Targeting the Sonic Hedgehog Pathway in Keratocystic Odontogenic Tumor*

Changchun, Ren†1, 2, Hope M Amm†1, Patricia DeVilliers3, Yixin Wu1, Joe Deatherage2, Zhongyu Liu1, Mary MacDougall†1, 2

†These authors contributed equally to this work.

Institute of Oral Health Research1, Department of Oral and Maxillofacial Surgery2, Department of Pathology3. University of Alabama at Birmingham, Birmingham, Alabama 35294-0007

*Running title: Targeting SHH in KCOT

Address correspondence to: Mary MacDougall, PhD, 1919 Seventh Avenue South Room SDB 702, Birmingham, AL 35294-0007. Phone: 205-996-5122; Fax: 205-996-5109; E-mail: macdouga@uab.edu

Keywords: Tumor cell biology; Tumor marker; Odontogenic tumors; cyclopamine; gene expression; keratocystic odontogenic tumors (KCOT); sonic hedgehog (SHH) pathway

Background: Keratocystic odontogenic tumors (KCOT) have a high rate of recurrence and very limited treatment options beyond surgery.

Results: Cyclopamine, a Smoothened antagonist, reduced KCOT cell viability and signaling components of the hedgehog and Notch signaling pathways.

Conclusion: Hedgehog signaling mediates KCOT cell survival.

Significance: Inhibitors of hedgehog signaling may be valuable in the treatment of KCOT.

ABSTRACT

Keratocystic odontogenic tumors (KCOT) may occur sporadically or associated with the Nevoid Basal Cell Carcinoma Syndrome (NBCCS). It is a benign aggressive tumor of odontogenic epithelial origin with high rate of recurrence. A primary human keratocystic odontogenic tumor cell population, KCOT-1, has been established from a tumor explants culture. The KCOT-1 cells were characterized by growth rate, gene expression profiles of major tooth enamel matrix proteins (EMPs), amelogenin (AMELX), enamelin (ENAM), ameloblastin (AMBN), amelotin (AMTN), tumor related proteins enamelysin (MMP-20), kallikrein-4 (KLK-4) and odontogenic ameloblast-associated protein (ODAM) using quantitative real-time reverse transcription polymerase chain-reaction (qRT-PCR). Cytokeratin 14 (CK14) was examined by immunohistochemistry. In addition, expression of the members of the sonic hedgehog (SHH) pathway, SHH, patched (PTCH), smoothened (SMO), GLI-1 and GLI-2 and the Notch signaling pathway, Notch-1, Notch-2, Notch-3, Jag-2 (Jagged-2) and Delta-like-1(DLL-1) were evaluated. KCOT-1 cells were treated with Smo antagonist cyclopamine. We found that cyclopamine significantly arrested the growth of KCOT-1 cells in a dose dependant manner and the effects of cyclopamine were abolished by adding SHH protein. The protein expression of SHH pathway was down-regulated by cyclopamine, further confirming that cyclopamine inhibits of SHH signaling pathway; SHH down-regulation correlated with the down-regulation of Notch signaling pathway as well. In conclusion, using an established a KCOT-1 cell population we characterized the gene expression profiles related to EMPs, SHH and Notch signaling pathway, and confirmed that cyclopamine significantly arrested the growth of KCOT-1 cells and may be a viable agent as a novel therapeutic.

INTRODUCTION

Keratocystic odontogenic tumor (KCOT), previously known as odontogenic keratocyst, was
renamed in the 2005 World Health Organization (WHO) Classification of Odontogenic Tumors in order to reflect its neoplastic nature characterized by an infiltrating pattern, local aggressiveness and a high rate of recurrence (1). Histologically, KCOTs are characterized by a proliferation of odontogenic epithelium within the jaw and the formation of cystic structures lined by stratified squamous epithelium with typical corrugated parakeratin layer and palisading of basal cells. Treatment of KCOTs varies from enucleation, marsupialization with later cystectomy or en-block resection of the jaw bone (2); however, treatment modalities carry marked morbidity and have a high rate of recurrence. Therefore, the development of a novel molecular-based treatment to reduce the need for aggressive surgical management would be of a great clinical benefit. Studies leading to novel therapeutics have been hampered because of the lack of an established KCOT cell population or cell line and the definitive determination of the dental cell lineage of this tumor.

KCOTs can present sporadically at any age or may manifest at an early age as part of the syndrome NBCCS (OMIM #109400) (3-5). This syndrome, also known as Gorlin or Gorlin-Golz Syndrome, with a prevalence of 1:57,000 (6), is an autosomal dominant disorder characterized by multiple basal cell carcinomas, one or more keratocystic odontogenic tumors, palmar or plantar pits, calcification of the falx cerebri, medulloblastoma, ovarian fibroma and skeletal abnormalities. NBCCS has been associated with alterations in the tumor suppressor gene patched homolog 1 (PTCH-1; human chromosome 9q22.3) with more than 150 mutations reported and to a lesser extent mutations in PTCH2 (human chromosome 1p32) (7,8). Patched (PTCH) is a cell surface transmembrane receptor that binds sonic hedgehog (SHH), one of three ligands in the hedgehog (HH) signaling pathway. In the absence of ligand, PTCH inhibits the smoothened (SMO) receptor that activates downstream GLI transcription factors. SHH pathway has been shown to regulate crucial mechanisms of cell proliferation, differentiation, and patterning during embryonic development and in adult tissues, including odontogenesis.

Non-hereditary or somatic alterations in PTCH-1 have been associated with a number of cancers including basal cell carcinoma, medulloblastoma (a childhood brain tumor), breast cancer and colon cancer, and KCOTs (7,9). Constitutively activated SHH signaling due to a mutated PTHrp-receptor can lead to enchondromatosis (Ollier and Mafucci diseases) and transgenic mice expressing the GLI-2 develop enchondromatosis-like lesions (10). Moreover, activated SHH signaling is thought to predispose the development of tumors (11,12). Recently, SHH has been a focus for new therapeutic strategies for treating various cancers using cyclopamine, a steroidal alkaloid, to inhibit the SHH pathway activation by binding directly to SMO and influencing downstream regulators (13). Cyclopamine blocked SHH signaling, preventing initiation and extension of the dental lamina into the mesenchyme leading to disruption of the inner enamel epithelium during snake dental development (14). Several studies have tested the response of cyclopamine in prostate cancer, eyelid epithelial tumor and breast cancer, the results confirmed that cyclopamine inhibits cancer and tumor cell proliferation and induces apoptosis both in vitro and in vivo (13,15,16). These studies highlight the utility of HH antagonists for treating various types of human tumors.

The purpose of this study was to characterize an established KCOT primary cell population (17) related to the sonic hedgehog signaling pathway and use of the Smo inhibitor cyclopamine as a potential therapeutic for the treatment of this oral tumor. KCOT, derived from remnants of dental lamina, cell population were further distinguished by expression of enamel matrix proteins (EMPs), HH, and Notch signaling pathway members. Furthermore, given the association of PTCH mutations and KCOTs, the SHH signaling pathway was tested for expression since it may play an important role in tumor formation. Finally, the inhibition of SHH signaling in KCOT cells by cyclopamine was tested for possible application for suppression of tumor growth.
EXPERIMENTAL PROCEDURES

Tissue specimen and establishment of cell population—This study was approved by the Institutional Review Board from the University of Alabama at Birmingham and with written consent from the patient. A 53 year old male patient was diagnosed with a KCOT lesion in the left mandible. A fragment of fresh KCOT tissue was collected and used to establish explants cell cultures of the manually dissected epithelial component. The cell culture procedures followed a protocol as previously described for establishing dental derived cell population (17,18). Briefly, epithelial tissue from the KCOT was dissected, finely minced and placed into culture under sterilized glass coverslips in DMEM (Mediatech, Inc, Manassas, VA, USA) containing with 10% fetal bovine serum (FBS),100 units/ml penicillin and streptomycin and maintained at 37°C in a humidified 5% CO$_2$ environment. After cell outgrowths were well-established, tumor tissue was removed; monolayer cells were trypsinized and expanded. Low passage (3-6) cell stocks, name KCOT-1, were stored in liquid nitrogen at -80°C.

Cell Growth Rate—KCOT-1 cells were placed on 96-well plate by serial dilution (20,000, 10,000, 8,000, 4,000, 2,000 and 1,000) in triplicate and grown in DMEM with 10% FBS. Viable cell number was evaluated using the MTS assay (Cell Titer 96, Promega, Madison, WI, USA) by absorbance at 490nm on day 1 of culture. A standard curve was established for known cell numbers according to supplier. In parallel, KCOT-1 cells (2,000/well) were plate on 96-well plates and absorbance measured (Kejunior, BioTek, Greensboro, North Carolina, USA) at days 1, 3 and 5 in triplicate using DMEM as a blank. Briefly, 20 µL of MTS (2 mg/mL) was added to each well and was incubated at 37°C for 4 hours. A cell growth curve was established and the cell doubling time was calculated using doubling time calculator (http://www.doubling-time.com/compute.php).

qRT-PCR—Total RNA was isolated form KCOT-1 cell population by RNA STAT-60 kit (TEL-TEST, INC, Friendswood, Texas, USA). All primers used (AMELX, ENAM, AMBN, AMTN, MMP20, KLK4, ODAM, Notch1, Notch2, Notch3, Jagged-2 and Delta-like-1) were obtain from RT2 qPCR Primer Arrays (SABiosciences, Frederick, MD, USA). cDNA was synthesized and qRT-PCR was performed follow the user’s manual in an ABI Prism 7500 Sequence Detection System (Applied Biosystems, Foster City, CA, USA). All the experiments were repeated twice and in triplicate each time. Housekeeping gene GAPDH was used as normalizing reference.

Immunohistochemistry—Commercially available antibodies directed against cytokeratin 14 (CK14) (Abcam, Cambridge, MA, USA), Pan-cytokeratin (ZYMED Laboratories, South San Francisco, CA, USA), AMELX, ENAM, AMBN, SHH, PTCH, SMO, GLI-1, GLI-2, Notch-2, Notch-3, Jagged-2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and acetylated α-tubulin (Sigma, Saint Louis, Missouri, USA) were used. Cells were grown in chamber slides and fixed by 4% formaldehyde, blocked with 10% BSA and incubated with primary antibody (1/50 dilution) overnight at 4°C. Secondary antibody was applied for 1 hour and color was developed by SuperPicTure™Polyer Detection Kit (ZYMED Laboratories). For immunofluorecense, Alexa Fluor 488 or 594-conjugated secondary antibody was used, as well as incubation with 4’,6-diamidino-2-phenylindole (DAPI) to identify the nuclues. For tumor tissues, consecutive 4 micro-thick paraffin sections were cut from each block, and immunohistochemical staining was performed using the immunoperoxidase technique following antigen retrieval with proteinase K (Dako, Carpinteria, Calif., USA) treatment for 10 min. After endogenous peroxidase block by 3% H$_2$O$_2$-methanol for 15 min, the sections were stained according to the above procedure. Slides were counterstained with hematoxylin (ZYMED Laboratories).

Cyclopamine and SHH treatment—Cyclopamine (Toronto Research Chemicals Inc., North York, Canada) was used at 0, 2, 5, 10, 15, 20, 25, 30 µM and tomatidine (Toronto Research Chemicals Inc.), an inactive cyclopamine analogue used as a negative control at 5 µM for MTS assays. The final concentrations of cyclopamine were chosen.
after several experiments and based on prior literature. Recombinant human SHH amino terminal peptide (R&D Systems Inc. Minneapolis, MN USA) in three different concentrations (400, 800 and 1200 ng/ml) was used. KCOT-1 cells (5000/well) were seeded in 96 well plates and grown in DMEM with 10% FBS until confluent. The cells were then treated with different concentrations of cyclopamine (10, 15, 20, 25, 30 µM) in triplicate or treated with 20 µM cyclopamine with the addition of SHH for 48 hours. After treatment, the media was changed to 0.5% FBS and the cell were grown for 48 hours before performing the MTS assay.

Western Blot– KCOT-1 cells were plated in T25 flasks and treated with cyclopamine (10, 20, 25 µM) or tomatidine (5, 10 µM). 48 hours later, cells were harvested by (RIPA) protein lysis buffer [1xTBS, 1% Nonider P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 0.004% sodium azide] supplemented with PMSF in DMSO, protease inhibitor cocktail and sodium orthovanadate (Santa Cruz Biotechnology). The homogenate was then centrifuged at 12,000 × g for 15 min at 4°C, and the supernatant was collected. Proteins extracted using the RIPA buffer were quantified using the bicinchoninic acid (BCA) Protein Assay kit (Pierce, Rockford, IL, USA) following the manufacturer’s instructions. Proteins were resolved using NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen, Carlsbad, CA, USA) with MES running buffer at 200 V for 50 min and then transferred to a nitrocellulose membrane. Proteins were detected by using polyclonal rabbit anti-SHH, PTCH, SMO, GLI-1, GLI-2, Notch-2, Notch-3 and Jagged-2 (Santa Cruz Biotechnology), monoclonal anti-β-tubulin (Sigma, Saint Louis, Missouri, USA), secondary goat anti-rabbit or anti-mouse horseradish peroxidase-conjugated antibody (Santa Cruz Biotechnology) and visualized using the ChemiGlow west detection system (Alpha Innotech, San Leandro, CA, USA). Densitometry was performed using Quantity One software (Bio-Rad, Hercules, CA) and normalized by tubulin.

RESULTS
and ODAM, however, lacked expression of KLK4 and MMP-20. These genes were also not expressed in the ST003-EOE population thought to be derived from the same odontogenic cell type as the tumor, but were expressed in the human tooth cDNA. The expression of transcripts related to EMPs and tumor demonstrated the tumor phenotype of KCOT-1 cell (Figure 3).

SHH pathway is active in KCOT-1 cells. The relative transcript levels of SHH pathway SHH, PTCH, SMO, GLI-1 and GLI-2 in KCOT-1 cell population was detected by qRT-PCR. Results showed that KCOT-1 contain transcripts of all the SHH pathway genes, the highest level were PTCH followed GLI-2, SMO and SHH, the lowest was GLI-1 (Figure 4A). The presence of SHH pathway members in the KCOT-1 cells was also confirmed by immunofluorescence staining (Figure 4B). Staining was seen for the receptor PTCH and signal transducers GLI-1, GLI-2, SMO and SHH. GLI-1 and SHH show nuclear localization. These results correlated well with the results found at the mRNA level with qRT-PCR and indicate that the SHH signaling pathway is active in the KCOT-1 cells. We also examined the localization of PTCH in relation to the primary cilia, PTCH was not located within the cilia structure. This supports that active hedgehog signaling may be occurring in the KCOT-1 cells, because PTCH is not found in the cilia during active signaling (19). Again, the high expression of PTCH and GLI-2 mRNA transcripts correlated well with the positive immunostaining.

Cyclopamine treatment decreased cell viability in KCOT-1 cells. Treatment of the KCOT-1 cells with cyclopamine (15-30 μM) results in decreased cell viability (Figure 5). The effect of treatment was dose dependent and statistically significant (p<0.014). Treatment of KCOT-1 cells with cyclopamine (20 μM) and the SHH protein at increasing doses (400, 800 and 1200 ng/ml) led to a dose-dependent increase in cell number (p<0.01) Tomatidine, an alkaloid similar to cyclopamine but lacking the capacity to inhibit SMO, served as the negative control. Treatment with tomatidine at 5μM, showed the only 3.66% decrease in total cell number. These data suggest that inhibition of SHH pathway reduces the viability of KCOT-1 cells and further supports the role of SHH signal pathway in the survival and proliferation of KCOT-1 cells.

Expression of SHH pathway components were down regulated by cyclopamine treatment. Western blot analysis showed that there is dose-dependent down regulation of GLI-1 and patched expression after cyclopamine treatment compared to untreated and negative control tomatidine treatment (5 µM, 10 µM) (Figure 6A and B). There were dose-dependent decreases in the levels of SHH-N (an active 19-kDa ligand generated by autocatalytic processing of the 45-kDa SHH precursor which can active the SHH pathway in an autocrine and/or juxtacrine manner) (20) and SMO. However, there are no changes of the expression for GLI-2 after the treatment. Densitometry results showing the percent reduction of these proteins is shown in Figure 6B. These results correlate with the inhibition in proliferation observed in KCOT-1 cells treated with the same concentrations of cyclopamine and are consistent with a pathway-specific effect of cyclopamine at the level of SMO. These results also give evidence that the cyclopamine treatment down regulates the SHH pathway and provides promising targeted treatment for KCOT tumors.

The down-regulation of SHH pathway by cyclopamine correlated with down regulation of Notch signaling pathway components. The expression of Notch-2(I): intracellular domain of Notch-2, and Jag-2 were down-regulated after cyclopamine treatment compared with the no treatment and negative control tomatidine treatment (5 µM, 10 µM) and the down-regulation was dose dependent (Figure 7A). However, there are no changes of the expression for Notch-3(T): truncated domain of Notch-3, after the treatment. Densitometry showing the percent reduction of these proteins is shown in Figure 7B. The relative transcript levels of Notch pathway components in KCOT-1 cells were examined by qRT-PCR and the results showed that KCOT-1 cells contain transcripts of all the Notch pathway genes. Notch-2 followed Notch-3 and Notch-1 were expressed at the highest levels. While the ligand DLL-1 and Jag-2 was expressed at lower levels (Figure 7C). The presence of Notch pathway members in the
KCOT-1 cells was also confirmed by immunohistochemistry staining. Positive staining was seen for the receptors Notch-2, Notch-3, and Jag-2 (Fig. 7D). The tumor tissue also stains positive for Notch-2, Notch-3, and Jag-2. These results correlated well with the results found at the mRNA level and indicate that the Notch signaling pathway is present in the KCOT-1 cells as well as and may be modulated by HH inhibition. This correlation is important since Notch signaling plays an essential role in tooth development. Signaling molecules such as FGFs, BMPs, Wnt and SHH play an important role in tooth initiation, morphogenesis and cytodifferentiation (21). Notch signaling is also involved in odontogenesis (22).

DISCUSSION

In 2005, KCOTs were reclassified from a cyst to a tumor based on their aggressive clinical behavior with local tissue destruction and a high recurrence rate. These tumors are thought to be derived from remnants of dental lamina (5). The presence of multiple KCOTs is linked to NBCCS and associated with mutations in PTCH, a tumor suppressor gene involved in the SHH signaling pathway. A recent study comparing the gene-array expression profiles from 10 sporadic KCOT tissue samples and 20 fetal tooth genes identified several genes that were up- and down-regulated in the KCOTs (23). Several genes were expressed at high levels in the KCOT epithelium including GLI-1. Expression of GLI-1 correlated well with the findings of our study showing high expression in the KCOT-1 cell population. Interestingly, this study did not report any data related to EMPs. However, since the tooth germs used for the study were at the cap/bell stage and the tumor tissue was not isolated from surrounding tissues (epithelium only) data related to enamel proteins may be below the level of detection.

The KCOT-1 cell population isolate was shown to be epithelial in origin by the expression of two epithelial markers, CK14 and pan-cytokeratin. We also showed that these KCOT derived cells express major dental epithelial cell markers: AMELX, ENAM, AMBN and AMTN. These major EMPs have been shown to have preferential expression in dental tissues in particular the developing enamel producing ameloblasts (24). Prior studies have determined the localization of apoptosis and proliferation markers and an invasion associated enzyme heparanase. Although these markers were broadly expressed, relative expression levels were useful in the potential classification of NBCCS from sporadic KCOTs and non-specified odontogenic cysts (25,26). Collectively, these various genes shown to be positive in KCOTs may be useful in clinical diagnosis of these types of tumors. The tumor related protein marker ODAM was detected in KCOT-1 cells. Studies revealed that ODAM is strongly expressed in the maturation-stage of rat incisor ameloblasts and in the junctional epithelium attached to the enamel of erupted molars, as well as in the late stage of ameloblast-lineage cell cultures (27,28). ODAM has been associated with other types of odontogenic tumors, namely calcifying epithelial odontogenic tumors (CEOT) (17,29,30). KCOT-1 cells expressed these tumor related proteins, further confirming the neoplastic nature of these cells.

Additionally important in KCOTs is the relationship between KCOT formation and the SHH signaling pathway. The expression of genes involved in the SHH signaling pathway SHH, PTCH, SMO, GLI-1, GLI-2 was established in the KCOT-1 cell population. The expression of SHH in particular supports the dental origin of these cells. Previous studies have shown that this pathway is active and has a direct role during tooth formation (14,31). Interestingly, expression of SHH was only detected in the dental epithelial while expression of PTCH, SMO, GLI-1, GLI-2 and GLI-3 were found in both epithelium and mesenchyme dental tissues. Ectopic application of SHH to early dental epithelium (embryonic day 10.5) resulted in abnormal oral epithelial invaginations from increased epithelial proliferation. This observation that abnormal SHH signaling is related to abnormal epithelial proliferation supports the role of SHH in tumor formation and the targeting of the pathway as a tumor therapeutic. The significance of the SHH pathway was further supported by analysis of GLI-2 and GLI-3 double null mouse, which have
smaller mandibular incisors and molars with the absence of maxillary incisors (31). At later stages during amelogenesis (enamel formation), in both snake and mouse teeth, SHH expression was restricted to the inner enamel epithelium that gives rise to the ameloblast cells (14). The role of the SHH transmembrane receptors PTCH and SMO have been investigated in KCOTs based on the fact that PTCH-1 mutations are responsible of NBCCS and SMO mutations are associated with basal cell carcinoma and medulloblastoma features of NBCCS. Analysis of 20 sporadic KCOTs and 10 NBCCS-associated KCOTs found 11 novel and five known PTCH mutations with no identified SMO alterations (32). Li and colleagues (33) found one known and three novel germline mutations in five NBCCS patients.

The inhibition of the SHH signaling pathway has been proposed as a treatment strategy of KCOTs as well as for many cancers including basal cell carcinoma, pancreatic, breast, and prostate (34-37). Cyclopamine, a plant derived teratogen, has been shown to block the activation of the HH pathway by binding and inhibiting SMO (38). A significant dose-dependent effect with cyclopamine treatment was observed in the KCOT-1 cells. Conversely, treatment of KCOT-1 cells with cyclopamine (20µM) and SHH at increasing concentrations (1200 ng/ml maximum) led to a recovery of cell growth providing direct evidence for a regulatory role of the SHH pathway in KCOT-1 cell growth. Treatment with tomatidine (5µM, 10µM) slightly inhibited cell growth and promoted cell death as a negative control. Since tomatidine is a non-functional cyclopamine analogue this inhibitory effect may therefore not be accounted to inhibition of SHH signaling (16,37). Tomatidine has cytotoxic effects at relatively high concentrations (approximately 20 µM) (16,39), so 5µM and 10µM of tomatidine was used as negative control. The effects of cyclopamine on KCOT-1 cells may be not limited to Smo inhibition, but a cytotoxic effect owing to its steroidal alkaloid structure as well. Yet, other SHH pathway small molecule inhibitors, such as CUR61414, have been shown to be valid potential treatment for cancers (40).

Confirming cyclopamine’s activity against the SHH pathway, the protein expression of SHH pathway components (SMO, PATH, SHH, GLI-1) were down-regulated by cyclopamine treatment. SHH is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in germinal center B cells (41). Interestingly, the inhibition of SHH pathway by cyclopamine was correlated with the down-regulation of Notch signaling pathway. Jag-2 is one of the target genes, such as GLI-1, PTCH-1, CCND2, FOX1, Jag-2 and SFRP1, of GLI-dependent transcriptional activation (42). So, the down-regulation of SHH and SMO might cause the down-regulation of the GLI-1, and therefore PTCH-1, Jag-2 and Notch-2 down-regulation. SMO and GLI family genes encoding a positive regulator of SHH pathway are proto-oncogenes and the down regulation of this family’s protein expression by cyclopamine implies that SHH pathway is a promising target for therapeutic KCOT.

To our knowledge this is the first study to report the SHH and notch signaling pathway expression profiles of a KCOT cell population and the effect of cyclopamine on these cells. In conclusion, we have established a KCOT-1 cell population useful for testing potential therapeutics and characterized the gene expression profiles related to tooth EMps and the SHH and Notch signaling pathways. Finally, we performed proof of concept experiments testing the hypothesis that inhibition of the SHH signaling pathway may be effective in the treatment of KCOTs. We found that cyclopamine significantly arrested the growth of KCOT-1 cells in a dose dependant manner and therefore may be a viable agent in arresting the growth of these cells as a novel therapeutic.

REFERENCES

Targeting SHH in KCOT

FOOTNOTES

We would like to thank the patient for their participation in this study. Support was received from the Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Ala., USA.

The abbreviations used are: KCOT, Keratocystic odontogenic tumor; NBCCS, nevoid basal cell carcinoma syndrome; EMPs, enamel matrix proteins; AMELX, amelogenin; ENAM, enamelin; AMBN, ameloblastin; AMTN, amelotin; MMP420, enamelysin; KLK-4, kallikrein-4; ODAM, odontogenic ameloblast-associated protein; CK14, cytokeratin 14; SHH, sonic hedgehog; PTCH, patched; SMO, smoothened; Jag-2, Jagged-2; DLL-1, Delta-like-1; CEOT, calcifying epithelial odontogenic tumors; qRT-PCR, quantitative real-time reverse transcription polymerase chain-reaction.

FIGURE LEGENDS

Fig. 1. Characterization of the KCOT-1 cell population. A. H&E section of a keratocystic odontogenic tumor removed from the left mandible of a 53 year old male patient (20X); B. Phase contrast micrograph of KCOT-1 cell population (40X); C. Negative control without primary antibody (40X); D-E. ALP staining of established primary KCOT-1 cell population: D (10X), E(40X); F-I. Immunohistochemical detection of CK14 (F), AMELX (G), ENAM (H) and AMBN(I) (40X).

Fig. 2. Growth rate of KCOT-1 cells. Cells (2 X 10^3) were plated onto 96-well plates at day 0 and cell viability measured by MTS assay at days 1, 3 and 5 of culture. The absorbance at 490 nm was measured with DMEM media as the control. The cell number was calculated according to the standard curve.

Fig. 3. Gene expression profiles of major enamel and tumor related genes of the KCOT-1 cell population, and the ST003-EOE and human tooth cDNA as controls, were determined by qRT-PCR. All the
experiments were performed in triplicate and repeated twice. The house keeping gene GAPDH was used to normalize the dataset.

Fig. 4. Expression of SHH signaling molecules in KCOT-1 cells. A. The relative transcript levels of SHH signaling molecules SHH, SMO, GLI-1, GLI-2, and PTCH in KCOT-1 cells was determined by qRT-PCR. All the experiments were performed in triplicate and repeated twice. The housekeeping gene GAPDH was used as normalizing reference. Protein expression levels of SHH signaling molecules SHH (B), SMO (C), GLI-1 (D), and GLI-2 (E) in KCOT-1 cells determined by green immunofluorescence staining (40X). Nuclei are indicated by blue DAPI staining and/or white arrows. F. Staining of PTCH (green) relative to cilia (acetylated α-tubulin, red, (G)) and the nucleus (DAPI, blue) (100X), higher magnification inset. White arrows indicate cilia.

Fig. 5. Inhibition of SHH signal pathway results in decreased cell viability and induction of apoptosis in KCOT-1 cells. Cell viability measured by the MTS assay after treatment with cylopamine (15, 20, 25, 30 µM) or treatment with 20 µM cylopamine with SHH at 400, 800 and 1200 ng/ml. Treatment with tomatidine at 5 µM served as a negative control.

Fig. 6. The proteins expression of SHH pathway components was down-regulated by cyclopamine treatment KCOT-1 cells treated with cyclopamine (10, 20, 25 µM) or tomatidine (5, 10 µM) for 48 hours. A. Protein expression for SHH pathway, and B. Densitometric analysis of the calculated reduction of the protein levels of the SHH signaling pathway.

Fig. 7. Treatment of the KCOT-1 cells with cyclopamine down-regulated components of the Notch signalling pathway. KCOT-1 cells treated with cyclopamine (10, 20, 25 µM) or tomatidine (5, 10 µM) for 48 hours. A. Protein expression of the Notch pathway with and without cyclopamine treatment. B. Densitometric analysis of the calculated reduction of the protein levels of the Notch signaling pathway. C. Gene expression of Notch signalling pathway in KCOT-1 cells. Immunohistochemical detection of Notch-2, Notch-3 and Jag-2 in KCOT-1 cells (Top) and tumor tissue (Bottom).
FIGURES

Figure 1
Figure 2
Figure 3

![Bar chart showing Delta Ct values for different genes (AMELX, ENAM, AMTN, AMBN, ODAM, KLK4, MMP-2D) with standard deviations. The x-axis represents the genes, and the y-axis represents the Delta Ct values. Each bar is labeled with KCOT-1, ST003-EOE, and Tooth cDNA datasets.]
Figure 4

<table>
<thead>
<tr>
<th>A</th>
<th>SHH</th>
<th>SMO</th>
<th>GLI-1</th>
<th>GLI-2</th>
<th>PTCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B C D E F G

ΔCt (C_{target} - C_{ GAPDH})

Downloaded from http://www.jbc.org/ by guest on November 15, 2017
Figure 5
Figure 6

A

B

OD Ratio of protein/β-tubulin

0 T5 T10 C10 C20 C25

Gli-1
Gli-2
PTCH
SHH (N)
Smo
β-Tubulin

Patched
SHH
SMO
Figure 7

A

B

C

D

Targeting SHH in KCOT
Targeting the sonic hedgehog pathway in keratocystic odontogenic tumor
Changchun Ren, Hope M. Amm, Patricia DeVilliers, Yixin Wu, Joe Deatherage, Zhongyu Liu and Mary MacDougall

J. Biol. Chem. published online June 7, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.367680

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts