Numerous reports have shown that mitochondrial dysfunctions play a major role in apoptosis of *Leishmania* parasites but the endoplasmic reticulum (ER) stress induced apoptosis in *Leishmania* remains largely unknown. In this study we investigate ER stress induced apoptotic pathway in *L. major* using tunicamycin (TM) as an ER stress inducer. ER stress activates the expression of ER-localized chaperone protein BIP/GRP78 (binding protein/identical to the 78 kDa glucose regulated protein) with concomitant generation of intracellular reactive oxygen species (ROS). Upon exposure to ER stress, the elevation of cytosolic Ca\(^{2+}\) level is observed due to release of Ca\(^{2+}\) from internal stores. Increase in cytosolic Ca\(^{2+}\) causes mitochondrial membrane potential depolarization and ATP loss as ablation of Ca\(^{2+}\) by blocking voltage-gated cation channels with verapamil preserves mitochondrial membrane potential and cellular ATP content. Furthermore ER stress induced ROS dependent release of cytochrome c (Cyt C) and endonuclease G (Endo G) from mitochondria to cytosol and subsequent translocation of Endo G to nucleus is observed. Inhibition of caspase like proteases with caspase inhibitor Z-VAD-FMK or metacaspase inhibitor antipain does not prevent nuclear DNA fragmentation and phosphatidylserine exposure. Conversely significant protection in TM induced DNA degradation and phosphatidylserine exposure was achieved by either pretreatment of antioxidants (N-acetyl-L-cysteine, GSH and L-cysteine), chemical chaperone (4-phenyl butyric acid) or addition of Ca\(^{2+}\) chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethyl ester). Taken together these data strongly demonstrate that ER stress induced apoptosis in *L. major* is dependent on ROS and Ca\(^{2+}\) induced mitochondrial toxicity but independent of caspase like proteases.

Limited programmed cell death (PCD) in *Leishmania* prior to infection play crucial role in disease establishment (1-3). *Leishmania* undergo apoptotic cell death upon treatment with antimony, camptothecin, H\(_2\)O\(_2\), or antimicrobial peptides (4-7). Cytosolic calcium mediated mitochondrial toxicity, activation of caspase-3/7-like protease and release of mitochondrial apoptotic factors have been implicated in these processes. Many reports have been established that *Leishmania* can undergo apoptosis in both caspase-dependent and caspase-independent pathways (8-10) during mitochondrial oxidative stress but still nothing is known regarding endoplasmic reticulum (ER) stress induced apoptosis in *Leishmania*.

The ER is a multifunctional organelle in cells where the important steps in the folding and modification of proteins as well as the selection for transport to other compartments occur (11,12). The ER also plays important role in calcium (Ca\(^{2+}\)) signaling regulation, vesicle trafficking, drug metabolism, and lipid biogenesis (13,14). Again this organelle can initiate apoptosis, when it encounters the
accumulation of unfolded proteins or the inhibition of the ER-Golgi transport (15). Three ER-resident transmembrane proteins, inositol requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and the basic leucine-zipper transcription factor 6 (ATF-6) have been identified as the proximal sensors of ER stress. Several groups of workers have established that the ER responds to stress through decreasing protein translation with the activation of PERK signaling, up-regulation of ER-resident chaperone proteins through ATF-6 and the activation of ER-specific protein degrading apparatus (ERAD) by IRE1 signaling proteins to minimize the accumulation of unfolded proteins, which is collectively known as the unfolded protein response (UPR) (16). The activation of the UPR causes the up-regulation of the genes that encode ER chaperone proteins such as Bip/GRP78, which increases the protein folding activity and prevents protein aggregation (17). However, it is reported that the accumulation of misfolded proteins within the lumen of the ER can lead to prolonged UPR activation, which in turn causes oxidative stress, resulting eventually in cell death (18,19).

Tunicamycin (TM), a naturally occurring antibiotic, can induce ER stress by inhibiting the first step in the biosynthesis of N-linked oligosaccharides within cells (20). Many reports suggest that TM can induce apoptosis in different cell lines (21,22). It has been previously shown that TM inhibits the growth and infectivity of *L. mexicana amazonensis* (23), *L. braziliensis* (24) and *L. donovani* (25). However the potential roles of TM in ER stress and UPR mediated execution of apoptosis in *Leishmania* have not been explored to date. The absence of genes like caspasases, homologues of the mammalian Bcl-2 protein family and the ER stress induced apoptotic protein components indicates that the *Leishmania* programmed cell death pathway differs from that of typical mammalian apoptosis, making it an interesting subject of investigation.

In the present work, we have established the mechanism of ER stress - induced apoptotic cell death in *Leishmania*. We have shown that the TM induced ER stress results in dramatic increment in both ROS and cytosolic Ca2+ concentration in *Leishmania*, which is responsible for alterations in the mitochondrial membrane function and finally leads to cell death. This phenomenon is abrogated by blockade of calcium release as well as antioxidant pretreatment. Although blockade of caspase proteases influence slightly in ameliorating DNA degradation yet it does not prevent cell death suggesting that TM induced apoptosis is caspase-independent process. Taken together, our results unlock the mechanistic pathway of ER stress induced apoptosis in *Leishmania* cells. These data also provide a framework to understand the critical events in ER stress-mediated apoptosis and suggest that *Leishmania* programmed cell death pathway differs from that of typical mammalian apoptosis.

Experimental Procedures

Reagents-Mitoprobe™ JC-1 assay kit for flowcytometry, Fluo 4-AM, Pluronic F127, MitoSOX™ Red, BAPTA-AM, calcium ionophore A23187, and fetal bovine serum were purchased from Molecular Probes (Eugene, OR). TM, 4-phenyl butyric acid (PBA), H2DCFDA, antipain, verapamil, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were procured from Sigma (St. Louis MO). Caspase-12 assay kit and caspase-12 inhibitor Z-ATAD-FMK were obtained from Biovision. Caspase-3/7 inhibitor Z-VAD-FMK and Terminal deoxynucleotidyltransferase enzyme (TdT)- mediated dUTP nick-end labeling (TUNEL) Assay kit were procured from Clontech, Mountain view, US. The fluorogenic substrate Boc-GRR-AMC (t-butyloxy carbonyl-Gly-Arg-Arg-7-amido-4-methylcoumarin) was purchased from Bachem (Bubendorf, Switzerland). All other chemicals unless specified were obtained...
from sigma or sources mentioned previously (26-28).

Parasite culture and treatment

Promastigote form of *L. major* (SASKH) was cultured in M199 media supplemented with 10% heat inactivated fetal bovine serum as described previously (26-28). TM was dissolved in anhydrous dimethyl sulfoxide (DMSO) at 10 mg/ml. Exponentially growing promastigotes (5 x 10^6 cells/ml) in the complete medium were treated with 20 µg/ml TM to induce apoptosis. Control cells were treated with 0.2% DMSO in each experiment. Voltage-gated channel blocker verapamil was added at 10 µM concentration 1-hour prior the addition of TM to the cells. Z-VAD-FMK was used at 50 µM final concentration. Final concentration of NAC, GSH, L-cysteine, PBA, and BAPTA-AM were 20 mM, 0.5 mM, 20 mM, 2.0 mM and 100 µM respectively.

Parasite survival assay

Viability of *L. major* during ER stress was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, Sigma) as described previously (27). Exponentially growing promastigotes (2 x 10^6) in M199 media were exposed to different concentration of TM for 2.0 to 16.0 h. After treatment cells were washed with ice cold 1X PBS and incubated in fresh M199 media with 10% heat inactivated FBS and 0.5 mg/ml MTT for 3 h. After 3 h, cells were pelleted by centrifugation (1200 g for 5.0 min). After washing twice with 1X PBS, 100 µl of 0.04 N HCl in isopropanol was added. The absorbance of these solutions was measured on a microplate reader at 570 nm. The percentage of viability was calculated from OD readings. All experiments were performed in triplicate. Viability assay showed that 95% of cellular death was taken place in *L. major* promastigotes by treatment of 16 hours with 20 µg/ml of TM.

Detection of ROS

To detect endogenous ROS production, control or TM treated *L. major* promastigotes (1 X 10^7 cells/ml) were incubated with 10 µM peroxide sensitive fluorescent probe 2’, 7’-dichlorodihydrofluorescein diacetate acetyl ester (H2DCFDA) for 30 minute at 26°C in the dark with mild shaking. In presence of intracellular H_2O_2, non fluorescent membrane permeable H2DCFDA converted to impermeable fluorogenic DCF. ROS production was thus monitored by measuring DCF emission at 530 nm with excitation at 488 nm for 1 hour using a spectrofluorimeter. Generation of mitochondrial ROS was monitored by flowcytometry with mitochondria specific ROS detecting probe MitoSOX™ Red as described previously (26).

Ca^{2+} analysis

Intracellular free Ca^{2+} concentration were measured using Ca^{2+} specific fluorescent probe Fluo-4/AM (Molecular Probes, Eugene, OR, USA) as described previously with minor modifications (27). 1X10^7cells/ml parasites were loaded with 6.0 µM Fluo-4/AM for 60 min at room temperature in presence of 5µM pluronic acid F127. After incubation, cells were harvested and washed twice with fresh serum free medium and analyzed with a fluorescence spectrophotometer. Time dependent emission kinetics at 518 nm (excitation at 488 nm) was performed to detect the time dependent cytosolic release of intracellular stored Ca^{2+} immediately after the addition of TM. Quantification of free cytosolic Ca^{2+} was calculated using the formula

\[
[Ca^{2+}]_c = K_d \frac{(F - F_{MIN})}{(F_{MAX} - F)}
\]

where \(K_d = 345\) nM, \(F\) = fluorescence intensity of the cells, \(F_{MIN} = minimum\) fluorescence of the cells obtained by treating cells with 10 µM calcium ionophore (A2308) in presence of 3 mM EGTA and \(F_{MAX} = maximum\) fluorescence of cells achieved in presence of calcium ionophore and 10 mM CaCl_2. Measurement of intracellular Ca^{2+} was also carried out in presence of Ca^{2+} channel inhibitors. Parasites were incubated with specific voltage-gated channel blocker verapamil (10 µM) for 1 hour before addition of TM to the cells.
Mitochondrial membrane potential (Δψ_m) measurement- Mitochondrial membrane potential (Δψ_m) was assayed by flow cytometry with 5,5',6,6',-Tetrachloro-1,1',3,3'-tetraethylbenzimidazole carbocyanide iodide (JC-1) as a probe. JC-1 is a cationic and lipophilic vital dye that concentrates to mitochondria in a potential-dependent manner. Measurements were performed according to manufacturer’s instruction. Briefly, after treatment, cells were washed twice and resuspended in 1 ml PBS at 1 X 10^6 cells/ml. JC-1 probe was added to 6 µM final concentration and incubated for 20 min at 26ºC. For positive control, 50 µM of mitochondrial uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was added to non-treated control cells 15 min prior to addition of JC-1. Analysis was performed on Facs Canto flowcytometer (Beckton Dickinson) equipped with 488-nm excitation and 530 / 610-nm emission filters for green (monomeric form) and red fluorescence (J-aggregates formation) respectively after appropriate fluorescence compensation. Data were analyzed with FACSDiva software.

Measurement of ATP- Cellular ATP concentration was measured by bioluminescence method using an ATP determination kit (Molecular Probes). Briefly, control and TM treated cells (1 X 10^7) were mixed with reaction buffer containing 1mM DTT, 0.5 mM luciferin, and 12.5 µg/ml luciferase. Luminescence intensity was measured in a luminometer (Promega). ATP concentrations were calculated from ATP standard curve and cellular ATP levels were expressed as nmol/10^6 cells.

Sub-cellular fractionation and Western Blot analysis- Subcellular fractionation was performed to separate mitochondria, nuclei and cytosol by mitochondria isolation kit (Qiagen). The purity of each fraction was checked by the Western blot analysis of the organelle specific marker antibody. Western blot analysis was performed as described previously (26). The primary antibodies used were as follows: rabbit anti (Trypanosoma brucei) cytochrome c antibody (1:500), rabbit anti (Leishmania donovani) Endo G antibody (1:500), mouse anti (Leishmania tropica) mitochondrial RNA import complex I antibody (1:100), rabbit anti (Leishmania donovani) adenosine kinase (1:50) and rabbit anti (goat) histone H3B antibody (1:1000). The HRP-conjugated secondary antibodies used were anti rabbit (1:10000), anti goat (1:6000) and anti mouse (1:6000). In each experiment 50 µg of total protein was loaded as mentioned in each case. Precise quantitation was done by densitometric analysis to calculate the expression of the protein of interest with that of histone H3B, mitochondrial RNA import complex I or adenosine kinase, which was immunodetected in the same sample. Densitometric analysis was performed by importing images to a personal computer using Total Lab TL 100 software (Nonlinear Dynamics Ltd.).

Apoptosis assessment by PI and Annexin-V staining- Phosphatidyl serine (PS) exposure was assessed by Vybrant apoptosis assay kit # 3 (Molecular Probes). After the incubation with TM, cells were harvested at 4°C by centrifugation for 5 min at 1200 g and washed twice with cold 1X PBS. Cells (1x10^6/ml) were then resuspended in 100 µl 1X annexin binding buffer for 15 minutes at room temperature. 5 µl of FITC conjugated annexin V and 1.0 µg/ml propidium iodide (PI) were further added to the mixture and incubated for another 20 min. After staining, 400 µl of 1X buffer was added to the mixture and samples were stored on ice until data acquisition by flow cytometry. Measurements were completed within 1 h. For microscopy, FITC conjugated annexin V and PI labeled equivalent cells were adhered to poly-L-lysine coated slide and visualized with Leica TCS-SP confocal microscope. Cells with annexin V externalization accumulate more FITC dye with emission at 530 nm (green fluorescence).
Caspase-12 like protease activity assay:
Caspase-12 like protease activity was measured fluorimetrically using caspase-12 specific substrate, ATAD-AFC (Caspase 12 assay kit, Biovision research products), as per manufacturer’s instructions. Briefly after treatment of TM, cells were lysed in lysis buffer and 300 µg of total protein from each sample was used for the assay. The assay was based on detection of cleavage of substrate ATAD-AFC to free AFC, which was measured by micro plate reader (emission 400 nm and excitation 505 nm). Caspase-12 specific inhibitor Z-ATAD-FMK (10 µl) was added in control reactions for 30 min before the addition of ER stress inducers.

Detection of caspase 3/7 and metacaspase-like protease activity:
The detection of caspase activity by FLICA (a caspase 3- and 7-specific fluorogenic inhibitor, FAM-DEVD-FMK) was based on affinity labeling of the reactive-center cysteine residue of activated caspsases by the FMK moiety of FLICA via the caspase-specific recognition sequence aspartic acid-glutamic acid-valine-aspartic acid (DEVD) as described previously (27). Caspase inhibitor Z-VAD-FMK was added in control reactions at 50 µM for 30 min prior to the addition of ER stress inducer. Metacaspase like protease activity was measured fluorimetrically using Boc-GRR-AMC substrate as described by Lee et al with minor modifications (29,30). Briefly, promastigotes cultures were pelleted by centrifugation and resuspended in fresh culture medium containing 20 µg/ml TM, and sample was incubated for 16 hrs at 26°C. 1.0 µM antipain (metacaspase inhibitor) was added in control reactions for 30 min before the addition of ER stress inducer. Treated or untreated parasites were lysed (10^8 cells/ml) in lysis buffer (50 mM Tris-HCl, pH 7.5, 1% [vol/vol] Triton X-100, 10% [wt/vol] sucrose, 150 mM NaCl) for 30 min on ice, and the insoluble material was eliminated by centrifugation at 15,000 X g for 20 min at 4°C. 150 µl supernatant was incubated with 75 µM fluorogenic substrate (Boc-GRR-AMC), 5 mM DTT and 10 mM CaCl_2 for 2 h at 37°C under gentle agitation and transferred to a microwell plate. Sample was analyzed immediately with a fluorescence spectrophotometer with excitation at 355nm and emission at 460nm. Protease activity was expressed in relative fluorescence units.

TUNEL staining:
In situ DNA fragmentation was analyzed by the terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick end labeling (TUNEL Assay) kit (Clontech, Mountain view, US) as described previously (27). Involvement of caspases in DNA degradation was assessed by the addition of caspase inhibitors. Quantification and degree of nicked DNA in a population of parasites were further detected by flowcytometry. Analysis was performed on flow cytometer equipped with 488-nm excitation and 530/590-nm emission filters for green (FITC labeled dUTP) and red (PI) fluorescence, respectively, after appropriate fluorescence compensation. DMSO (0.2%) treated samples were used negative control. For microscopy, TUNEL stained cells were adhered to poly-L-lysine coated slide and visualized with Leica TCS-SP confocal microscope. TUNEL positive cells accumulate more FITC dye with emission at 530 nm (green fluorescence).

Statistical analysis:
All results were expressed as the mean ± SD from at least three independent experiments. Statistical analysis for parametric data was calculated by Student's t test or analysis of variance (ANOVA) wherever applicable using Origin 7.0 software (Microcal software, Inc. Northampton, MA, USA). The ANOVA was followed by post hoc analysis (multiple comparison t test) for the evaluation of the difference between individual groups. A p value of less than 0.05 was considered statistically significant.

Results
TM induces programmed cell death-like features through ER stress in L. major - To analyze the role of ER stressor in parasite viability, we performed viability test by MTT assay. TM treatment showed dose and time dependent loss of parasite viability and 95% cell death was detected on treatment with 20 µg/ml TM for 16 hours (Fig. 1A). To assess whether the loss of viability was through apoptotic cell death, we examined DNA fragmentation and phosphatidylserine (PS) exposure, two established hallmarks of apoptosis. Flowcytometric analysis revealed extensive (52%) PS externalization in TM treated cells, while exponentially growing control promastigotes did not have any PS positive cell (Fig. 1B). Similarly TUNEL assay by flowcytometry indicated about 41% DNA fragmentation (Fig. 1C) in comparison to DMSO treated control cells. The DNA fragmentation and phosphatidylserine exposure data were further confirmed by visualizing cells through confocal microscopy (Fig. S1).

To investigate the possibility that TM induces ER stress and unfolded protein response (UPR) mediated cell death in L. major, we cultured L. major cells in presence of 20 µg/ml TM upto 16 hours and analyzed the expression of ER resident chaperone protein Bip/GRP78, as a marker of UPR and ER stress (31). The analysis of western blot data showed TM induced marked elevation of Bip/GRP78 expression in time dependent manner with a significant rise, between 2 to 8 hours of treatment (Fig. 2A). Densitometric analysis of the western blot data showed 4-folds increase in Bip/GRP78 protein expression with respect to control cells (Fig. 2B). These results confirmed that TM induced ER-stress and consequently terminal UPR gene expression in L. major cells.

TM induces ROS generation and cytosolic Ca2+ release in L. major - Prolonged ER stress and UPR contribute to cell death indicating the existence of downstream apoptosis inducing molecules upon TM treatment. Recent studies have suggested ER stress-associated accumulation of endogenous ROS and their involvement in apoptotic process (19,32). The association of ER stress and ROS generation was examined with fluorimetric assay of DCFDA upto 1 hour. TM treatment showed rapid accumulation of intracellular fluorogenic DCF indicating generation of ROS. The ROS in TM treated cells reached a level of 2 folds higher within 1 hours (Fig. 3A) in comparison to DMSO treated control cells. Control cells also showed time dependent increase in fluorescence intensity probably due to generation of ROS by physiological processes (Fig. 3A). To study the involvement of mitochondria in superoxide generation, flowcytometric analysis was performed in presence of Mitosox™. Basically, MitoSOX™ is a novel fluorogenic dye for highly selective detection of superoxide in the mitochondria of live cells. The flowcytometric data revealed TM-dependent generation of mitochondrial superoxide in Leishmania cells (Fig. 3B). To check whether antioxidants eliminate TM induced ROS generation, we used a well established antioxidant N-acetyl-L-cysteine (NAC) known for its multiple antioxidant properties. Usually NAC is a thiol containing compound and a precursor of both L-cysteine and reduced glutathione (GSH). NAC maintains reduced intracellular environment by increasing intracellular GSH levels or by serving as a scavenger of H2O2, hydroxyl radical and superoxide. On pretreatment of cells with 20 mM of NAC, the generation of both H2O2 and superoxide was reduced in TM treated cells (Fig. 3).

UPR and generation of ROS are associated with the perturbation of cellular Ca2+ homeostasis (33). Previous reports on apoptosis in Leishmania have shown the release of Ca2+ from intracellular stores. As TM treatment induces UPR and ROS generation in L. major cells, we wanted to determine whether TM-mediated apoptosis was associated with significant amount of intracellular calcium release. Presence of
free cytosolic calcium was monitored by Ca$^{2+}$ specific fluorophore Fluo 4-AM whose fluorescence emission increased at 518 nm upon calcium binding. Time dependent emission kinetics indicates gradual Ca$^{2+}$ accumulation upon TM treatment (Fig. 4A). Quantitative and emission intensity analysis showed 3 folds higher level of cytosolic Ca$^{2+}$ accumulation in TM treated cells in comparison to control cells (Fig. 4A). The involvement of voltage-gated channels and ROS in the delocalization of Ca$^{2+}$ was verified with cells pretreated with Ca$^{2+}$ channel inhibitor verapamil, and antioxidant NAC. In each case cells showed significantly lesser amount of cytosolic release of calcium (Fig. 4A) confirming their role in ER stress induced Ca$^{2+}$ delocalization in L. major. The release of Ca$^{2+}$ was further visualized by confocal microscopy, where higher green fluorescence was seen after TM treatment (Fig. 4B).

Generation of ROS and cytosolic Ca$^{2+}$ imbalance induce mitochondrial membrane depolarization and decline in ATP production - Intracellular ROS buildup and elevation of cytosolic Ca$^{2+}$ are attributed to mitochondrial dysfunction, which is coupled with a collapse in mitochondrial membrane potential ($\Delta\Psi_m$) (34). To examine whether TM induced ROS overload and elevation of cytosolic Ca$^{2+}$ influence $\Delta\Psi_m$ in L. major we measured the $\Delta\Psi_m$ by flowcytometry assay using the potentiometric fluorescent dye JC-1. A shift in the fluorescence emission from green (535 nm) to red (595 nm) indicated accumulation of JC-1 in the mitochondria, which was dependent solely on the membrane potential of the mitochondria. Consequently, mitochondrial membrane depolarization was usually accompanied by a decrease in the fluorescence intensity ratio (red/green). We observed that incubation with the mitochondrial uncoupler CCCP reduced the JC-1 fluorescence intensity ratio, indicating that the JC-1 response in Leishmania cells was sensitive to changes in membrane potential (Fig. 5A). Treatment with tunicamycin resulted in gradual depolarization (Fig. 5B), which was indicated by decreasing the fluorescence intensity ratio (red/green). Pretreatment of cells with antioxidant NAC and depletion of free cytosolic Ca$^{2+}$ by blocking intracellular voltage gated channel with verapamil showed protection in $\Delta\Psi_m$ decline, indicating the potential role of ROS and Ca$^{2+}$ in TM induced mitochondrial membrane depolarization.

The ATP level is an important factor, as progression to necrosis or apoptosis depends on the availability of ATP (35). We measured the ATP content in TM treated parasites to determine if the breakdown in mitochondrial function correlated with the decline in the production of ATP. TM treatment caused gradual fall in the ATP levels. Total cellular ATP was approximately 4-folds lower in TM treated parasites than DMSO treated parasites (Fig. 5C). Furthermore, the preservation of total cellular ATP content was observed in NAC or verapamil pretreated cells (Fig. 5C).

TM promotes Cyt C and Endo G release from mitochondria and subsequent translocation of Endo G to nucleus - Oxidative stress and imbalance in cytosolic and mitochondrial Ca$^{2+}$ overload promote release of mitochondrial resident apoptotic factors like Cyt C, AIF and Endo G, which play crucial roles in downstream apoptotic processes (36). Cytochrome c acts as a component of apoptosome complex that promote activation of nascent caspase after its release in cytosol (37). Endo G is a mitochondrial nuclease that has been suggested to play a role in mitochondrial DNA replication (38) and its role in nuclear DNA fragmentation during apoptosis has been evidenced from the studies on C. elegans (39,40). The release of Endo G from mitochondria and its translocation to nuclei has been documented in different cell lines during apoptotic stimuli (41-43). In Leishmania, both Cyt C and Endo G have been reported to play important roles in apoptosis (6). The mitochondrial release of
Endo G and its involvement in DNA fragmentation has also been shown in kinetoplastid parasites during oxidative stress induced apoptosis (8,44). Subcellular fractionation and Western-blot analysis were performed to check the possibility of TM-induced release of cytochrome c and Endo G from mitochondria. Immunoblot data revealed time dependent cytosolic accumulation of both Cyt C and Endo G from mitochondria (Fig. 6). Significant amount of Endo G was detected in nuclear fractions after TM treatment (Fig. 6). However, critical analysis of the data revealed that both Cyt C and Endo G translocation from mitochondria was prevented by NAC pretreatment, suggesting TM induced Cyt C and Endo G release from mitochondria was due to elevated level of oxidative stress. As control markers for mitochondria, cytoplasm and nucleus we used the mitochondrial RNA import complex-I, cytosolic adenosine kinase, and nuclear histone H3B, respectively.

Measurement of caspase-like protease activity- Caspases are cysteine proteases, which play an important role in ER stress induced apoptosis (45-47). To check whether ER stress activates caspase like protease in *L. major*, we measured caspase-12, caspase-3/7 and metacaspase like protease activity after treatment of TM for 16 hrs. Caspase-3/7 like activity was measured by flowcytometry using fluorogenic caspase-3/7 inhibitor FAM-DEVD-FMK. Caspase-12 like protease activity was measured based on detection of cleavage of substrate ATAD-AFC by fluorescence plate reader as described in ‘Experimental Procedure’ section. For inhibition study Z-VAD-FMK and Z-ATAD-FMK were used as specific inhibitors of caspase-3/7 and caspase-12 respectively. Table-I data showed that only basal level of caspase-12 like activity was detected, which was not increased significantly throughout the study period. On the other hand TM treated cells showed 1.5-fold higher caspase 3/7 like activity compared to control cells. This increased activity was inhibited by caspase inhibitor Z-VAD-FMK. Recently a group of workers has reported about metacaspase genes in *Leishmania*; these are efficiently able to cleave trypsin substrates and are unable to cleave caspase-specific substrates. Consistently, that activity is insensitive to caspase inhibitors and is efficiently inhibited by trypsin inhibitors, such as antipain (29). To check whether control cells show any difference in metacaspase-like activity in the presence of TM, we used the *Leishmania* metacaspase specific fluorogenic substrate, Boc-GRR-AMC. The metacaspase-like activity upon TM treatment in comparison to basal level as obtained in DMSO-treated control cells was only 1.6 fold higher (Table I) and that changing activity of TM treated cells was inhibited by antipain. Thus these results indicated that the TM was able to induce ~1.5 folds in both caspase-3/7 and metacaspase like activity in *Leishmania*.

TM-mediated apoptosis of *L. major* is caspase independent- Release of mitochondrial apoptotic factors suggests their possible role in apoptotic pathway. Growing body of evidences indicated that *Leishmania*, like multicellular organisms undergo apoptosis through both caspase dependent and independent pathway (8-10). Flowcytometric analysis of phosphatidylserine exposure in presence of caspase inhibitor Z-VAD-FMK or metacaspase inhibitor antipain showed their inability to prevent apoptosis. Rather pretreatment of cells with NAC, GSH and L-cysteine or intracellular Ca$^{2+}$ chelator BAPTA-AM showed efficient apoptosis inhibition (Fig. 7A). These results indicated that TM induced phosphatidylserine exposure was caspase independent phenomenon though it was clear that oxidative stress and elevated level of cytosolic Ca$^{2+}$ played a crucial role in ER stress induced phosphatidylserine exposure of *L. major*. Similarly DNA fragmentation assay by TUNEL assay showed 10% protection by Z-VAD-FMK or antipain but
about 80% protection was found in cells pretreated with NAC, GSH, L-cysteine or BAPTA-AM (Fig. 7B).

Chemical chaperone, such as 4-phenyl butyric acid (PBA), is a low molecular weight compounds known to stabilize protein conformation, improve ER folding capacity, and facilitate the trafficking of mutant proteins (48,49). To investigate the action of chemical chaperone, we first tested whether PBA protected against TM induced ER stress as well as DNA fragmentation and PS externalization in *Leishmania*. Pretreatment of *Leishmania* cells with 2.0 mM PBA suppressed TM-induced DNA fragmentation and PS externalization (Fig. 7) confirming the involvement of ER stress in TM treated cell death.

DISCUSSION

In this paper we have addressed the molecular mechanisms of prolonged ER stress mediated apoptosis in *Leishmania* cells by using antibiotic TM, which prevents the naturally occurring N-glycosylation of protein in ER. Our findings on Bip expression indicate that TM treatment exhibits UPR activation in *Leishmania*. We show for the first time that TM induced apoptosis in *Leishmania* is due to the rapid accumulation of ROS and intracellular release of Ca\(^{2+}\) following ER stress, and it is abolished by the use of antioxidants, such as NAC and Ca\(^{2+}\) chelators, like BAPTA-AM.

In multicellular organism, two mechanisms apparently operate independent of one another in ER stress induced apoptosis (45-47). One is a mitochondrial dependent apoptotic pathway and second is a caspase-12 dependent apoptotic pathway (47). The negative assays for caspase-12 like protein (Table I) and ineffectiveness of Z-VAD-FMK to prevent DNA degradation suggest that ER stress induced apoptosis in *Leishmania* occurs through a caspase-12 independent apoptotic pathway. Therefore, it must be the other option that is responsible for in ER stress induced apoptosis in *Leishmania*. Several evidences suggest that ER stress agents cause loss of mitochondrial transmembrane potential and promote mitochondrial release of Cyt. C (45,50), leading to cellular apoptosis via caspase dependent or caspase independent pathways. In general, the generation of ROS through oxidative protein folding (19) and perturbation of intracellular Ca\(^{2+}\) are found during ER stress mediated apoptosis (33). Our experiments using antioxidants and Ca\(^{2+}\) chelator further indicate that both ROS generation and perturbations of intracellular Ca\(^{2+}\) level act upstream of mitochondrial depolarization. Eventually, we observed in *Leishmania* cells that NAC substantially inhibited ROS production and simultaneously prevents both the elevation of Ca\(^{2+}\) level and disruption of the mitochondrial depolarization (ΔΨ\(_{m}\)) after treatment with TM. Thus ROS production in TM induced *Leishmania* cells acts upstream of the Ca\(^{2+}\) release from internal store to cytosol. TM induced mitochondrial depolarization in *Leishmania* is also protected by chelation of free Ca\(^{2+}\). Therefore, intracellular Ca\(^{2+}\) level acts upstream of mitochondrial depolarization.

Although both caspase-dependent and caspase-independent pathways of apoptosis have been studied in *Leishmania*, the main question centers round the mechanism of apoptosis triggered by ER stress in *Leishmania*. Depolarization of mitochondria causes the release of proapoptotic molecules such as Cyt C, Endo G, and AIF (51). From Our results on the basis of subcellular fractionation and Western-blot, the nuclear localization of Endo G is detected in TM-treated apoptotic *Leishmania* cells. Several groups of worker have been established that Endo G is an apoptotic DNase when released from mitochondria to nucleus (40). Pre-incubation with Z-VAD-FMK (caspase inhibitor) or antipain (*Leishmania* metacaspase inhibitor) can not inhibit DNA fragmentation and PS externalization in TM-treated apoptotic *Leishmania* cells, although caspase or...
metacaspase like activity is ~1.5 folds higher after 16 hrs treatment of TM. Thus these results strongly suggest that caspase-independent cell death in TM treated Leishmania is considered to be mediated by the nuclear translocation of mitochondrial DNA repair enzyme (Endo G).

Thus, apoptosis in ER stress induced Leishmania is mediated by the mitochondrial apoptotic pathway involving ROS production, cytosolic Ca\(^{2+}\) imbalance, mitochondrial depolarization, and ultimately, release of Endo G from mitochondrial to nucleus via cytoplasm. Based on the sequence of our results, Figure 8 represents a proposed pathway in TM induced Leishmania cell death. It is confirmed from our results that the step at the very beginning of ER stress induced apoptosis in Leishmania involves the generation of ROS. How ER stress produces ROS in Leishmania remains unclear. Recently a group of workers has proposed that persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei (52). In multicellular organisms, ER oxidoreductin (Ero1p) and protein disulfide isomerase (Pdi1p) act in concert, during the formation of disulfide bonds in the ER, to transfer electrons from the thiol groups of substrate proteins to molecular oxygen with the generation of ROS as a byproduct (19). Although the putative protein sequences of Ero1p (accession number-LmjF16.1530) and Pdi1p (accession number-LmjF26.0660) are present in Leishmania genome, it is completely unknown whether those genes have any role in ER stress induced ROS production. The knockout result of those two genes will be helpful in elucidating the exact molecular mechanisms of ER stress induced ROS generation in Leishmania in near future.

REFERENCES

FOOTNOTES
*We thank Alok. K. Datta for L. donovani adenosine kinase antibody, Hemanta. K. Majumder for L. donovani endonuclease G antibody, Samit Adhya for mitochondrial RNA import complex I antibody, James D. Bangs (University of Wisconsin, Madison) for T. brucei Bip antibody and Andre Schneider (University of Berne, Switzerland) for T. brucei cytochrome e antibody. This work was supported by Council of Scientific and Industrial Research (CSIR) project NWP 0038 and CSIR fellowships (to S.D., R.K.Y., and S.P.).

The abbreviations used are: TM, Tunicamycin; BiP, binding protein; GRP78, 78 kDa glucose regulated protein; PBA, 4-phenyl butyric acid; ΔΨm, mitochondrial membrane potential; H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester; Endo G, endonuclease G; NAC, N-acetyl-L-cysteine; PI, propidium iodide; ROS, reactive oxygen species; Z-VAD-FMK, Z-ATAD-FMK, Z-Ala-Thr-Ala-Asp(OMe)-fluoromethylketone; Boc-GRR-AMC, t-butyloxycarbonyl-Gly-Arg-Arg-7-amido-4-methylcoumarin; FLICA, fluorochrome inhibitor of Caspases; JC-1, 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazole carbocyanide iodide; fluo-4/AM, fluo-4 acetoxymethyl ester; FITC, fluorescein isothiocyanate; FBS, fetal bovine serum; TdT, terminal deoxynucleotidyltransferase enzyme; TUNEL, terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labeling; [Ca2+]c, cytosolic Ca2+; BAPTA-AM, 1,2-bis(2-aminoxyloxy)ethane-N,N,N,N-tetraacetic acid-acetoxyethyl ester.

FIGURE LEGENDS

Fig. 1: TM induces apoptosis in L. major. (A) Percentage of viable cells after treatment of 0.2% DMSO as control or TM treated cells. Promastigotes of L. major were treated with indicated time and parasite viability was detected with MTT assay. Average and SD values were taken from three independent experiments and plotted against time. (B) Flowcytometric analysis of phosphatidyl serine (PS) externalization in control or TM treated cells. (C) TUNEL analysis by flowcytometry.

Fig. 2. TM induces unfolded protein response in L. major. (A) Western blot analysis of lysates prepared from DMSO treated control (lane 1) or TM treated cells (lane 2-5). 30 µg of total protein was resolved by SDS-PAGE and probed with T. brucei anti Bip antibody or α-tubulin antibody as loading control. The numbers on the lanes indicate the hours of treatment. (B) Densitometric analysis of the blot showing upto 4-folds up-regulation of BiP after TM treatment. The asterisks indicate the level of statistical significance (0.05).

Fig. 3. TM induces ROS generation. (A) Time course kinetic analysis of intracellular ROS generation by H2DCFDA for the promastigotes treated with 0.2% DMSO alone, 20µg/ml TM or after pre-incubation with NAC. (B) Flowcytometric analysis of mitochondrial ROS generation by Mitosox™. Data are representative of at least three independent experiments.
Fig. 4. TM induces cytosolic Ca\(^{2+}\) release. (A) Time dependent intracellular Ca\(^{2+}\) release for the promastigotes treated with 0.2% DMSO alone, 20\(\mu\)g/ml TM or after pre-incubation with NAC or verapamil. (B) The increase in Ca\(^{2+}\) level as visualized by confocal microscopy. Data are representative of at least three independent experiments.

Fig. 5. Effect of ER stress on the \(\Delta \Psi_m\) in \textit{L. major}. \textit{L. major} cells (10\(^7\)/ml) were incubated with the potential-sensitive probe JC-1 (6 \(\mu\)M) for 15 min at 25°C to assess \(\Delta \Psi_m\) after treatment with 0.2% DMSO or TM (20\(\mu\)g/ml) and analyzed by flow cytometry with excitation at 488 nm. Emission was detected at 530 nm for monomer and 590 nm for J-aggregate. A drop in \(\Delta \Psi_m\) was identified as a change in JC-1 properties from forming J-aggregates (emission at 590 nm, red color) at high \(\Delta \Psi_m\) to forming J-monomers (emission at 530 nm, green color) at low \(\Delta \Psi_m\). The nearly complete monomer was induced by treating cells with 50 \(\mu\)M CCCP, an uncoupler of mitochondrial respiration, 15 min prior to addition of JC-1. “Blank” in dot plots indicates blank cells (cells without JC-1), “+JC1” indicates 0.2% DMSO treated cells stained with JC-1 as control, “+TM” indicates 8 hr TM-treated JC-1-stained cells, “+NAC” indicates NAC-preincubated and 8 hr TM-treated JC-1-stained cells, “+Verapamil” indicates verapamil preincubated, 8 hr TM-treated JC-1-stained cells, and CCCP-treated JC-1-stained cells are indicated as “+CCCP”. Data are representative of at least three independent experiments. (B) Time-dependent analysis of 590/530 values of DMSO-treated control cells, cells treated with 20 \(\mu\)g/ml TM, cells preincubated with NAC and Ca\(^{2+}\) channel inhibitor verapamil, and cells treated with CCCP. Data are representative of mean ± SD of three independently performed experiments. The asterisks indicate the level of statistical significance (0.05). (C) Time-dependent measurement of intracellular ATP levels in DMSO treated control cells and cells treated with TM or TM treated but preincubated with NAC, verapamil. ATP concentration is expressed as n moles of ATP/10\(^6\) cells. Values were average ± SD of three independent experiments.

Fig. 6. TM induces Cyt C and Endo G release from mitochondria to cytosol and translocation of Endonuclease G from cytosol to nucleus. (A) Western blot analysis of Cyt C and Endo G in mitochondrial fraction of 0.2% DMSO treated control and TM (20\(\mu\)g/ml) treated cells. Lane 1 represents DMSO treated control. Lanes 2-4 indicates cells treated with TM for 2, 4 and 8 hrs, respectively. Lane 5 denotes pretreatment with NAC before treatment with TM for 8 hrs. (B) Western blot analysis of Cyt C and Endo G in cytosolic fraction. (C) Immunoblot analysis of Endo G in nuclear fractions of control (0.2% DMSO treated) and TM treated cells. All the data are representative of at least three independent experiments. The asterisks indicate the level of statistical significance (0.05).

Fig. 7. Analysis of ER stress induced apoptosis in \textit{L. major} in presence of different inhibitors. (A) Flowcytometric analysis of PS exposure in DMSO treated control cells, 16 hours TM treated cells and cells pretreated with NAC, GSH, L-cysteine, BAPTA-AM, PBA (chemical chaperone), antipain and Z-VAD-FMK. Lower right and upper right quadrant of each dot plot represents apoptotic cells. (B) Flowcytometric analysis of DNA fragmentation by TUNEL assay. Lower right and upper right quadrant of each dot plot represents TUNEL positive apoptotic cells. Data representative of three independent experiments.

Fig. 8. Schematic diagram of TM-induced ER-stress in \textit{Leishmania} leading to ‘Caspase-independent’ programmed cell death.
Table I. Measurement of Caspase like activity in control and TM treated *L. major* cells. Increase fluorescence intensity indicates increase Caspase like protease activity. Measurements were described under “Experimental Procedures.” Each value represents the means ± SD for three independent experiments.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Caspase-12 like activity</th>
<th>Caspase 3/7 like activity</th>
<th>Metacaspase like activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18757 ± 1578</td>
<td>18353 ± 1218</td>
<td>162 ± 11</td>
</tr>
<tr>
<td>TM treated</td>
<td>21676 ± 1131</td>
<td>19912 ± 2078</td>
<td>231 ± 17</td>
</tr>
</tbody>
</table>
Fig. 1

A) Graph showing percentage of viable cells over time with different concentrations of TM: 0 µg/ml, 5 µg/ml, 10 µg/ml, 15 µg/ml, and 20 µg/ml.

B) Histogram showing counts of FITC-labeled cells in different conditions: Control, Annexin V, and TM. The results show a count of 52 ± 2% for the TM condition.

C) Histogram depicting counts of FITC-labeled cells in Control, dUTP, and TM conditions. The results indicate a count of 41 ± 2% for the TM condition.
Fig. 2

A

Bip

α-tubulin

kDa

0 2 4 8 16

78

49

B

Intensity

0 2 4 8 16

Treatment Time (hrs)

α-tubulin

Bip

*
Fig. 3.

A

Fluorescence vs. Time (min)

DCF+TM
+DCF
DCF+TM+NAC
-DCF

B

Counts vs. PE-A

Blank, +MS, MS+TM, MS+NAC+TM

5±0.7%, 24±2%, 7±1%
Fig. 4.
Fig. 5.
Fig. 7

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>Blank</td>
<td>Blank</td>
</tr>
<tr>
<td>0.5%</td>
<td>0.2%</td>
</tr>
<tr>
<td>10^5</td>
<td>10^5</td>
</tr>
<tr>
<td>+PI = Annexin V</td>
<td>+PI+dUTP</td>
</tr>
<tr>
<td>2±0.2%</td>
<td>1±0.1%</td>
</tr>
<tr>
<td>10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>+TM</td>
<td>+TM</td>
</tr>
<tr>
<td>12±1%</td>
<td>55±4%</td>
</tr>
<tr>
<td>10^3</td>
<td>10^3</td>
</tr>
<tr>
<td>+TM+NAC</td>
<td>+TM+NAC</td>
</tr>
<tr>
<td>1±0.1%</td>
<td>2±0.4%</td>
</tr>
<tr>
<td>10^2</td>
<td>10^2</td>
</tr>
<tr>
<td>+TM+GSH</td>
<td>+TM+GSH</td>
</tr>
<tr>
<td>0.5±0.1%</td>
<td>1.5±0.1%</td>
</tr>
<tr>
<td>10^1</td>
<td>10^1</td>
</tr>
<tr>
<td>+TM+Cys</td>
<td>+TM+Cys</td>
</tr>
<tr>
<td>0.7±0.2%</td>
<td>4±0.4%</td>
</tr>
<tr>
<td>10^0</td>
<td>10^0</td>
</tr>
<tr>
<td>+TM+BAPTA</td>
<td>+TM+BAPTA</td>
</tr>
<tr>
<td>12±1%</td>
<td>9±1%</td>
</tr>
<tr>
<td>10^1</td>
<td>10^1</td>
</tr>
<tr>
<td>+TM+PBA</td>
<td>+TM+PBA</td>
</tr>
<tr>
<td>8±1%</td>
<td>5±0.3%</td>
</tr>
<tr>
<td>10^2</td>
<td>10^2</td>
</tr>
<tr>
<td>+TM+vAD</td>
<td>+TM+vAD</td>
</tr>
<tr>
<td>18±2%</td>
<td>47±3%</td>
</tr>
<tr>
<td>10^3</td>
<td>10^3</td>
</tr>
<tr>
<td>+TM+antipain</td>
<td>+TM+antipain</td>
</tr>
<tr>
<td>26±1.5%</td>
<td>54±6%</td>
</tr>
</tbody>
</table>

PI

Annexin V-FITC dUTP-FITC
Leishmania promastigotes with TM treatment

Inhibition of the biosynthesis of N-linked oligosaccharides

ER stress

UPR activation (Bip/GRP78↑)

ROS generation

Free Ca$^{2+}$↑

Mitochondrial membrane potential depolarization

Nuclear translocation of Endo G from mitochondria

DNA fragmentation & cell death