THE ROLE OF GLYCINE RESIDUES 140 AND 141 OF SUBUNIT B IN THE FUNCTIONAL UBIQUINONE BINDING SITE OF THE NA\(^{+}\)-PUMPING NADH:QUINONE OXIDOREDUCTASE FROM VIBRIO CHOLERAE.

Oscar Juárez\(^1\), Yashvin Neehaul\(^2\), Erin Turk\(^3\), Najat Chahubon\(^2\), Jessica M. DeMicco\(^1\), Petra Hellwig\(^2\) and Blanca Barquera\(^1\)*

\(^1\) Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Troy, NY.
\(^2\) Institut de Chimie, Laboratoire de spectroscopie vibrationnelle et électrochimie des biomolécules, CNRS Université de Strasbourg, 1, Strasbourg, France.
\(^3\) Department of Biology, Stanford University, Stanford, CA.

Running head: Role of NqrB-G140 and –G141 in the functional binding of ubiquinone.

* Address correspondence to: Blanca Barquera, Rm 2239. Center for Biotechnology and Interdisciplinary Studies, 110 Eight Street. Troy, NY. Phone: (518) 276 3861

Background: Na\(^{+}\)-NQR is a bacterial respiratory enzyme that catalyzes the oxidation of NADH, the reduction of ubiquinone and the translocation of Na\(^{+}\) across the membrane.

Results: Mutations at NqrB-G140 and NqrB-G141 impair the reaction of Na\(^{+}\)-NQR with ubiquinone.

Conclusion: Residues NqrB-G140 and –G141 are critical for binding and reaction with of ubiquinone.

Significance: This work identifies the functional ubiquinone binding site in Na\(^{+}\)-NQR.

The Na\(^{+}\)-pumping NADH:quinone oxidoreductase (Na\(^{+}\)-NQR) is the main entrance for electrons into the respiratory chain of many marine and pathogenic bacteria. The enzyme accepts electrons from NADH, donates them to ubiquinone, and the free energy released by this redox reaction is used to create an electrochemical gradient of sodium across the cell membrane. Here we report the role of Glycine-140 and Glycine-141 of the NqrB subunit in the functional binding of ubiquinone. Mutations at these residues alter the affinity of the enzyme for ubiquinol. Moreover, mutations in residue NqrB-G140, almost completely abolish the electron transfer to ubiquinone. Thus, NqrB-G140 and -G141 are critical for the binding and reaction of Na\(^{+}\)-NQR with its electron acceptor, ubiquinone.

The Na\(^{+}\)-pumping NADH:quinone oxidoreductase (Na\(^{+}\)-NQR) is a redox-driven ion pump and the entry point for electrons in the respiratory chain in a number of marine and pathogenic bacteria, such as *Vibrio cholerae*, *Klebsiella pneumoniae*, *Yersinia pestis*, among others (1-3). The enzyme, encoded by the *nqr* operon, is an integral membrane complex, containing six subunits (NqrA-F) that transfers redox equivalents from cytosolically produced NADH, to ubiquinone-8. This electron transfer process.

Copyright 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
takes place through a series of five cofactors: an FAD, a 2Fe-2S center, two covalently-bound FMN molecules, and one riboflavin (1,4-10). Several structural motifs have been characterized in the enzyme, including the binding or attachment sites of most of these cofactors. Moreover, the properties of the different redox states of the cofactors and the electron transfer reactions within the enzyme have been intensively studied (4,6,11-15). However, very little is known about the location of the ubiquinone binding site.

Hayashi et al. found evidence that Glycine-140 in NqrB could form part of the ubiquinone binding site in Na⁺-NQR from V. alginolyticus (16). They showed that the enzyme is inhibited by the antibiotic korormicin, in the subnanomolar range (Ki= 82 pM), and by HQNO (2-n-Heptyl-4-hydroxyquinoline N-oxide), in the submicromolar range (Ki= 300 nM)(17-19). These authors isolated spontaneous mutants with resistance to korormicin, and found that they all had the same single base mutation, which resulted in the replacement of NqrB-Gly-140 by valine. Due to the structural similarity of ubiquinone, HQNO and Korormicin, it was suggested that these compounds may bind to the same site, and thus this residue may be part of the ubiquinone-binding site. However, korormicin and HQNO are non-competitive inhibitors with respect to ubiquinone (19), indicating that the inhibitors and ubiquinone do not occupy exactly the same binding site.

To clarify the involvement of NqrB-Glycine-141 (V. cholerae numbering) in the binding of ubiquinone, we constructed mutants of two contiguous conserved glycine residues, NqrB-G140 and NqrB-G141, located in the transmembrane helix III of NqrB (these residues are homologous to glycine residues 139 and 140 in the V. alginolyticus enzyme). Mutations that alter the size of either of these residues greatly diminish the ability of the enzyme to interact with ubiquinone. Most striking, however, was the result that modifications to NqrB-G140, the glycine residue adjacent to the one altered in the original korormicin resistant mutants, almost completely abolish binding of this substrate. Analysis of the redox reactions of the enzyme by stopped-flow kinetic methods indicated that the electron transfer pathway of the NqrB-G140A mutant is specifically altered at the step where electrons are transferred to ubiquinone. Redox titrations of the wild-type enzyme and the NqrB-G140A mutant showed that none of the redox cofactor midpoint potentials were altered. The mutant had a decreased ability of pumping sodium under steady state conditions, but it was able to build a significant ΔΨ under partial turnover, which does not depend on the presence of ubiquinone. This clearly indicates a specific impairment of the binding site for ubiquinone in the mutant. IR-spectroscopy demonstrates that the overall structure of the enzyme is not disturbed by the mutation, and confirms that the NqrB-G140A and NqrB-G141A mutations specifically affect the ubiquinone binding site of Na⁺-NQR.

EXPERIMENTAL PROCEDURES
Cell Growth Conditions- Vibrio cholerae cells were grown at 37°C in New Brunswick BioFlo-5000 fermentors under constant aeration and agitation in Luria Bertani (LB) medium, 50 μg/mL streptomycin, and 100 μg/mL ampicillin. L-arabinose was added during log phase growth to induce expression of Na⁺-NQR.

Protein Purification- Na⁺-NQR wild type and mutant proteins were purified using a Ni-NTA resin (Qiagen). Membrane proteins were extracted using n-dodecyl b-maltoside (DM) at a final concentration 0.3% (w/v), and the mixture was incubated at 4°C for 30 min. The sample was ultracentrifuged at 1000, 000 xg for 30 minutes, at 4°C and the supernatant was mixed with 20 mL of Ni-NTA resin, previously equilibrated in purification buffer (5 mM imidazole, 50 mM Na₂HPO₄, 300 mM NaCl, 5% glycerol (v/v), pH 8). This mixture was incubated for 60 min at 4°C with constant agitation before transfer to a column. The resin was then washed with purification buffer containing 0.05% DM, then with purification buffer containing 0.05% DM and 10 mM imidazole, pH 8. Elution buffer (100 mM imidazole, 50 mM Na₂HPO₄, 300 mM NaCl, 5% glycerol, 0.05% DM, pH 8) was passed through the column until the protein eluted. The enzyme was concentrated using Centricon filters (Millipore) with a cut-off of 100kDa, then frozen in aliquots and stored at liquid nitrogen temperature until use.

The flavin:protein ratio was determined after purification as described before (13). For all the mutants studied, the flavin:protein ratio was close to four as determined in the wild-type enzyme.

Activity Measurements- Measurements of enzymatic activity were made spectrophotometrically in reaction buffer (50 mM Tris-HCl, 1mM EDTA, 5% glycerol (v/v), and 0.05% DM (w/v), pH 8.0) containing 100 mM NaCl, 250 μM K₂-NADH and ubiquinone-1 (0.5-50 μM). Ubiquinone reductase activity was measured at 282 nm, as reported before (20).

Site-directed mutagenesis- The Quickchange site-directed mutagenesis kit (Stratagene) was used to construct all mutants in this study. The wild type operon, cloned into the pBAD vector, was used as template for the mutagenesis reactions. The mutations were encoded in the forward primers, which are listed in Table I. All mutations were confirmed by direct DNA sequencing.

Fast kinetics experiments- The reduction kinetics of NqrB-G140A were studied by stopped flow, in a buffer containing 250 μM K₂-NADH or 0.5 mM ubiquinol-1, in the presence of 100 mM NaCl. The experiments using ubiquinol-1 as a substrate were made under anaerobic conditions, in the presence 5 mM dithiothreitol, to avoid the accumulation of ubiquinone-1. Ubiquinol-1 was prepared as reported before (21). Data were averaged and analyzed as reported previously (12).

Redox titrations- Wild type Na⁺-NQR and NqrB-G140A samples were washed with 50 mM Tris-HCl, pH 8.0, 150 mM of either NaCl or KCl, 0.05% DM buffer. Typically, 20 μL of the concentrated sample were used to fill the electrochemical
thin layer cell mounted with two gold grids previously modified in a mixture of 2 mM cysteamine and 2 mM mercaptopropionic acid in a 1:1 ratio (22,23). A Ag/AgCl electrode was used as reference, adding 208 mV for SHE’. Temperature was maintained at 10°C throughout the redox titrations. A mixture of 20 mediators was added to the sample one hour before the start of the titration (24). Spectra were recorded in the UV-visible domain is taken in potential steps of 20 mV from 0 to -620 mV with an equilibration time of 30 to 40 minutes for each step.

IR spectroscopy- Mid-IR spectra were recorded on a Bruker 70 spectrometer equipped with a liquid nitrogen cooled MCT detector. 1 µL of the sample was dried under a flux of argon on a Si ATR crystal. 256 scans were averaged for 1 spectrum. After performing a baseline correction, band separation of the Amide I signature (1700-1600 cm⁻¹) was done by a multi-Gaussian fit (25).

Membrane potential measurements- The NqrB-G140A mutant was reconstituted into liposomes as reported before (13). Formation of ΔΨ was measured spectrophotometrically at 625 minus 587 nm, using 3 µM Oxonol VI (13). The reaction buffer contained 100 µM NADH, 100 µM CoQ-1, 100 mM NaCl, 50 mM HEPES, 150 mM KCl, 1 mM EDTA, pH 7.5. For partial turnover experiments CoQ-1 was added several seconds after the addition of NADH.

RESULTS

Steady state kinetics of NqrB-G140 and –G141 mutants- The binding of ubiquinone to the reduced enzyme cannot be assayed under equilibrium conditions, since the enzyme would transfer electrons to this substrate, producing ubiquinol almost immediately. Thus, in order to determine the role of the NqrB-G140 and NqrB-G141 in the binding of quinone, the $K_{m_{app}}$ for this substrate was measured under steady state conditions in the wild type and in the mutant proteins. Activity was measured at different concentrations of CoQ-1, using a fixed and near saturating concentrations of the other two substrates (250 µM NADH and 100 mM NaCl). Under these conditions the $K_{m_{app}}$ of wild type Na⁺-NQR is approximately 3 µM. For the mutants at position NqrB-G141, the change in the size of this residue increased the $K_{m_{app}}$; NqrB-G141L showed a 3-fold increase in the $K_{m_{app}}$ (Table II), while NqrB-G141A and NqrB-G141V had a 6 and 9-fold increase, respectively. Remarkably, the two mutants at position NqrB-G140, A and L, showed non-saturating behavior with up to 50 µM ubiquinone, strongly indicating that mutations at these residues decreased greatly the affinity of the binding site.

Hayashi et al. showed that a spontaneous mutant at position NqrB-G141 (NqrB-G140V, in V. alginolyticus numbering) increased a 100,000 fold its resistance to korormicin (16). Even though korormicin and HQNO compete for the same binding site (19), the korormicin-resistant mutant has almost the same sensitivity to HQNO than wild type. This indicated that the two inhibitors bind to the same pocket in the enzyme, but that they interact with different structures in the
protein. Unfortunately, korormicin is not commercially available, so we were only able to test HQNO inhibition on the mutants studied. The activity the enzyme was titrated with HQNO, using nearly saturating concentrations of NADH, ubiquinone and sodium. Our results confirm the previous observations by Hayashi et al. (16) that mutants at position NqrB-G141, alanine or valine, have the same sensitivity to the inhibitor as the wild type Na⁺-NQR. On the other hand, NqrB-G140A is up to seven times more resistant to HQNO than the wild-type enzyme. This indicates that NqrB-G140 participates in the binding of both, ubiquinone and HQNO.

Fast Kinetics Measurements—Reduction by NADH- To fully understand the effect of mutating NqrB-G140 to Ala, the fast kinetics of reduction of with NADH were measured. We have previously shown that the reduction reaction of wild type Na⁺-NQR in sodium-free conditions proceeds in four distinguishable kinetic phases (12). In phase I, is the two-electron reduction of FAD, evidenced by a difference spectrum showing two minima at 390 and 460 nm, with a rate constant higher that 250 s⁻¹. Phase II corresponds to the one-electron reduction the riboflavin neutral radical, with a difference spectrum with minima at 575 and 550 and a maximum at 430 nm, and a rate of 20-30 s⁻¹. Phase III is the reduction of the two covalently bound FMN molecules to the anionic radical species, with a difference spectrum with a minimum at 460 nm and a shoulder at 390nm, and a rate constant of approximately 2 s⁻¹. Finally, in phase IV, the reduction of the anionic radical FMNC to the flavohydroquinone can be observed with a minimum at 470-480 nm at a slow rate (Table III). In the presence of sodium, the reduction rate of the riboflavin neutral radical is increased about ten times and cannot be individually resolved from the two-electron reduction of FAD. The reductions of the two FMN molecules can be observed in the second and third phases with rates increased 3-8 times.

Interestingly, the reduction kinetics for NqrB-G140A shows similar kinetic components, in the presence or absence of sodium, to the ones obtained for the wild type enzyme. (Figure 1, Table III). This indicates that all the internal reactions in the mutant are similar to the ones observed in the wild type enzyme, suggesting that the mutation altered the step where electrons are transferred to ubiquinone. To test this hypothesis, the fast reduction reaction using ubiquinol-1 as substrate was measured.

Reduction by Ubiquinol-1- Riboflavin is the last electron carrier in the enzyme, transferring electrons to ubiquinone (14). To elucidate whether NqrB-G140A interferes with the binding of ubiquinone, we studied the kinetics of the reverse flow of electrons using ubiquinol-1, as electron donor. Our previous results demonstrated that the wild type enzyme can be reduced with this substrate and that the only center that accepts electrons is Riboflavin (12,14). Riboflavin is found as a stable neutral flavosemiquinone (RibH⁺) in the air oxidized enzyme and upon reduction, it is converted into the fully reduced form (RibH₂) (14,26,27).
The kinetics of reduction of wild type and NqrB-G140A mutant were measured at 550 nm, where the reduction of the riboflavin neutral radical has a strong signal. The difference spectrum of the reduction process confirms that riboflavin is the only cofactor involved in the process, with characteristic minimum at 510 nm and shoulders at 575 and 650 nm (Figure 2). This conclusively demonstrates that the mutation only affects the interaction of the enzyme with ubiquinone/ubiquinol, since the reduction process in NqrB-G140A ($k_{obs}=0.02$ s\(^{-1}\)) decreased in three orders of magnitude, compared to wild type ($k_{obs}=26$ s\(^{-1}\)). In this new set of experiments the reduction of wild type was considerably faster than in previous reports (14), since experiments were performed under anaerobic conditions and in the presence of dithiothreitol, which chemically reduces ubiquinone, keeping a constant concentration of ubiquinone.

Membrane potential formation - The sodium pumping activity of NqrB-G140A mutant was measured spectrophotometrically in proteoliposomes, using the $\Delta\Psi$-sensitive dye Oxonol VI (13). Figure 3 shows the pumping activities of wild type Na\(^{+}\)-NQR and the NqrB-G140A mutant under partial turnover and under steady state conditions. We have reported previously that Na\(^{+}\)-NQR can pump a small amount of sodium in the presence of NADH and in the absence of ubiquinone, which corresponds to a partial turnover of the enzyme (11). Traces ii (wild type) and v (NqrB-G140A) show that the sodium pumping activity of the mutant is not affected under partial turnover conditions.

Under steady state conditions (in the presence of NADH, CoQ-1 and Na\(^{+}\)) the mutant exhibits a biphasic behavior (trace iv). A fast phase probably corresponds to the partial turnover and a slower phase that corresponds to true steady state sodium pumping, which is impaired in the mutant. This result corroborates that the NqrB-G140A mutation is specifically altering the ability of the enzyme to interact with ubiquinone.

Redox Titrations - To further corroborate that NqrB-G140A is affecting exclusively the binding of ubiquinone, the redox properties of the enzyme were studied in this mutant. A spectropotentiometric redox titration from 0 to -620 mV, with steps of 20 mV, was performed recording the redox dependent development of the UV-vis spectra.

The direct fitting of the Δabsorbance against the applied potential to the Nernst equation is not possible, since the different spectral transitions of the flavins overlap each other. However, at selected wavelengths, the specific transitions of the different flavins and their reaction intermediates are distinguishable (28). At 560 nm, for example, major contributions from the one electron reduction of the 2Fe-2S center ($2Fe-2S^{2-} \leftrightarrow 2Fe-2S^{2+}$) and the riboflavin neutral radical ($FlH^- \leftrightarrow FlH^*$) transitions can be depicted. At this wavelength the $FlH^- \leftrightarrow Fl^*$ transition from FMNC has a large contribution, but it is practically cancelled by the $FlH^- \leftrightarrow Fl$ transition from FAD, since these two transitions appear concurrently and the contribution of FAD is negative. At 460 nm,
the major contributions arise from the two-electron reduction of FAD (\(\text{Fl}^+ \leftrightarrow \text{Fl} \)), and the one-electron reduction of the two covalently bound FMN molecules (\(\text{Fl}^\bullet \leftrightarrow \text{Fl} \)). At 380 nm, the signal of the \(\text{Fl}^+ \leftrightarrow \text{Fl} \) transition from FAD and the \(\text{Fl}^\bullet \leftrightarrow \text{Fl} \) transition of FMN are the predominant signals.

Data obtained at 560, 380 and 460 nm, respectively, were fitted to a two or three component model based on the Nernst equation (Figure 4). The midpoint potentials for the cofactors in the NqrB-G140A mutant are practically the same as the ones obtained for the wild type enzyme (28) (Table IV).

Infrared spectroscopy- To further verify that the NqrB-G140A mutation does not perturb the secondary structure of the enzyme, we compared the mid-IR spectrum of the mutant to that of wild type Na⁺-NQR. The mid-IR spectral region of proteins includes vibrations that arise from the amide backbone. These amide bands provide a direct window into the secondary structure of proteins and have been assigned as follows (29): Amide I [1700-1600 cm⁻¹] C=O stretching mode; Amide II [1575-1480 cm⁻¹] coupled (N-H) bending/(C-N) stretching mode; Amide III [1320-1220 cm⁻¹] (N-H) bending, (C-N) bending, (C=O) stretching, (O=C-N) bending mode. The Amide I signature has been used to determine the secondary structure of proteins. By means of curve fitting, it is possible to determine the proportions of different classes of secondary structure, including \(\alpha \) helix, \(\beta \)-turn and \(\beta \)-sheet. Comparing the IR-absorbance spectra of a wild type protein and a mutant can thus show if the mutation caused significant changes in secondary structure.

We recorded the IR-absorbance spectra of wild type Na⁺-NQR and the NqrB-G140A mutant, using an ATR method. The spectra of the wild type enzyme and the NqrB-G140A mutant are clearly similar in Amide regions I, II and III, suggesting that the secondary structure is not perturbed in the mutant (data not shown.)

The best fit for band separation of the Amide I signature is obtained with 4 components (Figure 5). The area of each component with respect of the total area of the Amide I signal gives the relative contribution of each class of secondary structure to the overall folding of the protein (25). The results for the wild type and the NqrB-G140A mutant differ less than 1%, which is well within the maximum expected error of 5% (Table V). We therefore, conclude that the mutation does not have a significant effect on the overall structure of the enzyme.

DISCUSSION

Several structural motifs have been indentified in Na⁺-NQR, the binding sites for NADH, 2Fe-2S center and FAD, as well as the attachment sites of the two covalently bound FMN cofactors (4,6,8,9,30). Recent studies have also indentified several negatively charged residues that could form part of the sodium binding sites (11,13). However, the ubiquinone binding site has remained largely uncharacterized. Hayashi et al. identified that the mutation of the glycine residue 141 to valine of NqrB subunit confers resistance to the antibiotic
korormicin (16). Since korormicin is a ubiquinone analog, it was suggested that this site should also be involved in ubiquinone binding. However, it was also demonstrated that korormicin is a non-competitive inhibitor against ubiquinone, which complicates this interpretation. The same authors showed the inhibition patterns of HQNO and korormicin produced double reciprocal plots with intersecting lines, consistent with a non-competitive inhibition respect to ubiquinone (19). They also determined the K_i constants for the free enzyme and for the substrate–enzyme form, obtaining identical values, which indicate that the binding of ubiquinone does not interfere with the binding of the inhibitor, and in consequence, they might not compete for the same site. An alternative explanation for this behavior is that the inhibitor may compete with ubiquinone for its binding site, but is also able to interact with another form of the enzyme, which could produce inhibition with competitive and uncompetitive components. Until now, it has not been clear whether HQNO and ubiquinone bind to the same site on the enzyme. The results found here demonstrate that mutations at residue NqrB-G140 decrease the ability of the enzyme to interact with HQNO as well with ubiquinone, suggesting that this residue is part of the binding site of both molecules.

Recently, Cassutt et al. characterized the binding of ubiquinone to Na$^+$-NQR using a photoreactive biotinylated quinone (31). Their results suggest that the NqrA subunit is involved in ubiquinone binding: the photoaffinity labeled quinone binds to a band on their SDS gel of a similar molecular weight to NqrA and also because the isolated NqrA subunit is able to bind ubiquinone. However, the binding to the isolated NqrA may not be catalytically relevant, especially because the saturation curve shows a strong negative cooperativity, a feature not found in the titrations of the activity, reported here and in previous studies (32). Moreover, the authors showed that the ubiquinone analogs occupy the site of a “tightly-bound” ubiquinone. The role of this “tightly-bound” ubiquinone is not clear, since it is found in substoichiometric amounts (1,10). Also independent studies have shown that this ubiquinone does not participate in the redox reactions and does not affect the stability or activity of the enzyme (31). Furthermore, Hayashi et al. has shown that NADH and ubiquinone react with the enzyme following a Ping Pong mechanism (32). Accordingly, the ubiquinone binding site would not be available to the inhibitor or to ubiquinone until the enzyme is reduced and the NAD is released. Thus, the reaction of the ubiquinone analog with the oxidized form (or free form) of the enzyme might not label the catalytically relevant binding site.

In the present manuscript we show that the conserved residues NqrB-G140 and NqrB-G141 are part of a functional ubiquinone binding site. Mutant enzymes in these residues show non-saturating kinetics versus ubiquinone, strongly indicating that the binding site is altered. Further characterization of NqrB-G140A indicates that the properties of all the redox cofactors remained unperturbed. The reduction kinetics by NADH, in the forward direction, is practically the same as the one obtained
for wild type enzyme. When the reduction of the mutant enzyme was followed in the reverse direction, using ubiquinol, it was clear that the reduction rate of the reaction was severely perturbed, demonstrating that this is the site where the mutation affects the enzyme. In addition, Hayashi et al. (16) identified NqrB-G141 as part of the korormicin binding site, by selecting mutants that were resistant to this antibiotic. It is possible that mutations at NqrB-G140 were not identified by these authors, because such mutations would be deleterious, greatly decreasing the activity of the enzyme.

Ubiquinone might not interact directly with NqrB-G140, since glycine residues lack functional groups that can form strong electrostatic interactions with this substrate. Although, in hydrophobic environments, the methylene group of glycine can form hydrogen bonds with nearby oxygen atoms (33). Thus, the role of NqrB-G140 in binding ubiquinone could agree with two possibilities: 1) the mutation disturbs the packing of helices, which affects the immediate environment of the quinone binding site. In contrast with soluble globular proteins, in which glycine residues are common helix breakers, glycine residues have an important role in the stability and folding of polytopic membrane proteins, by allowing strong electrostatic interactions between the backbones of contiguous helices and by creating space for interdigitation of the helices (34). Examples of these types of interactions can be found in glycine zippers (35). 2) NqrB-Gly 140, creates a cavity that is part of the ubiquinone binding site, so mutations altering the size of this residue would directly sterically interfere with ubiquinone, decreasing its binding. Indeed, in rhodopsin Glycine-122 forms a pocket for the binding of retinol. Substitution of this residue by a larger group decreases the ability of the enzyme to interact with its cofactor (36). In the case of Na⁺-NQR, the first possibility seems unlikely, since a disruption of the packing should have a larger effect on the enzyme, and not a localized effect. For instance, the kinetics of electron transfer in the forward and reverse directions should have been disturbed, since the alteration of structure would modify the distance between cofactors, which is one of the main factors controlling the rate of electron transfer (37). Also, a global change in the structure of the protein could expose the cofactors to different environments, which could modify their redox potentials. However, functional studies and IR- spectroscopy indicate that the structure of the enzyme is not perturbed by the mutation. Thus, data here support a localized effect of the mutations, in which NqrB-G140 and NqrB-G141 in transmembrane helix III are directly involved in the functional binding of ubiquinone to Na⁺-NQR.

FOOTNOTES

We thank Dr. Joel Morgan for critical reading of the manuscript and the Microbiology and Analytical Biochemistry Core Facilities at the Center for Biotechnology and Interdisciplinary
Studies for providing essential infrastructure. This work was supported in part by the National Science Foundation MCB (1052234).

The abbreviations used are: Na\(^+\)-NQR; Na\(^+\)-pumping NADH:quinone oxidoreductase.

FIGURE LEGENDS

Figure 1. Kinetics of reduction of NqrB-G140A mutant by NADH. Left panel shows the absorbance at 450 nm in the absence (black line) and in the presence of 100 mM NaCl (gray line). Right panel shows the differential spectra of the different components of the reduction process.

Figure 2. Kinetics of reduction of wild-type Na\(^+\)-NQR and NqrB-G140A mutant by Ubiquinol-1. Inset shows the difference spectra of the different components of the reduction process.

Figure 3. Formation of $\Delta \Psi$ by reconstituted wild type Na\(^+\)-NQR and NqrB-G140A mutant. $\Delta \Psi$ was measured using oxonol VI, as described before (13). For steady state conditions: 100 μM NADH, 100 μM CoQ-1 and 100 mM NaCl were used. For partial turnover conditions, CoQ-1 was added after NADH. Trace i and iv: steady turnover for wild-type and NqrB-G140A mutant respectively. Traces ii and v: partial turnover for wild type and NqrB-G140A mutant respectively. Traces iii and vi show the effect of Na\(^+\) ionophore, ETH-157. Signal was calibrated against membrane potential produced with 1 μg/ml valinomycin at different potassium concentrations according to the Nernst equation.

Figure 4. Plot of $\delta \Delta \text{Abs}$ at 560, 460 and 480 nm against the applied potential of the NqrB-G140A mutant in the presence of Na\(^+\) (top) and K\(^+\) (bottom).

Figure 5. Band separation of the Amide I signature of the wild-type Na\(^+\)-NQR and the NqrB-G140A mutant.
<table>
<thead>
<tr>
<th>Mutant</th>
<th>Primer Sequence* 5’→3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>NqrB-G140A</td>
<td>GCT ACG GTG TTC ATC GTCGGTGTTCGTTTCTGGGAAAGTACTGTTC</td>
</tr>
<tr>
<td>NqrB-G140L</td>
<td>GCTACGTTGTTTCATCGTCTGGGTTTCTGGGAAAGTACTGTTC</td>
</tr>
<tr>
<td>NqrB-G141A</td>
<td>GCTACGGTGGTTTCATCGTCTGGGT TGTTTCTGGGAAAGTACTGTTC</td>
</tr>
<tr>
<td>NqrB-G141L</td>
<td>GCTACGTTGTTTCATCGTCTGTTGTTTCTGGGAAAGTACTGTTC</td>
</tr>
<tr>
<td>NqrB-G141V</td>
<td>GCTACGTTGTTTCATCGTCTGTTGTTTCTGGGAAAGTACTGTTC</td>
</tr>
</tbody>
</table>

*The mutated codons are highlighted
Table II. Apparent K_m for CoQ and K_i for HQNO for wild-type Na$^+$-NQR and NqrB-G140 and -G141 mutants

<table>
<thead>
<tr>
<th></th>
<th>k_{cat} (s$^{-1}$)</th>
<th>$K_m\text{CoQ} , (\mu\text{M})$</th>
<th>$K_i\text{HQNO} , (\mu\text{M})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>525</td>
<td>2.5 ± 0.3</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>NqrB-G140A</td>
<td>>200</td>
<td>>100</td>
<td>7.5 ± 1.2</td>
</tr>
<tr>
<td>NqrB-G140L</td>
<td>>200</td>
<td>>100</td>
<td>N.D.</td>
</tr>
<tr>
<td>NqrB-G141A</td>
<td>425</td>
<td>15 ± 3.6</td>
<td>N.D.</td>
</tr>
<tr>
<td>NqrB-G141L</td>
<td>463</td>
<td>8.8 ± 2.2</td>
<td>N.D.</td>
</tr>
<tr>
<td>NqrB-G141V</td>
<td>388</td>
<td>23.4 ± 5.6</td>
<td>1.2 ± 0.3</td>
</tr>
</tbody>
</table>
Table III. Rate constants of the phases of reduction by NADH of NqrB-G140A mutant in the presence and absence of NaCl.

<table>
<thead>
<tr>
<th>Redox transitions</th>
<th>Rate constant (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No NaCl</td>
</tr>
<tr>
<td>FAD→FADH(_2)</td>
<td>330</td>
</tr>
<tr>
<td>RibH(^-)→RibH(_2)</td>
<td>28.6</td>
</tr>
<tr>
<td>2(FMN→FMN(^-))</td>
<td>2.1</td>
</tr>
<tr>
<td>FMNC(^-)→FMNC(_2)</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Table IV. Redox potentials obtained for the wild type Na\(^+\)-NQR and NqrB-G140A mutant vs Ag/AgCl (add 208 mV for SHE).

<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Redox transition</th>
<th>Number of electrons</th>
<th>Em (mV vs Ag/AgCl)</th>
<th>Wild-type</th>
<th>NqrB-G140A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Na(^+)</td>
<td>K(^+)</td>
</tr>
<tr>
<td>FAD</td>
<td>FIH(^-) ↔ Fl</td>
<td>2</td>
<td>-440</td>
<td>-450</td>
<td>-445</td>
</tr>
<tr>
<td>FMN(_C)</td>
<td>FIH(^-) ↔ Fl(^{•-})</td>
<td>1</td>
<td>-440</td>
<td>-465</td>
<td>-440</td>
</tr>
<tr>
<td>FMN(_C)</td>
<td>Fl(^{-}) ↔ Fl</td>
<td>1</td>
<td>-345</td>
<td>-450</td>
<td>-350</td>
</tr>
<tr>
<td>FMN(_B)</td>
<td>Fl(^{•-}) ↔ Fl</td>
<td>1</td>
<td>-360</td>
<td>-360</td>
<td>-360</td>
</tr>
</tbody>
</table>

The calculated error is not more than ± 15 mV
Table V. Secondary structure content of wild type Na⁺-NQR and NqrB-G140A mutant measured by ATR.

The contribution to the secondary structure was measured by the relative area of each component with respect of the total area of the Amide I signal.

<table>
<thead>
<tr>
<th>Wavenumber (cm⁻¹)</th>
<th>Secondary structure</th>
<th>% in the WT</th>
<th>% in the NqrB-G140A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1676</td>
<td>β-turn</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>1652</td>
<td>α-helix</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>1634</td>
<td>β-sheet</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>1620</td>
<td>β-sheet</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
REFERENCES

FIGURE 1

Abs\textsubscript{450}

![Graph showing the absorption changes over time with and without 100 mM NaCl.](image)

Absorption Changes

- **No NaCl**
 - FAD → FADH\textsubscript{2}
 - RibH• → RibH\textsubscript{2}
 - 2(FMN → FMN•)
 - FMC• → FMC\textsubscript{H}\textsubscript{2}

- **100 mM NaCl**
 - FAD → FADH\textsubscript{2}
 - RibH• → RibH\textsubscript{2}
 - 2(FMN → FMN•)
 - FMC• → FMC\textsubscript{H}\textsubscript{2}
FIGURE 3

with Na⁺

δΔAbs

-495 mV

-225 mV

-445 mV

-360 mV

-350 mV

-460 nm

-560 nm

with K⁺

δΔAbs

-500 mV

-215 mV

-445 mV

-445 mV

-365 mV

-350 mV

-460 nm

-560 nm

Potential (mV vs Ag/AgCl)
with Na\(^+\)

![Graph showing absorption changes with Na\(^+\).](image)

with K\(^+\)

![Graph showing absorption changes with K\(^+\).](image)
FIGURE 5

Wild type G 140A mutant enzyme

Absorbance units

Wavenumber (cm\(^{-1}\))

Wild type

G140A mutant enzyme
The role of Glycine Residues 140 and 141 of Subunit B in the Functional Ubiquinone Binding Site of the Na⁺ Pumping NADH:Quinone Oxidoreductase from Vibrio cholerae

Oscar Juarez, Yashvin Neehaul, Erin Turk, Najat Chahubon, Jessica M. DeMicco, Petra Hellwig and Blanca Barquera

J. Biol. Chem. published online May 29, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.366088

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2012/05/29/jbc.M112.366088.full.html#ref-list-1