Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response.

Quanjiang Ji\(^1\), Liang Zhang\(^1\), Fei Sun\(^1\), Xin Deng\(^1\), Haihua Liang\(^1\), Taeok Bae\(^2\), and Chuan He\(^1\)

\(^1\)Department of Chemistry, 929 East 57th Street, The University of Chicago, Chicago, IL, 60637, USA.

\(^2\)Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.

Running title: *Thiol-based oxidation-sensing mechanism of CymR*

\(^\S\)These authors contributed equally.

\(^*\)To whom correspondence should be addressed: Chuan He, E-mail: chuanhe@uchicago.edu; Tel: (+1) 773 702 5061.

Keywords: CymR, oxidation sensing, sulfenic acid, cysteine metabolism, *Staphylococcus aureus*

Background
The master regulator of cysteine metabolism-CymR influences *S. aureus* stress resistance and virulence.

Results
Mutation of the sole cysteine residue Cys25 to Ser eradicates the protein’s redox-sensing ability.

Conclusion
CymR is a new thiol-based oxidation-sensing regulator.

Significance
Elucidating the oxidation-sensing mechanism of CymR is important for understanding oxidation sensing by *S. aureus*.

Abstract
As a human pathogen, *Staphylococcus aureus* must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular-weight (LMW) thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys25 is oxidized to Cys25-SOH in the presence of H\(_2\)O\(_2\). Deletion of *cymR* reduced the resistance of *S. aureus* to oxidative stresses and the resistance was restored by expressing a C25S mutant copy of *cymR*. In a C25S substitution mutant, the expression of two genes, *tcyP* and *mccB*, was constitutively repressed and did not respond to hydrogen peroxide stress while the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of C25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in *S. aureus*.

Introduction
Staphylococcus aureus is an important Gram-positive human pathogen that causes a variety of ailments ranging from soft-tissue infections to life-threatening diseases such as toxic shock syndrome, endocarditis to necrotizing pneumonia (1,2). The human host has developed defense systems such as macrophage to fight against pathogen infections like *S. aureus* (3). Macrophages use toxic reactive oxygen species (ROS) to destroy phagocytosed bacteria during active infection (4,5). In order to cope with ROS, *S. aureus* is equipped with multiple defensive systems to sense and defend against ROS (5). In particular, thiol-based oxidation-sensing regulatory proteins such as MgrA and SarZ play major regulatory roles in *S. aureus*. Recent work also suggests that another master regulator, SarA, utilizes the same
thiol-based redox sensing to control gene expression in *S. aureus* (6,7). These regulators belong to the OhrR family of proteins (8,9). Similar redox-sensitive regulators also exist in Gram-negative pathogens such as OspR and MexR in *Pseudomonas aeruginosa* and OxyR in *E. coli.* (8,10-16).

Previously, we have shown that MgrA and SarZ sense oxidative stress through the oxidation of the sole cysteine residue conserved in these proteins in order to form a sulfenic acid intermediate. A subsequent thiolation of the generated sulfenic acid with cellular LMW thiols yields mixed disulfide, which has been thought to lead to dissociation of the modified proteins from DNA (10,11,17). For example, MgrA uses this mechanism to regulate antibiotic resistance and virulence. It controls more than 300 genes that cover a broad range of functions (17,18). SarZ is used to control expression of genes involved in detoxification of ROS and metabolic switching (11). CymR is the master regulator of cysteine metabolism in *S. aureus* and it has been shown to affect expression of over 300 genes (19). It also plays important roles in stress resistance and bacterial virulence (20). Perhaps not surprisingly, deletion of *cymR* makes *S. aureus* more sensitive to hydrogen peroxide, tellurite, and other stresses (20), which can be attributed to its function as a regulator of ROS detoxification genes such as *ahpFC*, as well as cysteine biosynthesis genes such as *cysM* and *mccAB*. In *S. aureus*, cysteine is considered to be one of the major components of the cellular reducing buffer due to the absence of GSH biosynthesis (21-23). Despite past studies of CymR, the exact sensing and regulatory mechanism of this master regulator have yet to be elucidated.

An inspection of the CymR sequence revealed to us that CymR has only one cysteine, a feature characteristic of the MgrA family proteins (Fig. S1). This observation prompted us to hypothesize that CymR could employ a thiol-based oxidation-sensing mechanism similar to that of MgrA and OhrR in order to regulate gene expression. In this study, we show that oxidation of CymR leads to its dissociation from the cognate promoter DNA. The oxidation intermediate, Cys25-SOH, was captured and characterized by crystallography. We also demonstrate that the sole cysteine residue is critical for its oxidation-sensing regulation inside bacterium.

Experimental procedures

Bacterial strains, plasmids and growth conditions

Bacterial strains and plasmids used in this study are listed in Table 1. *Escherichia coli* strains were grown in Luria-Bertani broth (LB). *Staphylococcus* were grown in tryptic soy broth (TSB) except transduction procedures, for which heart infusion broth (HIB) supplemented with 5 mM CaCl$_2$ was used. When necessary, antibiotics were added at the following concentrations: ampicillin, 100 μg/ml; chloramphenicol, 10 μg/ml. Vector pMCSG7 was used for expressing His-tagged proteins. Vector pKOR1 was used for deletion of *cymR* gene in *S. aureus*. *E. coli-S. aureus* shuttle vector pCL55-Flag was used for complementation.

Construction of cymR deletion mutant and complementation

To delete the *cymR* gene, the allelic exchange plasmid pKOR1 was used. Four primers were used into order to generate flanking DNA fragments for deletion (Table S1): up*cymR* For and up*cymR* Rev for the upstream fragment and down*cymR* For and down*cymR* Rev for the downstream fragment. The fragments were cloned into pKOR1 by using Gateway BP Clonase Technology (Invitrogen) to generate the plasmid pKOR1∷1528UD. Integration and excision of the plasmid were performed as previously described (24). *cymR* and *cymR*Rev complementation primers amplified the *cymR* gene for complementation experiments. The PCR product was introduced into pCL55-Flag to generate *cymR*-Flag plasmid. CymR was expressed from its own promoter in *S. aureus*. To make *cymRC25S*-Flag plasmid, two primers...
cymRFor Cys25 to Ser and cymRRev Cys25 to Ser were used and the mutagenesis was carried out by following QuikChange Site-Directed Mutagenesis (Stratagene). These plasmids were introduced into RN4220 first by electroporation and then introduced into ΔcymR strain by phage transduction.

Protein expression and purification

The 423 bp ORF of cymR was PCR-amplified from Newman chromosomal DNA by using the primers cymRFor-LIC and cymRRev-LIC. The PCR product was introduced into pMCSG7 by ligation independent cloning (LIC) to generate the plasmid pMCSG7-His-cymR (25). In order to make pMCSG7-His-cymRC25S plasmid, QuikChange Site-Directed Mutagenesis (Stratagene) strategy was used as described above. The resulting plasmids were transformed first into DH5α and then into BL21. The BL21 strain carrying the plasmids was grown in LB to OD600 = 0.6 at 37 °C, cell cultures were cooled down to 16 °C, and then 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) was added for overnight induction of the proteins. The expressed protein was purified with Ni-NTA column (Qiagen) and further purified by gel filtration column (GE Healthcare, Inc) with high salt buffer 10 mM Tris-HCl, pH 7.4, 2 M NaCl, 1 mM DTT. The fractions containing the proteins were buffered with 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, and 1 mM DTT by desalting column (GE Healthcare).

Electrophoretic mobility shift assays

The 291 bp mccAB promoter region was PCR-amplified with the primers mccABFor and mccABRev. The amplified DNA probe was phosphorylated by polynucleotide kinase (New England Biolabs) and [γ-32P] ATP. CymR and CymRC25S were serially diluted to 0, 0.0125, 0.025, 0.05, 0.1, 0.8 μM in the buffer (10 mM HEPES, pH 8.0, 1 mM EDTA, 50 mM KCl, 0.05% Triton X-100, 5% glycerol, 10 μg/mL salmon sperm DNA), followed by the addition of 0.5 nM 32P labeled probe and 1 mM H2O2. After the reaction mixtures (20 μL each) were incubated at room temperature for 30 min, 0.2 mM coenzyme A was added and further incubated at room temperature for 30 min. The resulting reaction mixture was analyzed by 6% polyacrylamide gel electrophoresis (100 V, 30 min for pre-run, 100 V, 80 min for sample separation). The gels were dried and subjected to autoradiography. The dissociation constant estimation was based on this gel shift assay and the protein concentration that made 50% DNA shift was used as the Kd. The assay was repeated at least twice with similar results.

Crystallization and structure determination

Reduced CymR in the buffer (100 mM NaCl, 0 mM Tris-HCl, pH 7.4, 1 mM DTT) was crystallized with 0.1 M lithium sulfate monohydrate, 0.1 M sodium citrate tribasic dehydrate pH 5.6, and 12% (w/v) polyethylene glycol 6000 buffer by the hanging drop method. The crystals were cryoprotected by the reservoir solution containing 20% glycerol and frozen in liquid N2. The data was collected to 1.7 Å at the macromolecular crystallography for life science beamline 21-ID-D at the Advanced Photon Source, Argonne National Laboratory and processed with HKL2000. The phases were determined by using Molrep (model molecule PDB: 3LWF, identities 64%) from CCP4i software suite and the model was built and improved by using Coot. The final structures have been validated though software Procheck in the CCP4i suit. The Ramachandran distribution shows 99.2% and 0.8% in favored and allowed region for wild-type CymR structure, and 96.6% and 3.4% distribution for CymRC25-SOH structure, respectively. No residue in either structure is located in the outlier region. The final structure was visualized by PyMol software.

To achieve the crystallization of the oxidized CymR, after the reduced CymR was desalted with desalting buffer (100 mM NaCl, 0 mM Tris-HCl, pH 7.4), 1 mM H2O2 was added to the protein solution and incubated at room temperature for 1 h. The protein solution was further purified by gel filtration with a desalting buffer (100 mM
NaCl, 10 mM Tris·HCl, pH 7.4). Oxidized CymR in desalting buffer crystallized in the same conditions as described above for the reduced CymR. The crystals also diffracted to 1.7 Å resolution at the macromolecular crystallography microbeam for life science beamline 23-ID-B at the Advanced Photon Source, Argonne National Laboratory. The structure of the protein was determined by the same method described above for the reduced CymR.

Western blot
The strains were grown overnight in TSB. The bacteria were collected and suspended in buffer A (500 mM NaCl, 10 mM Tris·HCl, pH 7.4, 1 mM DTT, 5% glycerol), followed by bead beater (FastPrep) treatment to lysis the bacteria. The 20μL supernatants were loaded into 12% SDS page for separation. After standard western blot procedures, the proteins were detected by anti-Flag antibody.

Disk diffusion assay
Four different strains were grown overnight in TSB and diluted to OD$_{600}$ = 0.2 in fresh TSB. The diluted culture (400 μL) was mixed with 20 ml of tryptic soy agar (TSA) and used as an overlay on a TSA plate. Sterile 6 mm filter paper was placed on the top of the plate and 10 μL of 200 mM CuSO$_4$ was added to the filter paper. The plates were incubated at 37 ºC overnight and photographed with a Sony DSC-W210 camera. The assay was repeated at least twice with similar results.

Blood plate assay
Four different strains were grown overnight in TSB. 1μL cell cultures were added onto the sheep blood plate and incubated at 37 ºC overnight before photographed with a Sony DSC-W210 camera.

Quantitative real-time reverse transcription PCR (qRT-PCR)
Four different strains were grown overnight in TSB with 2 mM cystine. Cell cultures were 1:100 diluted into TSB with 2 mM cystine and grown to OD$_{600}$ = 0.6. The resulting culture was divided into two groups, one of which was treated with 20 mM H$_2$O$_2$ for at 37 ºC for 10 min. Total RNA were isolated with RNeasy Mini Kit (Qiagen) by following the manufacturer’s recommendations. The purified RNA (5 ng) was used for qRT-PCR, which was performed with SuperScript III Platinum SYBR Green One-Step qRT-PCR Kit (Invitrogen). The mRNA level of the test genes was normalized by 16S rRNA. The following primers were used for qRT-PCR: 16S rRNAFor and 16S rRNARev, mccBFor and mccBRev gene, tcyFor and tcyRev. The assay was repeated at least twice with similar results.

4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) assay
The wild-type CymR and CymRC25S mutant protein were purified with 1 mM DTT. To generate the sulfenic acid form, both of the proteins (50 μM) were exchanged into buffer containing 100 mM KH$_2$PO$_4$/K$_2$HPO$_4$, 200 mM NaCl and 1 mM EDTA at pH 7.0. Afterwards, the proteins were treated with 1 mM H$_2$O$_2$ and incubated at room temperature for 30 min followed by washing with the above buffer three times. To generate the thiolated complex, the oxidized proteins were incubated with 1 mM free cysteine or 1 mM CoA for another 30 min and washed with the buffer three times to remove any unreacted LMW thiols. At last, all the samples were incubated with 1 mM NBD-Cl in the dark for 1 h. After extensive washing, spectra were taken using an Agilent 8453 UV-visible spectrophotometer. The assay was repeated at least twice with similar results.

Results
Cys25 is a redox-active cysteine that affects the DNA-binding ability of CymR
Cys25 is the sole cysteine in CymR. Helix-turn-helix domain predication (26) showed that this cysteine residue is very close to the winged helix-turn-helix (wHTH) DNA-binding domain (Fig. S1), implying that oxidation and potential further modification of Cys25 may influence the protein’s DNA-
binding ability. CymR has been reported to be the master regulator of cysteine homeostasis in *S. aureus*; deletion of *cymR* renders *S. aureus* more sensitive to H$_2$O$_2$, diamide, and CuSO$_4$ stress (19,20). All of this information suggests that CymR might be an oxidation-sensing regulator that functions through Cys25, its sole cysteine residue.

In order to test the hypothesis, we examined whether Cys25 oxidation affects CymR’s DNA binding by employing an electrophoretic mobility shift assay using recombinantly expressed CymR (Fig. S2). The *mccAB* promoter that was reported to be recognized by CymR was used (19). As expected, CymR binds the *mccAB* promoter sequence (CymR in Fig. 1A). Oxidation of CymR with 1 mM H$_2$O$_2$ weakened its DNA-binding affinity (CymR+H$_2$O$_2$ in Fig. 1A) from K_d of ~25 nM to ~50 nM (Table 1). When the oxidized CymR was further modified by coenzyme A, which could form a mixed disulfide bond with oxidized CymR, the DNA-binding affinity of the protein was dramatically decreased to K_d of ~800 nM (Table 1). To further examine the role of Cys25 in DNA binding by CymR, we constructed a CymRC25S mutant with Cys25 mutated to Ser and employed it in the same DNA-binding assay. CymRC25S exhibited a similar binding affinity as the wild-type CymR (Fig. 1B). However, binding was not affected by either H$_2$O$_2$ or H$_2$O$_2$/coenzyme A treatment. These results strongly suggest that Cys25 plays an important sensing and regulatory role in CymR.

Cys25-SOH in oxidized CymR was characterized by X-ray Crystallography

In order to understand the role of Cys25 oxidation in the oxidized CymR compared to the reduced form, we crystallized and solved protein structures of both the reduced and the oxidized CymR. Crystals of both protein forms diffract to 1.7 Å resolution. The reduced CymR structure revealed that CymR forms a biologically active homodimer, which consists of two domains: one winged helix-turn-helix domain and one long dimerization domain (Fig. 2A&2B), similar to a recently reported structure of *B. subtilis* CymR (27) except that Cys25 is not conserved in *B. subtilis* CymR.

A close inspection of the active cysteine in CymR revealed three major differences compared with the active cysteine residue in OhrR, which is a prototype of the OhrR/MgrA family thiol-dependent redox regulatory proteins. First, the sole cysteine in CymR is located in the wHTH DNA-binding domain and near the HTH motif (Fig. 2B) (28). Oxidation and further S-thiolation of this cysteine could directly affect DNA binding by the oxidized CymR. However, in the OhrR type proteins, the sole cysteine is located towards the end of the first α helix at the dimerization domain. Oxidation and thiolation affect first the conformation of the dimerization domain, which is transferred to the DNA-binding domains (29,30). Secondly, Cys25 in CymR is quite exposed (Fig. 2B), which makes it very accessible to oxidants and subsequent reactions with LMW thiols. However, in the OhrR type proteins, the active cysteine is partially embedded in the dimerization domain (29). Third, there are numerous basic residues near the active cysteine of CymR (Fig. 2B). Lys20 and Arg56 are less than 10 Å away from Cys25, which may contribute to lower sulfhydryl pKa and increase its reactivity (30). In contrast, there are fewer basic residues surrounding the sole cysteine in OhrR, and the high reactivity of the active cysteine in OhrR was thought to be a result of the positive macrodipole of the first α helix and hydrogen bonding to nearby Tyr29 and Tyr40, which helps to stabilize the negatively charged thiolate (29).

Upon oxidation, Cys25-SH is oxidized to Cys25-SOH (Fig. 2C). A NBD assay supported formation of sulfenic acid in the oxidized CymR in the absence of small-molecule thiols (Fig. S3). A close inspection revealed that the carbon-sulfur bond of Cys25 rotates about 180 degrees after oxidation (Fig. 2D and 2E). This rotation directs the sulfur-oxygen bond towards the DNA-binding domain (Fig. S4). As a result,
intracellular LMW thiols such as Cys or CoA could easily attack the sulfur on Cys25-SOH from the opposite side to form a mixed-disulfide through a nucleophilic reaction (Fig. S4). Superimposition of the reduced and sulfinic acid forms of CymR showed almost identical conformations, which is consistent with the gel shift data that yielded similar DNA-binding affinities for these two forms of CymR (k_d of 25 nM and 50 nM, respectively). However, after S-thiolation, their DNA-binding ability is dramatically decreased (k_d increases to 800 nM), which indicates that S-thiolation significantly alters the DNA-binding domain structure of CymR. This behavior is similar to the OhrR type proteins and has already been confirmed by a thiol-modified structure of SarZ, in which a dramatic conformational change was induced by S-thiolation (30).

The C25S substitution mutant showed similar phenotypes as the wild-type strain
To investigate the contribution of Cys25 to the function of CymR, this residue was mutated to serine (CymRC25S). A flag-tag expression vector pCL55-Flag was used for complementation. As a result, four strains were constructed: WT (wild-type Newman with the empty vector), ΔcymR (mutant with the empty vector), ΔcymR/cymR (mutant complemented with wild-type cymR-Flag), and ΔcymR/p-cymRC25S (mutant complemented with cymRC25S-Flag mutant). We used CuSO_4 to examine the resistance of the strains to oxidative stress and blood plate assay to test α-hemolysin expression on the above four strains. As shown in Fig. 3A, the ΔcymR/cymR and ΔcymR/p-cymRC25S stains can effectively express the flag-tagged proteins. In the stress resistance assay, the ΔcymR mutant showed decreased stress resistance to CuSO_4, confirming the previous report (20). At the same time, both of the introductions of the wild-type cymR and cymRC25S to the ΔcymR mutant can restore the resistance (Fig. 3B), demonstrating that CymRC25S protein is a biologically active protein in vivo. In the blood plate assay, the ΔcymR mutant showed decreased α-hemolysin expression, confirming the previous report (20). Introduction of cymRC25S to the ΔcymR mutant showed even higher expression of α-hemolysin than that in both of the WT and ΔcymR mutant strain (Fig 3C), thereby indicating the critical role of Cys25 in the overall function of CymR.

Monitoring the role of Cys25 in regulating gene expression
In order to provide further in vivo support to the mechanism, quantitative real time PCR was performed on the four aforementioned strains. Bacteria were grown to mid-log growth phase and treated with H_2O_2 for 10 min. Then, the transcript levels of two genes, tcyP and mccB, were analyzed by quantitative RT-PCR. The tcyP gene functions as a cystine transporter and contributes to the redox potential equilibrium. The mccB gene functions in reverse transsulphuration and both of the tcyP and mccB were directly regulated by CymR (20). In the absence of H_2O_2, the transcript levels of both genes were low in the wild-type strain. Upon addition of H_2O_2, a close to 10-fold (tcyP) and 5-fold (mccB) induction were observed, respectively. However, in the cymR mutant, the transcript levels of both genes were high even in the absence of H_2O_2, and the addition of H_2O_2 decreased the transcript levels of both genes, showing that CymR plays a key role in redox signaling. In addition, complementation of the cymR mutant strain with the wild-type copy of cymR led to the wild-type behavior to H_2O_2 treatment, but the complementation of the mutant strain with the C25S mutant copy of cymR failed to yield the wild-type behavior (Fig. 4), resulting in a redox-silent protein. These experiments clearly indicate that Cys25 is a key residue that impacts redox regulation of CymR.

Discussion
In this study, we show that CymR is a thiol-based, oxidative stress-sensing regulator in S. aureus. CymR directly senses
ROS by oxidation of the sole cysteine to afford a sulfinic acid intermediate. The sulfinic acid intermediate may quickly react with intracellular LMW thiols to form a mixed disulfide. This thiolation will lead to dissociation of CymR from its cognate DNA promoters and impact the expression of the cymR regulon, including cysteine biosynthesis genes, ROS detoxifying genes, and virulence genes, thus resulting in a rebalance of the disturbed redox equilibrium and a modulation of virulence (Fig. 5).

As a human pathogen, *S. aureus* has to cope with the oxidative stress generated by the human immune system. Evolutionary adaption enriches *S. aureus*’s oxidation-sensing system. For example, at least three *Bacillus subtilis* OhrR type oxidation-sensing regulators, MgrA, SarZ, and SarA (6,10,11) were identified in *S. aureus*. Sequence alignment of CymR in *S. aureus* with its homologues in *Bacillus subtilis* and *Listeria innocua* revealed that the key cysteine residue in *S. aureus* is unique, which may also be attributed to this evolutionary difference, promoting its survivability in the host body.

In *S. aureus*, coenzyme A and cysteine are considered to be the major LMW thiols for the cellular reducing buffer (21-23). Besides these two thiols, BSH was discovered to form a mixed disulfide with the well-known thiol-based sensor OhrR in *Bacillus subtilis* (31,32), which raises the possibility that the BSH-like molecule may also serve as a substitute for glutathione in Gram-positive bacteria. The OhrR-type proteins show two distinct types of redox-sensing mechanisms. In the first type the proteins sense oxidative stress by forming a mixed disulfide with LMW thiols through the sulfinic acid intermediate, such as OhrR, MgrA, and SarZ (8,10,11,29). In the second type the proteins sense oxidative stresses by forming intermonomer disulfide, such as *Xanthomonas campestris* OhrR (33,34), OspR, and MexR (13,14). The oxidation-sensing mechanism of CymR resembles the first type of OhrR proteins. However, CymR has its own unique features. Unlike the cysteine in the OhrR proteins, Cys25 in CymR is located in the DNA-binding domain, suggesting that the modification of Cys25 would directly affect the DNA-binding affinity of the protein.

An interesting result we found is that the cymR mutant is more sensitive to oxidative stress (Fig. 3), despite the fact that the genes for ROS detoxification are highly expressed in the cymR mutant (20). In fact, a previous study also reported that a cymR deletion mutant shows 1.4- to 5.8-fold higher transcription of multiple genes involved in stress response (e.g., *ahpC, ahpF, dps, sodA, sodM*, and *perR*). These results imply that high expression of stress response genes is not sufficient for resistance to oxidative stress. Since the knockout of cymR increases the intracellular cysteine pool by ~68-fold and the cysteine to cystine ratio by ~36-fold, it was suggested that the imbalance of thiol redox status and the elevated generation of ROS by Fenton reaction caused the higher susceptibility of the cymR mutant (20). In the wild-type cells, when oxidative stress causes oxidation of cysteine to cystine and significantly alters the thiol redox balance, Cys25 of CymR will also be oxidized, which induces the expression of genes involved in stress responses as well as cystine uptake and cysteine biosynthesis in a controlled manner (Fig. 4), the result of which will lead to rebalance of the thiol equilibrium without permanent disruption of cysteine metabolism. Therefore, CymR can be regarded as a key regulator of intracellular redox homeostasis.

Since the human immune system generates ROS to kill invaded pathogens, broad attention has been focused on the study of redox sensing, regulation, and pathogenesis in human pathogens (6,8,10-14,16,29,35-42). Previously, we identified the molecular mechanism of two other thiol-based redox-sensing regulators of *S. aureus*: MgrA and SarZ. MgrA has the ability to sense oxidative stress and regulate virulence (10). SarZ responds to oxidative stresses and induces the expression of genes involved in stress response as well as metabolic switching to complement the MgrA regulon...
The discovery of the CymR-mediated regulation and ROS-sensing mechanism further connects cellular redox buffering with redox sensing and virulence. The sole cysteine of CymR is quite exposed to the environment, which makes it a potential exposed target for new therapeutic agents to treat *S. aureus* infection.

Reference

Data deposition

The crystal structures of CymR reduced form and oxidized form were deposited in the PDB database with PDB ID codes: 3T8R and 3T8T respectively.
Acknowledgements

We thank all beamline staff for data collection support, Catherine B. Poor for CymR reduced form data collection, Dr. Olga Soutourina at Institut Pasteur for helpful discussion. We thank S. Frank Reichard, MA for editing the manuscript. This work was supported by a Scientist Development Grant 0835158N from the American Heart Association (T.B.), AI077564 from the National Institute of Allergy and Infectious Diseases (T.B), National Institutes of Health (NIH/NIAID AI074658 to C.H.), a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease Award (C.H.).
Table 1. Dissociation constant (K_d) of CymRWT and CymRC25S from \textit{mccAB} promoter in different treatment conditions.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Treatment</th>
<th>Native</th>
<th>H_2O_2</th>
<th>H_2O_2+CoA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CymRWT</td>
<td>25</td>
<td>50</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>CymRC25S</td>
<td>12.5-25</td>
<td>12.5-25</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Data collection and refinement statistics for CymRWT and CymRCys25-SOH

<table>
<thead>
<tr>
<th></th>
<th>CymRWT</th>
<th>CymRCys25-SOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection and crystal parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
<td>C2</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>77.10, 52.50, 33.44</td>
<td>77.33, 52.58, 33.45</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90.00, 98.52, 90.00</td>
<td>90.00, 98.12, 90.00</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20-1.70 (1.76-1.70)</td>
<td>20-1.75 (1.81-1.75)</td>
</tr>
<tr>
<td>R<sub>merge</sub> (%)</td>
<td>4.4 (28.9)</td>
<td>8.7 (62.1)</td>
</tr>
<tr>
<td>I/σI</td>
<td>25.2 (2.6)</td>
<td>17.1 (1.5)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>96.6 (79.3)</td>
<td>99.9 (99.2)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>3.4 (2.6)</td>
<td>5.5 (5.0)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20-1.70 (1.76-1.70)</td>
<td>20-1.75 (1.81-1.75)</td>
</tr>
<tr>
<td>R<sub>work</sub>/R<sub>free</sub> (%)</td>
<td>21.9/25.9 (26.6/29.2)</td>
<td>21.7/25.1 (28.9/34.1)</td>
</tr>
<tr>
<td>Rmsd bond lengths (Å)</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>Rmsd bond angle (°)</td>
<td>1.068</td>
<td>1.052</td>
</tr>
<tr>
<td>Mean B factor (Å²)</td>
<td>33.216</td>
<td>36.175</td>
</tr>
</tbody>
</table>

* Highest-resolution shell is shown in parentheses
Figure legends

Fig. 1. Oxidation effects of CymR on DNA binding affinity. Purified CymRWT (A) and CymRC25S (B) were incubated with the mccAB promoter. H$_2$O$_2$ was added to the reaction and incubated for 30 min. Then CoA was added and further incubated for 30 min. The concentrations of reaction components are as follows: mccAB promoter, 0.5 nM; CymR, 0, 0.0125, 0.025, 0.05, 0.1, and 0.8 µM; H$_2$O$_2$, 1 mM; CoA, 0.2 mM.

Fig. 2. (A) Ribbon diagram of the CymR monomer, showing secondary structure numbering. Crystal structures of the reduced (B) and oxidized (C) CymR (both at 1.7 Å resolution) and electron density of the reduced (D) and sulfenic acid (E) forms of Cys25 in CymR. CymR was purified with 1 mM DTT for the reduced CymR crystal. To crystallize oxidized CymR, the reduced CymR was desalted with a buffer devoid of DTT and then treated with 1 mM H$_2$O$_2$ at room temperature for 1 h. 2Fo-Fc map (1.0 σ) of Cys25 and Fo-Fc map (3.0 σ) of Cys25 in the absence of oxygen atom were shown as blue and red mesh, and the atoms were colored green (carbon), dark blue (nitrogen), red (oxygen), and yellow (sulfur).

Fig. 3. (A) Western blot showing that CymR-Flag and CymRC25S-Flag can be effectively expressed in vivo. (B) Disk diffusion assay showing the effect of mutation of Cys25 on S. aureus stress resistance. Four strains were grown in TSB overnight. They were diluted to OD$_{600}$ = 0.2 and mixed with TSA to be used as an overlay on the plates. Disks were placed on the top of the overlay and 200 mM CuSO$_4$ was added. The plates were incubated overnight. (C) Blood plate assay showing the effect of mutation of Cys25 on S. aureus α-hemolysin expression.

Fig. 4. The role of Cys25 in the expression of genes in CymR regulon. Test strains were grown in TSB supplemented with 2 mM cystine to mid-log growth phase and divided into two copies. One of the cultures was treated with 20 mM H$_2$O$_2$ for 10 min and total RNA was purified. The mRNA levels of two genes, tcyP (A) and mccB (B), were analyzed by qRT-PCR with normalization with 16S rRNA.

Fig. 5. A proposed model of CymR-based oxidation-stress sensing, response, and virulence regulation in S. aureus. When S. aureus is exposed to ROS, the redox potential equilibrium will be disrupted. Meanwhile, CymR senses the oxidative stress through oxidation of the active cysteine and then dissociates from DNA, which may activate two distinct pathways: cysteine biosynthesis/ROS detoxification pathway and the virulence regulation pathway. In the cysteine biosynthesis and ROS detoxification pathway, mccAB, tcyP, cysM and other genes with similar functions are induced and restore the redox equilibrium in cytoplasm. In the virulence regulation pathway, upon sensing oxidative stress by CymR, S. aureus may turn down its virulence gene expression and convert itself into a form more resistant to host killing.
Fig. 2

[Diagram of protein structure and modifications]
Fig. 5
Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response
Quanjiang Ji, Liang Zhang, Fei Sun, Xin Deng, Haihua Liang, Taeok Bae and Chuan He
J. Biol. Chem. published online May 2, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.359737

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/05/02/M112.359737.DC1