled microscope stage with conventional light microscopy and standard MS instruments (nanospray source mounted on an ion-trap or triple quad MS) provides a high level of flexibility to achieve diverse and specialized systems (26,27). In this case, only a single end-effector holding a glass nanospray emitter was necessary for sampling purified LDs; however, there are multiple ports on the L200 that could be used as molecular “tweezers” and low impedance electrical positioners (26) that might be advantageous for handling and/or sampling cellular constituents on-stage, either from purified populations as was shown here, or perhaps even *in situ* by microdissection of whole tissue samples. Currently the nanospray emitters are not designed to penetrate the thick cell walls of plant tissues and permit selection of organelles *in situ*. In the future it might be possible to use some combination of laser microdissection or cell wall digestion to gain access to organelles within tissue samples, and advances in sample preparation will expand the uses of DOMS.
Recent advances in imaging MS (MALDI-MS (23), DESI-MS (25), SIMS (18,24)) and Raman spectroscopy (18) have acquired compositional information in association with spatial distribution in biological specimens. Unfortunately, the limited resolution of MALDI-MS (typical lateral resolution of 25-100 µm (23)) and DESI-MS (typically only 250 µm (25)) makes it impossible to resolve the compositional information of single organelles. While Raman spectroscopy approaches afford some chemical compositional information at high spatial resolution in situ, this information is limited to gross chemical information, such as confirming neutral lipid classes or overall saturation of acyl-chains. A significant advantage of imaging MS is acquiring chemical information in situ. However, significant tissue preparation is often required that can adversely affect quantitative accuracy and compositional distribution (23). For example, the quantitative accuracy of MALDI-MS and TOF-SIMS is significantly affected by sample preparation necessary to withstand vacuum pressure and ion generation energies (25). Our DOMS method can derive information at a single organelle (LD) level with more comprehensive chemical compositional information than is possible by any current MS imaging approach that relies on direct ionization properties of molecules from a surface. Indeed the DOMS approach might be modified to be combined or to verify various in situ imaging techniques, and together help to generate more complete chemical maps of cells and subcellular compartments than is currently available.

The DOMS approach developed and described here has the potential to be applied to diverse areas of cell biology and address many questions. In specific applications toward LDs, while significant progress has been made in understanding the mechanisms of lipid production, packaging into cytosolic LDs, and physiological roles of LDs, there are still many questions that remain unanswered, or require additional technical advances to address. For example, what is the extent of heterogeneity in organelle composition with a cell or within tissues? Considering the acyl chain diversity of the core neutral lipid compounds, how are lipids packaged or trafficked within LDs or between associated organelles? What is the diversity of proteins or phospholipids in the LD monolayer and are these compositions dependent on or independent of the neutral lipid components in the core? Does the size, surface composition or neutral lipid core impact the rate of lipid accumulation or mobilization? These and many other important biological questions can begin to be, in part, addressed with the advances in analytical approaches at the microscale level.

REFERENCES

This research was supported by a Zyvex Instrument Research Grant (GN1371) and UNT Faculty Research Grant (G33598) to G.F.V. K.D.C. was supported in part by Cotton Incorporated Research Grant (08-395) and a grant from the United States Department of Energy (DE-SC0000797). P.J.H. was supported through the Doctoral Fellowship Program and C.N.J. through the Beth Baird Fellowship, University of North Texas. We thank Dr. Lon Turnbull, University of North Texas, for advice and assistance with confocal microscopy.

The abbreviations used are: LD, lipid droplet; DOMS, direct organelle mass spectrometry; TAG, triacylglycerol; DAG, diacylglycerol

FOOTNOTES

FIGURE LEGENDS

FIGURE 1. Schematic of direct organelle mass spectrometry.
A schematic representation of direct organelle mass spectrometry (DOMS) using the L200 nanomanipulator coupled to nanospray mass spectrometry. (a) The nanopositioner, set on an inverted microscope stage, electronically controls the x, y, and z positioning of a nanospray emitter through a user-operated joystick. The nanospray emitter is prefilled with a microextraction solvent and is directly connected to a pressure injector. Approaching purified LDs in buffer, the emitters can selectively load LDs of interest, microextract their lipid contents, and (b) analyze their compositions by nanospray mass spectrometry. Scale bar represents 2 µm.

FIGURE 2. TAG profiles of purified cottonseed lipid droplets analyzed by DOMS.
(a) Representative positive-ion, high-resolution TAG profile of purified LDs from mature cotton embryos (cv Coker 312). Dominant TAG species are identified as ammonium adducts [M + NH4]+ with peaks labeled according to the three fatty acids present in each TAG molecular species as identified through subsequent tandem MS analysis by collision induced dissociation, CID. (b) Schematic of tandem MS of a TAG with acyl chains R1, R2, R3—fragmentation of the R1 ester bond (blue line) produces a corresponding DAG plus hydrogen adduct (blue: R2, R3) and FFA plus ammonia (blue: R1). (c) Confirmation of acyl chain composition by tandem MS detects the diagnostic DAG product ions minus a FFA compared to known masses (34). DAGs represented in multiple TAGs shown are only labeled once for clarity. Sn-positioning of each acyl chain was not determined. Fatty acid abbreviations are P, 16:0-palmitic acid; O, 18:1-oleic acid; L, 18:2-linoleic acid.

FIGURE 3. Characterization of lipid droplets from high oleic cottonseed mutants.
Representative *in situ* confocal images of mature cotton embryos from (a) wildtype (cv Coker 312) and a (b) transgenic line expressing a Brassica nonfunctional allele of a delta-12 fatty acid desaturase (Bnfad2) stained with BODIPY 493/503. Purified LDs of Coker 312 (c, e) and Bnfad2 (d, f) mature embryos visualized in bright field and stained with BODIPY 493/503. (g) Representative TAG profiles of Bnfad2 (blue) and Coker 312 (red) using DOMS of the purified LDs shown in (c) and (d). Scale bars represent 10 µm (a, b) and 2 µm (c-f).

FIGURE 4. Validation of DOMS with conventional total lipid extracts.
Representative TAG profiles from total lipid extracts of purified LDs from mature cotton embryos of (a) Coker 312 wildtype and (b) Bnfad2 transgenic lines. Dominant TAG species are identified as ammonium adducts [M + NH4]+ with peaks labeled according to the total number of carbons followed by the total number of double bonds for that particular TAG mass-to-charge ratio. Quantitative comparison of molecular TAG content (c, Coker 312; d, Bnfad2) acquired through direct organelle mass spectrometry of small LD populations (10-25 LDs) relative to conventional total lipid extracts. Predominant acyl chain
combinations were quantified by integrating the absolute intensities of peaks identified through tandem MS, correcting for isotopic overlap, and converting to molecular percentages. Fatty acid abbreviations are P, 16:0-palmitic acid; O, 18:1-oleic acid; L, 18:2-linoleic acid.

FIGURE 5. Single lipid droplet mass spectrometry and lipid droplet heterogeneity
(a) Bright field snapshot image of a nanospray emitter directly sampling a single LD as demonstrated in Supplementary Movie 2. Scale bar represents 5 µm. (b) Representative TAG profiles with acyl chain designations of single LD from Tables 1 and 2 (Coker 312 LD6 and Bn\textit{fad2} LD6. LD-TAGs peaks are attenuated according to right axis to show resolution of peaks relative to spiked Tri15:0 TAG standard represented by the left axis (c) Heterogeneity of TAG content within single seed LDs (n = 7 for both Coker 312 and Bn\textit{fad2}). Numerical values are in Tables 1 and 2.

FIGURE 6. Detection of lipid droplets with cyclic fatty acyl chains in cotton roots.
(a) Representative confocal image of BODIPY 493/503 stained LDs of 48-hr germinated roots. (b) Bright field image of purified root LDs and resulting TAG profile (c, blue) relative to cotyledon cottonseed LDs (c, red). Cyclic fatty acid abbreviations: Sc: Sterculic acid; Dsc: Dihydrosterulic acid. Scale bars represent 10 µm.

FIGURE 7. Tandem MS analysis of lipid extracts of purified cotton root lipid droplets.
In addition to tandem MS of LDs sampled through DOMS, precursor-product scans of lipid extracts of purified LDs of cotton roots aided in identification of cyclic fatty acids. Shown are precursors TAG profiles of (a) malvalic/linoleic, (b) sterculic, and (c) dihydrosterculic fatty acids analyzed in neutral loss mode on a triple-quad MS. Dominant TAG species are identified as ammonium adducts [M + NH4]+ with peaks labeled according to the total number of carbons followed by the total number of double bonds for that particular TAG mass-to-charge ratio. Underlined species in malvalic/linoleic scan (a) correspond to TAGs with at least one sterulic or dihydrosterculic acyl chain.

FIGURE 8: Characterization of \textit{Arabidopsis} leaf and seed lipid droplets.
Representative TAG profiles of LDs purified from \textit{Arabidopsis} mature seeds (a) and rosette leaves of 40-d old plants (b). Labels show the total number of carbons followed by the total number of double bonds for that particular TAG mass-to-charge ratio. Seed LDs showed an abundance of 20:1/eicosenoic fatty acids while leaf LDs showed typical 18:3/16:3 fatty acids. Representative \textit{in situ} confocal image (c) of wildtype \textit{Arabidopsis} mesophyll tissue stained with BODIPY 493/503 (red autofluorescence represent chloroplasts) and bright field snapshot image (e) of purified \textit{Arabidopsis} leaf LDs as demonstrated in Supplementary Movie 3. Representative \textit{in situ} confocal image (d) of wildtype \textit{Arabidopsis} seed LDs and epifluorescence image (f) of purified \textit{Arabidopsis} seed LDs stained with BODIPY 493/503. Scale bars represent 20 µm (e), 10 µm (c, inset), 5 µm (d,e,f)
Table 1
Heterogeneity of TAG molecular species in Coker 312 purified seed lipid droplets

<table>
<thead>
<tr>
<th></th>
<th>PPL</th>
<th>PPO</th>
<th>PLL</th>
<th>PLO</th>
<th>POO</th>
<th>LLL</th>
<th>LLO</th>
<th>LOO</th>
<th>OOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>15.9</td>
<td>4.5</td>
<td>19.8</td>
<td>14.8</td>
<td>9.8</td>
<td>11.0</td>
<td>10.9</td>
<td>6.1</td>
<td>7.1</td>
</tr>
<tr>
<td>LD2</td>
<td>9.1</td>
<td>5.7</td>
<td>18.5</td>
<td>11.5</td>
<td>10.4</td>
<td>15.2</td>
<td>13.0</td>
<td>10.4</td>
<td>6.3</td>
</tr>
<tr>
<td>LD3</td>
<td>14.7</td>
<td>9.1</td>
<td>16.0</td>
<td>12.4</td>
<td>9.0</td>
<td>9.8</td>
<td>10.9</td>
<td>8.4</td>
<td>9.6</td>
</tr>
<tr>
<td>LD4</td>
<td>17.2</td>
<td>4.3</td>
<td>27.9</td>
<td>14.2</td>
<td>4.9</td>
<td>13.1</td>
<td>9.7</td>
<td>5.4</td>
<td>3.2</td>
</tr>
<tr>
<td>LD5</td>
<td>16.7</td>
<td>3.8</td>
<td>26.0</td>
<td>14.1</td>
<td>6.3</td>
<td>12.3</td>
<td>10.1</td>
<td>6.0</td>
<td>4.7</td>
</tr>
<tr>
<td>LD6</td>
<td>13.0</td>
<td>2.6</td>
<td>26.9</td>
<td>13.4</td>
<td>6.5</td>
<td>16.3</td>
<td>10.5</td>
<td>6.1</td>
<td>4.6</td>
</tr>
<tr>
<td>LD7</td>
<td>7.2</td>
<td>4.2</td>
<td>16.6</td>
<td>13.2</td>
<td>9.1</td>
<td>16.6</td>
<td>13.7</td>
<td>11.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Mean</td>
<td>13.4</td>
<td>4.9</td>
<td>21.7</td>
<td>13.4</td>
<td>8.0</td>
<td>13.5</td>
<td>11.3</td>
<td>7.7</td>
<td>6.2</td>
</tr>
<tr>
<td>STD</td>
<td>3.9</td>
<td>2.1</td>
<td>5.1</td>
<td>1.2</td>
<td>2.1</td>
<td>2.6</td>
<td>1.5</td>
<td>2.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Fatty acid abbreviations are P, 16:0-palmitic acid; O, 18:1 oleic acid; L, 18:2-linoleic acid.
aTAG acyl chains are sn-nonspecific
bStandard deviation
Table 2-Horn et al.

Heterogeneity of TAG molecular species in Bn*fad2* purified seed lipid droplets

<table>
<thead>
<tr>
<th></th>
<th>PPL</th>
<th>PPO</th>
<th>PLL</th>
<th>PLO</th>
<th>POO</th>
<th>LLL</th>
<th>LLO</th>
<th>LOO</th>
<th>OOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD1</td>
<td>17.9</td>
<td>14.0</td>
<td>7.0</td>
<td>16.2</td>
<td>22.7</td>
<td>1.6</td>
<td>4.0</td>
<td>8.8</td>
<td>7.7</td>
</tr>
<tr>
<td>LD2</td>
<td>13.0</td>
<td>8.3</td>
<td>13.2</td>
<td>22.3</td>
<td>15.4</td>
<td>6.5</td>
<td>10.3</td>
<td>7.9</td>
<td>3.1</td>
</tr>
<tr>
<td>LD3</td>
<td>13.2</td>
<td>9.4</td>
<td>11.4</td>
<td>21.4</td>
<td>20.4</td>
<td>5.0</td>
<td>8.5</td>
<td>6.9</td>
<td>3.8</td>
</tr>
<tr>
<td>LD4</td>
<td>14.9</td>
<td>11.6</td>
<td>9.2</td>
<td>19.8</td>
<td>22.8</td>
<td>3.7</td>
<td>5.5</td>
<td>6.5</td>
<td>6.0</td>
</tr>
<tr>
<td>LD5</td>
<td>13.6</td>
<td>7.5</td>
<td>14.1</td>
<td>20.4</td>
<td>18.5</td>
<td>5.1</td>
<td>10.7</td>
<td>8.3</td>
<td>1.7</td>
</tr>
<tr>
<td>LD6</td>
<td>11.8</td>
<td>10.5</td>
<td>10.8</td>
<td>22.8</td>
<td>20.3</td>
<td>4.1</td>
<td>7.8</td>
<td>9.0</td>
<td>3.0</td>
</tr>
<tr>
<td>LD7</td>
<td>16.0</td>
<td>15.0</td>
<td>10.6</td>
<td>17.1</td>
<td>20.7</td>
<td>4.5</td>
<td>7.8</td>
<td>7.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Mean</td>
<td>14.3</td>
<td>10.9</td>
<td>10.9</td>
<td>20.0</td>
<td>20.1</td>
<td>4.4</td>
<td>7.8</td>
<td>7.9</td>
<td>3.7</td>
</tr>
<tr>
<td>STD</td>
<td>2.1</td>
<td>2.8</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>1.5</td>
<td>2.4</td>
<td>0.9</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Fatty acid abbreviations are P, 16:0-palmitic acid; O, 18:1 oleic acid; L, 18:2-linoleic acid.

*TAG acyl chains are *sn* -nonspecific

*Standard deviation
Figure 1-Horn et al.

a. Nanopositioner

b. Nanospray Emitter

Pressure Injector
Electronics
Lipid Droplets
Figure 3-Horn et al.
Figure 4-Horn et al.
Figure 5-Horn et al.

(a) Image of a micrograph.

(b) Mass spectrometry traces showing relative abundance of TAGs at different m/z values.

(c) Bar graph showing TAG content (mol %) for Coker 312 and Bnfad2, with error bars indicating standard deviation. Acyl composition includes PPL, PPO, PLL, PLO, POO, LLL, LLO, LOO, and OOO.
Figure 7-Horn et al.

a) Neutral Loss of Malvalic/Linoleic acid (297.5 m/z)

b) Neutral Loss of Sterculic Acid (311.5 m/z)

c) Neutral Loss of Dihydrosterculic Acid (313.5 m/z)
Figure 8-
Horn et al.
Visualization of lipid droplet composition by direct organelle mass spectrometry
Patrick J. Horn, Nicole R. Ledbetter, Christopher N. James, William D. Hoffman, Charlene
R. Case, Guido F. Verbeck and Kent D. Chapman

J. Biol. Chem. published online November 30, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M110.186353

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/11/30/M110.186353.DC1