Constitutive NF-κB Activation Confers IL6 Independence and Resistance to Dexamethasone and Janus Kinase Inhibitor INCB018424 in Murine Plasmacytoma Cells

Yanqiang Yang¹, Jason S. Groshong¹, Hittu Matta¹,², Ramakrishnan Gopalakrishnan² Han Yi², and Preet M Chaudhary¹,²

From Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213¹ and Jane Ann Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033²

Running Head: NF-κB confers IL6 independence

Address correspondence to: Preet M. Chaudhary, Jane Ann Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033; Email: preet.chaudhary@med.usc.edu; Ph: 323-865-3916; Fax: 323-865-0060

Myeloma cells are dependent on IL6 for their survival and proliferation during the early stages of disease and independence from IL6 is associated with disease progression. The role of NF-κB pathway in the IL6-independent growth of myeloma cells has not been studied. Since human herpesvirus 8-encoded K13 selectively activates the NF-κB pathway, we have used it as a molecular tool to examine the ability of the NF-κB pathway to confer IL6 independence on murine plasmacytomas. We demonstrate that ectopic expression of K13, but not its NF-κB-defective mutant or a structural homolog, protected plasmacytomas against IL6 withdrawal-induced apoptosis and resulted in emergence of IL6-independent clones that could proliferate long-term in vitro in the absence of IL6 and form abdominal plasmacytomas with visceral involvement when injected intraperitoneally into syngeneic mice. These IL6-independent clones were dependent on NF-κB activity for their survival and proliferation but were resistant to dexamethasone and INCB018424.

These IL6-independent clones were dependent on NF-κB activity for their survival and proliferation but were resistant to dexamethasone and INCB018424, a selective Janus Kinase 1/2 inhibitor. Ectopic expression of Human T cell Leukemia Virus 1-encoded Tax protein, which resembles K13 in inducing constitutive NF-κB activation, similarly protected plasmacytoma cells against IL6-withdrawal-induced apoptosis. Although K13 is known to upregulate IL6 gene expression, its protective effect was not due to induction of endogenous IL6 production but instead was associated with sustained expression of several anti-apoptotic members of the Bcl2 family upon IL6 withdrawal. Collectively, these results demonstrate that NF-κB activation can not only promote the emergence of IL6 independence during myeloma progression but can also confer resistance to dexamethasone and INCB018424.

Multiple myeloma is a currently incurable malignancy of terminally differentiated B cells (i.e. plasma cells) that accounts for 10% of all hematologic cancers (1). Myeloma is believed to evolve through a multi-step transformation process that is initiated by genetic translocations between the immunoglobulin enhancers and oncogenes and is then augmented by secondary events that lead to activation of growth and survival pathways (2-3). In addition to genetic alterations, the interaction between myeloma cells and bone marrow stromal cells is believed to up-regulate the expression and secretion of several chemokines and cytokines that stimulate proliferation of myeloma cells and protect them from apoptosis (2).

One of the best characterized myeloma growth factors is the cytokine (IL6)¹ (2,4). IL6 is a pleiotropic cytokine that exerts its biological effects by binding to its receptor, IL6R (5). Upon receptor binding it stimulates multiple signal transduction cascades that include the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), PI3 kinase and MAPK pathways (5). However, signaling pathways that

¹ Abbreviations used are: IL6, interleukin 6; NF-κB, Nuclear Factor KappaB; JAK, Janus Kinase; STAT, signal transducer and activator of transcription; IkB, inhibitor of kappa B; IKK, 1 kappaB kinase; HHV8, Human herpesvirus 8; vFLIP, viral FLICE inhibitory protein; DED, death effector domain; PEL, primary effusion lymphoma.
are involved in IL6-independent growth of myeloma cells have also been the focus of several recent studies (2). For example, it has been shown that oncogenic mutations of Ras and expression of a constitutive active STAT3 mutant can confer IL6-independence on myeloma cells (6-8). Other signaling pathways that have been shown to contribute to the survival and proliferation of myeloma cells include PI3K/Akt, Notch and Wnt pathways (2).

The NF-κB pathway controls the expression of numerous genes involved in the inflammatory and immune responses and in cellular survival and proliferation (9-11). The classical NF-κB complex is a heterodimer of the p65/RelA and p50 subunits and is retained in the cytoplasmic compartment of most cells due to association with a family of inhibitory proteins, called IκBs, of which the most common is IκBα (12-13). A multi-subunit IκB kinase (IKK) complex, which contains two catalytic subunits, IKK1/IKKα and IKK2/IKKβ, and a regulatory subunit, NEMO/IκKγ, leads to the inducible phosphorylation of IκBα, resulting in its ubiquitination and proteasomal-mediated degradation, which allows the NF-κB subunits to enter the nucleus and turn on the expression of their target genes (12,14-15). Although the NF-κB pathway is constitutively active in myeloma cells (16-17), the role of this pathway in the IL6-independent growth of neoplastic plasma cells has not been investigated.

Viruses are known to encode for proteins that have acquired the ability to selectively modulate various signaling pathways. Several such proteins, such as SV40 large and small T antigens and HPV E6 and E7 proteins, have been successfully used as molecular tools to discern the role of cellular signaling pathways in various biological processes (18). Human herpesvirus 8 (HHV8, also known as Kaposi’s sarcoma associated herpesvirus)-encoded K13 protein contains two tandem death effector domains (DEDs) that are also present in the prodomain of caspase 8/FLICE. Proteins with two DEDs are also found in several other viruses and include MC159L and MC160L from the molluscum contagiosum virus and E8 from equine herpesvirus 2 (EHV2) (19-21). These proteins were originally believed to protect virally-infected cells from death receptor-induced apoptosis by blocking the recruitment and/or activation of caspase 8/FLICE and as such were collectively referred to as viral FLICE Inhibitory Proteins or vFLIPs (19-21). However, subsequent work by our laboratory and others showed that K13 does not act as a vFLIP but instead directly interacts with the NEMO/IκKγ subunit of the IKK complex to selectively activate the NF-κB pathway (22-24). In this study, we have taken advantage of this unique ability of K13 to selectively activate the NF-κB pathway and used it as a molecular tool to study the role of the NF-κB pathway in IL6-independent growth of murine plasmacytoma cells.

MATERIALS AND METHODS

Cell lines and reagents – T1165 and B9 were grown in RPMI medium supplemented with 10% (v/v) fetal calf serum (FCS), 100 U/mL penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate, 2 mM glutamine (all from Life Technologies, USA) and 10 ng/ml and 5 ng/ml of recombinant human IL6 (PeproTech Inc.), respectively. HEK-293FT cells (Invitrogen) were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 250 µg/ml Geneticin sulfate in a humidified atmosphere containing 5% CO₂ at 37°C. Dexamethasone and As₂O₃ (arsenic trioxide) were purchased from Sigma (St. Louis, MO). Bay-11-7082 and INCB018424 were purchased from Tocris (Ellisville, MO) and ChemieTek (Indianapolis, IN), respectively.

Retrovirus, lentivirus constructs and virus infection – Retrovirus constructs containing C-terminal Flag epitope-tagged wild type and mutant vFLIP K13 and E8 were generated in murine stem cell virus (MSCV) neo-based retroviral vector and amphotropic viruses generated and used for infection as described previously (23). Lentivirus constructs encoding C-terminal Flag-tagged wild-type Tax and its mutants (M22 and M47) were generated in pLENTI6/V5-based vector (Invitrogen). A retroviral vector expressing the firefly luciferase gene was constructed in the
pRetroQ-RSV vector (Clontech) in which the CMV promoter had been replaced with an RSV promoter. The MSCV-Bcl-2-IRES-GFP and MSCV-Bcl-xL-IRES-GFP constructs were kindly provided by Dr. Emily Cheng (Human Oncology and pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York). The MSCV-puro-WT-Mcl-1 construct was a kind gift from Dr. Opferman (Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, TN). Recombinant retroviruses and lentviruses were generated in the HEK 293-FT cells as described previously and used to infect T1165 and B9 cells (25-26). All infections were carried out in the presence of 8 µg/ml polybrene (Sigma). Post-infection, cells were cultured in normal growth media containing the appropriate drugs to select positive clones or sorted based on GFP fluorescence.

Cell viability and cell-cycle assays – Cells from exponentially growing cultures were washed three times with hIL6-free medium and plated in an untreated flat-bottom 96-well plate at a density of 5 x 10^3 cells/well in the presence or absence of hIL6. Cell viability was measured after 48 hours using the MTS reagent (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) following manufacturer’s instructions (Promega, Madison, WI). Absorbance of viable cells was measured at 490 nm with 600 nm as a reference wavelength. Percent cell survival was calculated based on the reading of cells grown in the presence of hIL6 as 100%. DNA content analysis was performed as described previously (25).

ELISA for mIL6 – Cells were harvested by centrifugation, washed three times in medium lacking growth factors, and then set up at 10^5 cells/ml in IL6-free medium for 72 hr. Cells were centrifuged and the supernatant filtered and assayed for mIL6 using an IL6 ELISA kit (eBioscience) following the recommendations of the manufacturer.

Assays for nuclear NF-κB DNA-binding activity – Nuclear proteins were extracted and used for measuring the status of NF-κB DNA-binding by EMSA or an ELISA-based Transfector kit (Clontech) as previously described (22,27).

Western blot analysis – Cells were lysed in a lysis buffer containing 20 mM sodium phosphate (pH 7.4), 150 mM NaCl, 0.1% Triton X-100, 0.2 M PMSF (phenylmethysulfonyl fluoride), and 10% glycerol supplement with a protease inhibitor cocktail tablet (Roche Molecular Biochemical, Indianapolis IN). Western blot analysis was performed essentially as described previously (25). Primary antibodies used in these experiments were Flag-HRP (Sigma, 1:50,000), Mcl-1 (Santa Cruz, sc-19, 1:1000), Bcl-2 (Santa Cruz, sc-492, 1:1000), Bcl-xL (Santa Cruz, sc-634, 1:1000), Tubulin (Sigma, 1:50,000), Cleaved caspase-3 (Cell Signaling, 8G10, 1:1000), PARP (Cell Signaling, 9542, 1:1000), IkB-α (Santa Cruz, sc-864, 1:1000), p-IκBα (Ser32, 9241, Cell Signaling, 1:1000), Akt (Cell Signaling, 9272, 1:1000), phospho-Akt (Cell Signaling, Ser 473, 9271, 1:1000), SAPK/JNK (Cell Signaling, 9252, 1:1000), phospho-SAPK/JNK (Cell Signaling, 9251, 1:1000).

Animal experiments – T1165-vector and T1165-K13 IL6 cells were transduced with pRetroQ-RSV-Luc retroviral vector that expresses the firefly gene under an RSV promoter and infected cells selected with puromycin. Subsequently, 4-6 weeks old BALB/cAnNCr mice (Charles River Laboratories; Wilmington, MA) were inoculated i.p. with 10 x 10^7 cells. Tumor growth in the peritoneum was monitored weekly by physical examination and bioluminescence imaging (BLI) for 10 weeks. For BLI, after mild anesthesia with isoflurane, animals were injected i.p. with an aqueous solution of D-luciferin (Biosynth, Naperville, IL) at 150 µg/g body wt in PBS and firefly luciferase activity determined using the IVIS200 system (Caliper, Hopkinton, MA). At autopsy, cells were harvested from an abdominal plasmacytoma and spleen of a mouse injected with T1165-Luc-K13 IL6 cells and cultured in RPMI medium with 10% FCS in the absence of IL6. In parallel, cells were harvested from the spleen of an animal injected with the T1165-Luc-vector cells. After approximately 1 week, clumps of proliferating cells were clearly visible in the cultures established from the plasmacytoma and...
spleen of T1165-Luc-K13^{IL6}-injected animal, but were absent in those established from spleen of T1165-Luc-vector-injected animal. Cell lysates were prepared and used for immunoblotting to confirm the expression of K13 as described above. All animal procedures were conducted according to an IACUC-approved protocol in the University of Pittsburgh Cancer Center animal facility.

Statistical Analyses – Two-tailed paired Student’s t test was used to test for differences between two groups. Differences with a p<0.05 were considered as statistically significant. All experiments were repeated a minimum of three times with triplicate samples.

RESULTS

K13 protects mouse T1165 plasmacytoma cells against IL6-withdrawal induced apoptosis. The murine T1165 plasmacytoma cell line requires IL6 for survival and proliferation (28). We used retroviral gene transfer to generate polyclonal populations of these cells expressing K13 or an empty vector. The expression of K13 protein was confirmed by immunoblotting (Figure 1A) and its ability to protect against IL6 withdrawal induced apoptosis examined by growing the T1165-K13 and -vector cells in the presence or absence of IL6. As shown in Figure 1B, the T1165-vector cells underwent a dramatic reduction in cell viability within 24-48 h upon withdrawal from IL6, while the T1165-K13 cells were remarkably resistant (Figure 1B). The lack of apoptosis in the T1165-K13 cells was confirmed by staining with Sytox-green, a membrane-impermeable nuclear dye (Figure 1C). While IL6-withdrawal from T1165-vector cells resulted in the appearance of cells with brightly stained, condensed and fragmented nuclei suggestive of apoptosis, they were absent among K13-expressing cells (Figure 1C). Moreover, a DNA-content analysis revealed that withdrawal of T1165-vector cells from IL6 resulted in appearance of cells with sub-G₀/G₁ DNA content, which were not seen among the T1165-K13 cells (Figure 1D). Taken collectively, these results demonstrate that K13 protects T1165 plasmacytoma cells against IL6-withdrawal-induced apoptosis.

Protective effect of K13 against IL6 withdrawal-induced apoptosis is associated with constitutive NF-κB activation. Continuous culture of K13-expressing T1165 cells in the absence of IL6 readily generated cells which were completely independent of IL6 and could proliferate long term in IL6-free medium. These IL6-independent cells were designated T1165-K13^{IL6}. K13 activates NF-κB by inducing phosphorylation of IkBα, which results in its proteasomal-mediated degradation, allowing the released NF-κB subunits to enter the nucleus and bind to the promoters of its target genes (23). To examine the role of NF-κB pathway in IL6-independent growth of the T1165-K13^{IL6} cells, we performed an electrophoretic mobility shift assay. As shown in Figure 2A, this assay revealed a marked increase in the NF-κB DNA-binding activity in the nuclear extracts of the T1165-K13^{IL6} cells as compared to the T1165-vector cells. Consistent with the above results, immunoblot analysis showed constitutive phosphorylation of IkBα and loss of total IkBα expression in the T1165-K13^{IL6} cells (Figure 2B). However, there was no significant increase in the phosphorylation of JNK and Akt in the T1165-K13^{IL6} cells (Figure 2C). In fact, consistent with the known ability of IL6 to activate Akt pathway (29), phosphorylation of Akt was slightly reduced in the T1165-K13^{IL6} cells which were grown in IL6-free medium. Collectively, these results confirmed our previous report that K13 selectively activates the NF-κB pathway (30). The involvement of the NF-κB pathway in the protective effect conferred by K13 was further supported by generation of T1165 cells expressing an NF-κB-defective mutant of K13 (K13-58AAA) (31). Unlike T1165-K13 cells, T1165-K13-58AAA showed no protection against IL6-withdrawal induced apoptosis (Figure 2D). Similarly, expression of equine herpesvirus vFLIP E8, a structural homolog of K13 that lacks the ability to activate NF-κB (22), failed to protect T1165 cells against IL6-withdrawal induced apoptosis (Figure 2D). Thus, the protective effect of K13 against IL6 withdrawal induced apoptosis is associated with NF-κB activation.

Protective effect of K13 against IL6 withdrawal-induced apoptosis is reversed by Bay-11-7082. To confirm the involvement of NF-κB
activation in the protective effect of K13 against IL6-withdrawal induced apoptosis, we took advantage of Bay-11-7082, a specific inhibitor of NF-κB that is known to block K13-induced NF-κB activation (32). Treatment with up to 1 µM Bay-11-7082 had no significant effect on the survival of T1165-vector cells (Figure 3A). In contrast, T1165-K13IL6 cells were highly sensitive to this compound and underwent substantial cell death at concentration as low as 0.25 µM (Figure 3A). In addition, T1165-K13IL6 cells demonstrated preferential sensitivity to arsenic trioxide, another known inhibitor of K13-induced NF-κB (Figure 3B) (33). However, T1165-K13IL6 cells were relatively resistant to cell death induced by dexamethasone (Figure 3C), a drug commonly used for the treatment of plasma cell neoplasms. Collectively, the above studies demonstrate that the NF-κB activity can not only promote the emergence of IL6-independent plasmacytoma cells but can also confer on them resistance to dexamethasone.

Tax-induced NF-κB activation confers IL6 independence on plasmacytoma cell lines. Human T-cell Leukemia Virus-1 (HTLV-1)-encoded Tax protein resembles K13 in constitutively activating the NF-κB pathway by interacting with NEMO (34). As an independent confirmation of the involvement of the NF-κB pathway in the protective effect of K13 against IL6 withdrawal-induced apoptosis, we generated stable populations of T1165 cells expressing wild-type Tax and its two mutants, M22 and M47, respectively (Figure 4A). The M22 mutant is known to lack the ability to activate NF-κB, while the M47 mutant is inactive in CREB/ATF pathway, but retains NF-κB activity (35). Accordingly we observed increased NF-κB activity in T1165 cells expressing wild-type Tax and its two mutants, M22 and M47, respectively, in the presence of IL6 (Figure 4A). The M47 mutant is known to lack the ability to activate NF-κB, while the M22 mutant is inactive in CREB/ATF pathway, but retains NF-κB activity (35). As an independent confirmation of the involvement of the NF-κB pathway in the protective effect of K13 against IL6 withdrawal-induced apoptosis, we generated stable populations of T1165 cells expressing wild-type Tax and its two mutants, M22 and M47, respectively (Figure 4A). Consistent with the key role of the NF-κB pathway in protection against IL6 withdrawal-induced cell death, we observed that T1165 cells expressing the wild-type Tax and its M47 mutant were protected from IL6 withdrawal-induced cell death, while no protection was observed in cells expressing the M22 mutant (Figure 4C). Taken together, the above results demonstrate that constitutive activation of the NF-κB pathway by viral proteins confers IL6-independence on IL6-dependent plasmacytoma cells.

Protective effect of K13 against IL6 withdrawal induced apoptosis is not due to stimulation of endogenous IL6 production. K13-induced NF-κB is has been shown to stimulate IL6 production (36). Therefore we tested the hypothesis that the protective effect of K13 against IL6-withdrawal induced apoptosis is due to stimulation of endogenous IL6 production and autocrine/paracrine signaling. Surprisingly, an ELISA assay did not reveal the presence of IL6 in the supernatant of T1165-K13 cells (Figure 5A). Similarly, there was no IL6 production in T1165 cells treated with 10ng/ml TNF-α for 24 hours (Figure 5B). Furthermore, the conditioned medium collected from T1165-K13 cells failed to confer protection against IL6 withdrawal-induced cell death when added to a fresh batch of T1165 cells (Figure 5C). Although the above studies demonstrated lack of IL6 secretion in T1165-K13 cells, they did not rule out the possibility of intracellular IL6 signaling mediated by cytosolic interaction between IL6 and its receptor. IL6 exerts its intracellular effects through the JAK/STAT signaling pathway. As such, we examined the phosphorylation status of STAT1 and STAT3, two downstream mediators of IL6 signaling, in the T1165-vector and T1165-K13 cells grown in the absence or presence of IL6. Immunoblotting with p-STAT1 (Tyr 701) and p-STAT3 (Tyr 705) revealed significant phosphorylation of STAT1 and STAT3 in the T1165-vector and T1165-K13 cells grown in the presence of IL6 but not in its absence (Figure 5D). INCB018424, a selective JAK1 and JAK2 inhibitor, is known to inhibit IL6 signaling (37). As an independent test of the lack of involvement of IL6 signaling in the survival of T1165 K13IL6 cells, we tested their resistance to INCB018424. As shown in Figure 5E, T1165-K13IL6 cells demonstrated marked resistance to this compound as compared to the T1165-vector cells. Taken collectively, the above results argue against the role of intracellular IL6-signaling in the survival of T1165-K13IL6 cells.

Protective Effect of K13 against IL6 withdrawal induced apoptosis is associated with block in caspase activation and sustained
expression of Bcl2 family members upon IL6 withdrawal. To understand the mechanism by which K13 protects T1165 cells against IL6 withdrawal-induced apoptosis, we examined the status of caspase-3 and Bcl2 family members. As shown in Figure 5F, growth of T1165-vector cells in IL6-free medium for 12-18 h resulted in marked increase in the appearance of cleaved caspase-3, suggestive of caspase-3 activation. This was accompanied by cleavage of PARP, one of the downstream targets of caspase-3, and both of these events were significantly blocked in the K13-expressing cells (Figure 5F).

To gain an understanding into the mechanism by which K13-expression blocks caspase-3 activation, we examined the status of several Bcl2 family members in the T1165-K13 and vector cells that had been grown in the presence or absence of IL6. In the presence of IL6, T1165-K13 cells demonstrated equivalent expression of Mcl-1, Bcl-2, and Bcl-xL as compared to the T1165-vector cells (Figure 5F). However, while withdrawal of IL6 for 12-18 h resulted in a significant decline in the expression of Mcl-1, Bcl-2, and Bcl-xL in the T1165-vector cells, the expression of these proteins was relatively well maintained in the T1165-K13 cells (Figure 5F). Next, to examine whether ectopic expression of Bcl2 family members could suppress apoptosis upon IL6- withdrawal, we generated stable populations of T1165 cells expressing Bel-2, Bcl-xL and Mcl-1 (Figure 5G). These stable cells were significantly protected from IL6 withdrawal-induced cell death as compared to the empty vector expressing cells (Figure 5H). These results suggest that K13-induced NF-kB protects against IL6-withdrawal-induced apoptosis by maintaining the expression of anti-apoptotic members of the Bcl2 family.

K13 protects B9 plasmacytoma cells against IL6 withdrawal-induced apoptosis. In order to demonstrate that the protective effect of K13 against IL6 withdrawal induced apoptosis is not limited to T1165 cells, we generated stable clones of IL6-dependent B9 plasmacytoma expressing K13 or an empty vector using retroviral gene transfer (Figure 6A). Similar to the T1165-K13 cells, B9 cells expressing K13 were significantly protected against IL6 withdrawal induced cell death as compared to the empty vector-expressing cells (Figure 6B). Additionally, the protection conferred by K13 was reversed by NF-kB inhibitor Bay-11-7082 and was not associated with phosphorylation of STAT1 and STAT3 (Figure 6C and D). Taken collectively with the studies using T1165 cells, the above results demonstrate that although K13 protects cells against IL6-withdrawal induced apoptosis via NF-kB activation, this effect is not mediated through NF-kB-induced endogenous IL6 production.

Constitutive NF-κB activation promotes peritoneal plasmacytomas without pristane conditioning. Murine plasmacytoma cells are not only dependent on IL6 for their in vitro growth but also require it for their growth in vivo (4). Thus, T1165 cells form peritoneal plasmacytoma only if the peritoneal cavity had been preconditioned with pristane, an inflammatory agent that induces chronic inflammation with copious IL6 production (4,38). To study the effect of constitutive NF-κB activation on the ability of mouse plasmacytoma cells to grow in vivo in the absence of pristane conditioning, we used retroviral-mediated gene transfer to express the firefly luciferase (Luc) gene in the T1165 vector and T1165-K13-IL6 cells. We injected 1 x 10^7 T1165-Luc-vector and T1165-Luc-K13-IL6 cells intraperitoneally into the syngeneic Balb/cAnNcr mice (n = 9) and followed the development of plasmacytomases by weekly physical examination and bioluminescence imaging (BLI) over the ensuing 1-3 months. The mice injected with the T1165-Luc-vector demonstrated no physical abnormalities; however, those injected with T1165-Luc-K13-IL6 cells developed enlarged abdomens (Figure 7A). Bioluminescence imaging confirmed intra-abdomen growth of tumors in all the T1165-Luc-K13-IL6-injected mice, whereas no tumor development was detected in the mice injected with T1165-Luc-vector cells (Figure 7B). Autopsy not only confirmed the presence of plasmacytomases but also showed enlargement of spleen and liver in the T1165-Luc-K13-IL6-injected mice (Figure 7C-D and data not shown). Finally, T1165-Luc-K13-IL6 cells were easily cultured from the spleen of these mice (Figure 7E). Collectively, the above studies demonstrate that K13-induced constitutive
NF-κB activity not only allows the T1165 cells to establish peritoneal plasmacytomas without pristane preconditioning, but also promote the development of disseminated disease with visceral involvement.

DISCUSSION

A key role of IL6 in myeloma pathogenesis is supported by the observations that STAT3 is constitutively active in primary myeloma cells and inhibition of the IL6R/STAT3 pathway induces apoptosis in certain human myeloma cell lines *in vitro* (39). Furthermore, while intraperitoneal injections of pristane can induce plasmacytomas in the wild-type Balb/c mice (4), it fails to do so in IL6-null mice (40). Similarly, established IL6–dependent plasmacytoma cell lines, such as T1165 and B9, fail to form plasmacytomas when injected into IL6-deficient mice (38). Collectively, these studies highlighted the potential significance of the IL-6 pathway in myeloma pathogenesis and made it a prime target for therapeutic intervention. However, the results of early clinical trials with IL6-blocking antibodies were disappointing (41), and have led to the suggestion that there are IL6-independent signaling pathways which play equally important role in the survival and proliferation of myeloma cells (2).

Genetic and epigenetic abnormalities in several genes involved in the NF-κB pathway, including TRAF3, NIK, TRAF2, CYLD, BIRC2/BIRC3, CD40, NFKB1, NFKB2, LTBR and TAC1, are seen in approximately 20% of patients with multiple myeloma, and are associated with constitutive activation of the NF-κB pathway (16-17). Inactivation of TRAF3 (TNF Receptor Associated Factor 3) and over-expression of NIK (NF-κB Inducing Kinase) are the two most common abnormalities associated with constitutive NF-κB activation in myeloma samples and cell lines and have been shown to promote their survival (16-17). However, since TRAF3 and NIK also affect MAPK (Mitogen activated protein kinase) signaling pathway (42-44), it was not clear whether deregulation of the NF-κB pathways is solely responsible for the myeloma-promoting effects of the mutations observed in the above studies. In this study, we have used the viral proteins K13 and Tax as molecular tools to demonstrate that constitutive activation of the NF-κB pathway is sufficient to confer IL6-independence on IL6-dependent plasmacytoma cells both *in vitro* and *in vivo*. Our conclusion is supported by the following lines of evidence. First, we demonstrate that the protective effect of K13 against IL6 withdrawal induced apoptosis is associated with NF-κB activation. Second, we did not observe any protection against IL6 withdrawal-induced apoptosis upon ectopic expression of an NF-κB-defective mutant of K13. Third, ectopic expression of wild-type and mutant Tax constructs conferred protection against IL6-withdrawal-induced apoptosis which correlated with their ability to activate the NF-κB pathway. Fourth, the protective effect of K13 against IL6-withdrawal induced apoptosis was reversed by treatment with NF-κB inhibitors. Finally, ectopic expression of E8, a vFLIP that lacks the ability to activate NF-κB, failed to confer protection against IL6 withdrawal-induced apoptosis. The latter finding also argued against the possibility that the protection conferred by K13 was due to its ability to act as a vFLIP (i.e. due to inhibition of FLICE/caspase 8).

Our study also suggests a possible mechanism by which K13-induced NF-κB protects plasmacytoma cells against IL-6 withdrawal induced apoptosis. The NF-κB pathway has been shown to up-regulate the expression of a number of anti-apoptotic members of the Bcl2 family (45). In the present study, we observed that while the expression of Bcl-2, Bcl-xL and Mcl-1 declined upon IL6 withdrawal in T1165-vector cells, it was maintained in T1165-K13 cells (Figure 5F). Furthermore, ectopic expression of Bcl-2, Bcl-xL and Mcl-1 protected T1165 cells against IL6-withdrawal induced apoptosis (Figure 5G-H). Collectively, the above results suggest that IL6 signaling protects murine plasmacytomas cells against apoptosis by maintaining the expression of anti-apoptotic members of the Bcl2 family. In the absence of IL6, the expression of anti-apoptotic Bcl2 family members falls below a critical threshold resulting in induction of apoptosis. In the
K13-expressing plasmacytoma cells, however, NF-κB signaling provides an alternative pathway for maintaining the expression of anti-apoptotic Bcl2 family members, thereby protecting them from IL6-withdrawal-induced apoptosis. However, in addition to anti-apoptotic Bcl2 family members, the K13-induced NF-κB pathway is known to induce the expression of a number of other anti-apoptotic and growth promoting genes, such as BIRC3, IL8, CCL5 and GM-CSF (46). Thus, it is conceivable that additional genes induced by the NF-κB pathway might contribute to the protective effect of K13 against IL6 withdrawal-induced apoptosis.

IL6 is one of the known NF-κB target genes and K13 is known to induce IL6 expression via NF-κB activation (27,36,46). Therefore, we had expected that constitutive NF-κB activation by K13 would confer protection against IL6 withdrawal by stimulating the production of endogenous IL6. A surprising finding of the current study was that K13 protected against IL6-withdrawal-induced apoptosis without stimulating endogenous IL6 production. This conclusion was supported by our inability to detect murine IL6 in the supernatant of T1165-K13 cells either by ELISA or by a biological assay using fresh T1165 cells. Finally, the lack of phosphorylation of the downstream components of the IL6 signaling pathway, such as STAT1 and STAT3, and their resistance to JAK1/2 inhibitor INCB018424 ruled out the existence of intracellular IL6 signaling in the T1165-K13 cells.

The exact reason for the inability of K13-induced NF-κB activation to up-regulate IL6 in the plasmacytoma cells is not clear at the present. The IL6 promoter contains binding sites for several transcriptional factors. A recent study demonstrated that four transcriptional sites, NF-κB, AP1, CREB and C/EBP, were collectively responsible for maximal IL6 expression in the IM9 myeloma cell line (47). Among these sites, the AP1-binding site was shown to be the most important cis-regulatory site for constitutive IL6 expression (47). Importantly, this study also demonstrated that mutation of NF-κB-binding site had little effect on IL6 production in the IM9 cell line (47). Instead, NF-κB required cooperative interaction with c-Jun, which constitutively occupies the AP1 site, for IL6 production (47). Interestingly, we have recently demonstrated that K13 selectively activates the NF-κB pathway without concomitant JNK/AP1 activation (30). Thus, the lack of JNK/AP1 activation by K13 may provide a possible explanation for its inability to induce IL6 expression in the plasmacytoma cells. However, treatment with TNFα, a known activator of the JNK/AP1 pathway, also failed to induce IL6 production in T1165 cells, suggesting the existence of additional molecular defects.

We observed that constitutive NF-κB activation protected a majority of cells against IL6-withdrawal induced apoptosis and led to rapid emergence of cells that could proliferate long-term in the absence of IL6. More importantly, intraperitoneal injection of these IL6 independent clones resulted in the development of abdominal plasmacytomas with visceral involvement without preconditioning by pristane. Collectively, these results suggest that NF-κB activating mutations, such as those involving the TRAF3, NIK, TRAF2, CYLD, BIRC2/BIRC3, CD40, NFKB1, NFKB2, LTBR and TAC1 genes, may not only contribute to the progression of myeloma to an IL6-independent phase but also to the development of disseminated disease with visceral involvement. The rapid emergence of IL6-independent clones that were dependent on NF-κB signaling also attests to the remarkable plasticity and redundancy of the cellular survival pathways.

Our results also have significance for the development of targeted agents for the treatment of plasma cell disorders. Although early clinical trials with IL6-blocking antibodies were disappointing (41), there is a resurgence of interest in targeting IL6 signaling in myeloma. Several recent studies have described small molecule inhibitors of JAK1/2 with promising in vitro and in vivo activities against myeloma cell lines (48-49). However, our results showing that NF-κB activation confers IL6-independence via a pathway independent of JAK/STAT signaling and suggest that activation of the NF-κB pathway may result in resistance to this class of drugs in plasma cell neoplasms, a notion supported by our results with INCB018424. Interestingly, we also observed
that cells that had become IL6-independent due to activation of NF-kB were extremely sensitive to NF-κB inhibitors. Thus, combining a JAK1/2 inhibitor with an NF-κB inhibitor may represent an attractive regimen that deserves further study for the treatment of plasma cell disorders. Another important finding of our study was that NF-κB activation not only protected plasmacytoma cells against IL6-withdrawal induced apoptosis but also made them resistant to dexamethasone, an agent commonly used for the treatment of plasma cell neoplasms. This association between emergence of IL6-independence and steroid-resistance has important implications for the treatment of plasma cell disorders.

The significance of our results, however, is not limited to plasma cell disorders. HHV8-infected primary effusion lymphoma (PEL) cells display a plasmacytoid morphology and resemble myeloma cells in their gene expression profile and responsiveness to IL6, which is known to promote their growth in vitro and in vivo (50-51). Similar to plasma cell disorders, agents targeting the IL6 signaling pathway have been proposed for the treatment of PEL (52). However, as the NF-κB pathway is constitutively active in PEL cells (23,53), it could potentially provide an IL6-independent pathway for the survival of PEL cells. Combination of agents targeting IL6 signaling with those targeting the NF-κB pathway may represent a more promising approach for the treatment of these disorders.

REFERENCES

17. Annunziata, C. M., Davis, R. E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E. M., Tan, B., Zhao, H., Stephens, O.,

Footnotes

This work was supported by grants from the National Institutes of Health (CA85177, CA124621, and CA139119), the Leukemia & Lymphoma Society and the Multiple Myeloma Research Foundation. We will like to thank Dr. Emily Cheng for providing MSCV Bcl-2 and MSCV Bcl-xL constructs, Dr. Opferman for MSCV Mcl-1 construct, and Dr. Ciaren Graham for critical reading of the manuscript.
Figure Legends

Figure 1. K13 protects T1165 murine plasmacytoma cell line against IL6 withdrawal-induced apoptosis. A. Expression of Flag-K13 in T1165 cells as revealed by Western blotting with a Flag antibody. B-C. T1165 cells expressing an empty vector or K13 were grown in triplicate in a 96 well plate in the presence or absence of IL6 and cell viability was measured 48 h later using an MTS assay. The values shown are mean ± S.D of two independent experiments performed in triplicate. Asterisks indicate significance at levels of p≤0.05 as compared to vector cells (B). Cells were stained with Sytox Green, a cell impermeable nuclear dye, which stains the nuclei of dead cells, and examined under a Fluorescent microscope or under phase-contrast microscope and photographed (C). D. A DNA content analysis shows significant increase in sub-G0/G1 fraction in T1165-vector cells upon withdrawal of IL6 which was absent in K13-expressing cells.

Figure 2. Role of NF-κB activation in K13-induced protection against IL6 withdrawal-induced apoptosis in T1165 cells. A. Status of NF-κB pathway, as measured by an EMSA in T1165-vector and T1165-K13-IL6 cells. The position of the induced NF-κB complexes is marked by an arrow, while an asterisk marks the position of the constitutive complexes. The difference in the size of the constitutive and the induced NF-κB complexes is probably due to their different subunit composition. B. Increase in phosphorylated IκBα and decrease in total IκBα in T1165-K13-IL6 cells. Tubulin serves as a loading control. C. Lack of increase in phosphorylation of JNK and AKT in T1165-K13-IL6 cells. A representative of two independent experiments. D. Wild-type K13 protects T1165 cells against IL6 withdrawal-induced apoptosis while its NF-κB defective mutant 58AAA and vFLIP E8 fail to do so. Cell viability was measured using a MTS-based assay. Asterisks indicate significance at levels of p≤0.05.

Figure 3. Protective effect of K13 against IL6 withdrawal induced apoptosis is reversed by NF-κB inhibitors. A-C. T1165-vector and K13-IL6 cells were treated in triplicate with the indicated concentrations (μM) of Bay-11-7082, arsenic trioxide (As2O3) and dexamethasone and cell viability measured after approximately 72 h using an MTS assay. The values shown are mean ± S.D of a representative of two independent experiments performed in triplicate. Asterisks indicate significance at levels of p≤0.05 as compared to vector cells.

Figure 4. Role of NF-κB activation in Tax-induced protection against IL6 withdrawal induced apoptosis. A. Immunoblot showing equivalent expression of wild-type Tax and its mutant constructs in T1165 cells. B. Wild type Tax and its M47 mutant activate NF-κB in T1165 cells while the M22 fails to do so. The status of NF-κB pathway was measured in nuclear extracts by an ELISA-based NF-κB (p65/RelA)-DNA binding assay kit (Transfector; Clontech). Asterisks indicate significance at levels of p≤0.05 as compared to vector cells upon IL6 withdrawal. C. Wild-type Tax and its M47 mutant protect against IL6 withdrawal-induced apoptosis, while M22 mutant fails to do so. Cell viability was measured using a MTS-based assay. The values shown are mean ± S.D of a representative experiment performed in triplicate. Asterisks indicate significance at levels of p≤0.05.

Figure 5. Mechanism of protection against IL6 withdrawal conferred by K13. A. ELISA showing lack of murine IL6 secretion in the conditioned medium of T1165-vector cells grown in the presence of human IL6 and T1165-K13 cells grown in the presence or absence of hu-IL6 for 72 h. B. ELISA showing lack of murine IL6 secretion in the conditioned medium of T1165-vector cells treated with TNF-α. Conditioned medium (C.M) from SP2 cells was used as a positive control for murine IL6. C. Conditioned medium collected from T1165-K13 or T1165-vector cells fail to protect a fresh batch of T1165 from IL6-withdrawal-induced apoptosis, indicating lack of IL6 secretion. T1165 cells were grown in triplicate in the presence and absence of mL6 (10 ng/ml) or the presence of 10% C.M. collected from T1165-vector, T1165-K13 or murine IL6 secreting SP2/mIL6 cells and cell survival measured using an MTS-based assay as described for Figure 1B. D. Immunoblot showing lack of phosphorylation of STAT1 and STAT3.
in T1165-K13 cells when grown in the absence of IL6 for the indicated time points. Phosphorylation of STAT1 and STAT3 at residues Tyr 701 and Tyr 705 were measured using the indicated phospho-specific antibodies. E. T1165-vector and K13^{IL6} cells were treated in triplicate with the indicated concentrations (μM) of JAK1/2 inhibitor INCB018424 and cell viability measured after approximately 72 h using an MTS assay. The values shown are mean ± S.D of a representative of two independent experiments performed in triplicate. F. Immunoblot analysis showing lack of caspase activation and upregulated expression of Bcl2 family members in T1165-K13 cells upon withdrawal from IL6 for the indicated time-points. Unlike T1165-vector cells, T1165-K13 cells did not show cleavage of caspase-3 and PARP and maintain the expression of Mcl-1, Bcl-2, and Bcl-xL upon IL6 withdrawal. G. Immunoblots showing ectopic expression of Bcl-2, Bcl-xL and Mcl-1 in T1165 cells as revealed by Western blotting with indicated antibodies. Tubulin serves as a loading control. H. T1165 cells over-expressing an empty vector or indicated Bcl2 family members or K13 were grown in triplicate in a 96 well plate in the presence or absence of IL6 and cell viability was measured 48 h later using an MTS assay. The values shown are mean ± S.D of two independent experiments performed in triplicate. Asterisks indicate significance at levels of p≤0.05 as compared to vector cells upon IL6 withdrawal.

Figure 6. K13 protects B9 murine plasmacytoma cell line against IL6 withdrawal-induced apoptosis via NF-κB activation. A. Expression of Flag-K13 in B9 cells as revealed by Western blotting with a Flag antibody. B. B9 cells expressing an empty vector or K13 were grown in triplicate in a 96 well plate in the presence or absence of IL6 and cell viability was measured 48 h later using an MTS assay. The values shown are mean ± S.D of two independent experiments performed in triplicate. Asterisks indicate significance at levels of p≤0.05 versus vector cells. C. B9-vector and B9-K13 cells were treated in triplicate with the indicated concentrations (μM) of Bay-11-7082 and cell viability measured after approximately 72 h using an MTS assay. B9-K13 cells were grown in the absence of IL6. Asterisks indicate significance at levels of p≤0.05. D. Immunoblot showing lack of phosphorylation of STAT1 and STAT3 in B9-K13 cells when grown in the absence of IL6.

Figure 7. T1165-K13^{IL6} cells establish peritoneal plasmacytomas without pristane pre-conditioning and lead to disseminated disease involving visceral organs. A-B. BALB/cAnNCr mice were injected i.p. with the indicated cells and tumor growth monitored by physical examination (A) or BLI (B) as described in the "Materials and Methods" section. C. Plasmacytomas isolated at autopsy from mice injected with the T1165-Luc-K13^{IL6} cells. D. Splenomegaly in mice injected with T1165-Luc-K13^{IL6} cells (Right) as compared to normal spleen in those injected with the T1165-Luc-vector cells (Left). E. Immunoblot showing the presence of Flag-tagged K13 in the parental T1165-Luc-K13^{IL6} cells and in cells isolated from the abdominal plasmacytoma and spleen of mice injected with the T1165-Luc-K13^{IL6} cells.
Figure 5

A

mouse IL-6 standard (pg/ml)

0 10 50 100 500 + * X Hu IL-6

B

C

SP/IL-6

UT TNF-α

Vector

K13

C.M.

% Cell Viability

mil6

Vector

K13

C.M.

% Cell Viability

D

E

F

G

H

INCB018424

p-STAT1

Tyr 701

MSCV

K13-IL6

% Cell Viability

p-STAT3

Tyr 705

(µM)

0 0.1 0.25 2.5 5.0

Tubulin

p-STAT3

Tubulin

Vector

Bcl-2

Bcl-xL

Bcl-2

Bcl-xL

Mcl-1

Mcl-1

Cell Viability (%)
Constitutive NF-κB activation confers IL6 independence and resistance to
dexamethasone and Janus kinase inhibitor INCB018424 in murine plasmacytoma cells
Yanqiang Yang, Jason S. Groshong, Hittu Matta, Ramakrishnan Gopalakrishnan, Han Yi
and Preet M. Chaudhary

J. Biol. Chem. published online June 24, 2011

Access the most updated version of this article at doi: 10.1074/jbc.M110.213363

Alerts:
 • When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2011/06/24/jbc.M110.213363.full.html#ref-list-1