13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving *Bacillus subtilis*

**Martin Rühl*1,*2, Dominique Le Coq*3*4*5, Stéphane Aymerich*3*4, Uwe Sauer1,*

1 Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland, 2 PhD Program of Molecular Life Sciences, Life Science Zurich Graduate School, Zurich, Switzerland, 3 INRA, Institut Micalis (UMR1319), F-78350 Jouy-en-Josas, France, 4 AgroParisTech, Institut Micalis (UMR), F-78350 Jouy-en-Josas, France, and 5 CNRS, F-78350 Jouy-en-Josas, France

Running title: NADPH balancing in resting *B. subtilis*

* Corresponding author. Mailing address: Prof. Dr. Uwe Sauer, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland. Phone: 41 -44-633 36 72. Fax: 41 -44-633 10 51. E-Mail: sau-er@imsb.biol.ethz.ch.

Keywords: NADPH homeostasis, transhydrogenase, nitrogen starvation, stationary phase, 13C flux analysis

Background: Metabolic pathway operation and NADPH homeostasis in non-growing bacteria is unknown.

Results: Newly discovered metabolic cycles and known metabolic reactions balance concertedly the catabolic NADPH production.

Conclusion: We propose the first quantitative NADPH balancing model under non-growing conditions.

Significance: NADPH balancing is significantly different between resting and growing bacteria, reflecting microbial survival strategies during environmental challenges.

SUMMARY

In their natural habitat, microorganisms are typically confronted with nutritional limitations that restrict growth and force them to persevere in a stationary phase. Despite the importance of this phase, little is known about the metabolic state(s) that sustains it. Here, we investigate metabolically active but non-growing *Bacillus subtilis* during nitrogen starvation. In the absence of biomass formation as the major NADPH sink, the intracellular flux distribution in these resting *B. subtilis* reveals a large apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol·g⁻¹·h⁻¹ that was partly caused by high pentose phosphate pathway fluxes. Combining transcriptome analysis, stationary 13C-flux analysis in metabolic deletion mutants, 2H-labeling experiments, and kinetic flux profiling, we demonstrate that about half of the catabolic excess NADPH is oxidized by two transhydrogenation cycles; i.e. isoenzyme pairs of dehydrogenases with different cofactor specificities that operate in reverse directions. These transhydrogenation cycles were constituted by the combined activities of the glycer-aldehyde 3-phosphate dehydrogenases GapA/GapB and the malic enzymes MalS/YtsJ. At least an additional 6% of the overproduced NADPH is reoxidized by continuous cycling between ana- and catabolism of glutamate. Furthermore, in vitro enzyme data show that a not yet identified transhydrogenase could potentially reoxidize about 20% of the overproduced NADPH. Overall, we demonstrate the interplay between several metabolic mechanisms that concertedly enable network-wide NADPH homeostasis under conditions of high catabolic NADPH production in the absence of cell growth in *B. subtilis*.

Bacteria are continuously confronted with changing environmental conditions and have therefore evolved a rich repertoire of metabolic pathways to utilize the energy and elemental sources necessary to ensure survival and promote growth (1). A frequent environmental condition is depletion of essential nutrients that causes populations to enter a so-called stationary phase (2). Several stationary phase phenomena such as per-
sistence (3), increased stress resistance (4-5), and, in the case of Bacillus subtilis, differentiation into spores (6) are focus of intense research. Metabolism of stationary phase cells, in contrast, is not well characterized, although we generally know that cells do not shutdown their metabolism but typically continue to consume energy sources when absence of other essential nutrients precludes growth (7). This metabolically active but non-growing state is referred to as resting cells (8) and is expected to play an important role in ecological processes (9).

This resting state with carbon excess can be induced by depleting any essential chemical element, but occurs most frequently in response to limited supply of the macroelements nitrogen and phosphate and the trace element iron. For the common soil bacterium B. subtilis, nitrogen frequently limits growth because its availability depends, among others, on climate, soil properties, constraints to biological N fixation, decomposition of litter and competition with other species (10-13). Experimentally, carbon excess conditions are typically studied in continuous cultures under nitrogen or phosphate limitation (14-15), often using 13C-flux analysis to characterize intracellular metabolism (16-18). In contrast to these still growing cultures, however, essentially nothing is known about the magnitude and distribution of metabolic fluxes in resting cells. How are the consumed carbon and energy sources catabolized and which processes recycle the generated energy and reduct equivalents in the absence of biomass formation?

In principle, methods of 13C-flux analysis allow to quantify energy, redox cofactor, and biosynthetic building blocks fluxes (19-20). The vast majority of the current 13C-flux methods, however, are applicable only to growing cells because the 13C-labeling patterns are detected in protein-bound amino acids (21-23). Since there is little or no de novo protein biosynthesis in resting cells, we used a recently developed mass spectrometry (MS) method that detects the 13C-labeling patterns directly in metabolic intermediates (24). An advantage over previous techniques (25-29) is that we detect 13C-labeling patterns not only in intact but also in fragmented carbon backbones of the intermediates that reveal indispensable intramolecular 13C-label positions for stationary 13C-flux analysis (19,22,30). We apply this new LC-MS/MS method to quantify intracellular fluxes in nitrogen (N) starvation-induced resting B. subtilis cultures. In particular, we focus on the question of how B. subtilis recycles its catabolic NADPH formation in the absence of anabolic NADPH requirements? To identify potential NADPH consuming processes during N starvation, we started from genome-wide transcriptome data and tested various emerging hypotheses with stationary 13C-flux analysis of metabolic deletion mutants, specific 3H-labeling experiments and in vitro enzyme assays. Thereby we quantified the contribution of different NADPH consuming mechanisms that enable B. subtilis to counteract an apparent NADPH overproduction and ensure redox homeostasis.

EXPERIMENTAL PROCEDURES

Bacterial strains, growth conditions and media - The strains used in this study are listed in Table 1. For all experiments, frozen glycerol stocks were used to inoculate 5 ml of Luria-Bertani (LB) medium, supplemented when required with 0.5 mg L⁻¹ erythromycin, 5 mg L⁻¹ kanamycin, 100 mg L⁻¹ spectinomycin or 0.25 mg L⁻¹ phleomycin. After 5 h of incubation at 37°C and 300 rpm on a gyratory shaker, 5 mL of M9 minimal media were inoculated at 1 to 4’000-fold dilutions as precultures. M9 medium precultures at optical densities at 600 nm (OD₆₀₀) of 1 – 2 were then used to inoculate a 70 mL M9 batch culture in a 1 L baffled shake flask to a maximal OD₆₀₀ of 0.03. The M9 minimal medium consisted per liter of deionized water: 8.5 g of Na₂HPO₄·2 H₂O, 3.0 g of KH₂PO₄, 1 g of NH₄Cl, 0.5 g of NaCl and was adjusted to pH 7 before filter sterilization. The following components were filter sterilized separately and then added (per liter of final medium): 1 mL of 1 M MgSO₄, 1 mL of 0.1 M CaCl₂, 1 mL 0.05 M FeCl₃ containing 0.1 M citric acid, 20 mL of glucose 25% (w/v), 1 mL of tryptophan 5% (w/v), and 10 mL of a trace element solution containing (per liter) 170 mg of ZnCl₂, 100 mg MnCl₂·4H₂O, 60 mg of CoCl₂·6H₂O, 60 mg Na₂MoO₄·2H₂O, and 43 mg CuCl₂·2H₂O.

For N starvation, a M9 batch culture was grown in shake flask to an OD₆₀₀ between 1.5 - 2 and 50 ml culture broth were centrifuged for 1 min at room temperature and 15’500 x g. The supernatant was discarded and residual liquid
removed by tapping on paper tissue, followed by immediate resuspension of the cell pellet in 25 mL N starvation medium, transfer to a 500 mL flask and incubation at 37°C and 300 rpm on a gyratory shaker. The N starvation medium contained per liter of deionized water: 8.5 g of Na₂HPO₄·2 H₂O, 3.0 g of KH₂PO₄, 0.5 g of NaCl and adjusted pH 7. The following components were added separately (per liter of final medium): 10 mL of 1 M MgSO₄, 10 mL of 0.1 M CaCl₂, and 20 mL of glucose 25% (w/v), followed by filter sterilization. M9 minimal media and N starvation media had the same ionic strength and were used with 5 g/L final glucose concentration, if not stated differently.

For the 13C-label enrichment experiment in resting cells, 100% [U-13C]glucose (> 99% isotopic purity; Cambridge Isotope Laboratories, Andover, MA, United States) was added to a N starving B. subtilis culture growing initially on 4 g/L naturally labeled glucose for 1.5 h. At the time of 13C tracer addition, a final mixture of 50% (w/w) [U-13C] and 50% naturally labeled glucose at a final concentration of 6.8 g/L was obtained to ensure a good response of all isotopologues in LC-MS/MS analysis. The enrichment experiment was conducted in a bioreactor at 37°C and 0.1 bar overpressure with a volume of 0.7 L in a 1.5 L vessel (Bioengineering AG, Wald, Switzerland), equipped with pH, temperature, dissolved oxygen probes, exhaust gas analyzer (GA4, DASGIP AG, Jülich, Germany), and a mass flow controller (red-y smart controller GSC, Vögtlin Instruments AG, Aesch, Switzerland). A constant airflow with 1 vvm and an agitation speed of 1'000 rpm was set to ensure dissolved oxygen levels above 50% throughout the process.

For 13C-flux analysis, a mixture of 80% (w/w) [1-13C] and 20% (w/w) [U-13C]glucose was used (both > 99% isotopic purity; Cambridge Isotope Laboratories, Andover, MA, United States). This mixture was chosen to provide meaningful data to resolve the flux branching between glycolysis and pentose phosphate pathway from the positional label in [1-13C]glucose and to resolve the tricarboxylic acid (TCA) cycle flux from the uniformly labeled [U-13C]glucose (22). For deuterium labeling experiments, 100% [4-2H]glucose was used (> 99% isotopic purity; Omicron Biochemicals, South Bend, IN, United States).

Physiological parameters and enzymatic assays - Cell growth was determined spectrophotometrically at 600 nm. Glucose, acetoin, citrate, α-ketoglutarate, succinate, fumarate, malate, pyruvate, and acetate concentrations in the supernatant were measured by the signals of a refractive index and diode array detector on an HPLC (Agilent 1100), using an Aminex HPX-87H column at a temperature of 60°C with 5 mM H₂SO₄ as eluent. Supernatant samples were prepared by centrifugation of 1 mL culture broth for 3 min at 4°C and 14'000 x g. Specific growth rates were calculated by linear regression of OD₆₀₀ over time. Specific uptake and secretion rates were calculated by linear regression of consumed substrate or product concentration versus biomass concentration. Cell viability was estimated by plating dilutions of culture aliquots on LB solid medium and colony counting after 18 h incubation at 37°C. The sporulation frequency was estimated by determining the proportion of heat-resistant colony forming units with the same method, except that the culture sample was incubated 15 min at 80°C before plating the different dilutions. Both viability and sporulation frequency were determined just before, 3 h after, and 18 h after induction of N starvation.

For enzymatic assays of glyceraldehyde-3P dehydrogenase and transhydrogenase activity, cells were harvested during mid-exponential growth of batch cultures or after about 5.5 h of N starvation by centrifugation at 4°C and washed twice with 0.9% NaCl. Biomass pellets were kept at -80°C until further analysis. For disruption, cells were 10-fold concentrated in lysis buffer (100 mM Tris-HCl, pH 7.5, 5 mM MgCl₂, 1 mM dithiothreitol and 4 mM PMSF) and twice passed through a French press cell at 4°C. Cell-free lysates were obtained by centrifugation at 23'000 x g and 10 min at 4°C. For the enzymatic assays, 0.1 mL of the cell-free lysate was used with reaction buffer in a total volume of 1 mL at 25°C (31). Reaction buffers were prepared as described elsewhere (32). For glyceraldehyde-3P dehydrogenase activity, the reduction of NAD(P)⁺ was monitored at 340 nm, while for transhydrogenase activity reduction of APAD⁺ and oxidation of NADPH were spectrophotometrically measured at 400 nm and 310 nm simultaneously to exclude interferences in the adsorption of both NADPH and APADH (31). Protein concentration was determined using Coomassie Plus Protein Reagent (Pierce) according to product manual.
Transcript sampling and data analysis - For transcript analysis, cultures were grown in duplicate to the desired OD_{600} with less than 10% deviation in OD_{600} as described above. Samples for mRNA extraction were prepared by adding 30 mL culture broth to 15 mL of crushed ice filled with killing buffer containing 20 mM Tris-HCl at pH 7.5, 5 mM MgCl\(_2\), and 20 mM NaN\(_3\). For rapid harvest, this mixture was centrifuged for 3 min at 8'300 x g and 4°C, the supernatant immediately discarded and cells frozen in liquid N\(_2\) and stored at -80°C.

RNA extraction was performed precisely as described elsewhere (33). For labeling and hybridization we used the strand specific conditions by NimbleGen as described by Rasmussen et al. (34) and raw data treatment was done as described by Nicolas et al. (35). We used the MultiExperiment Viewer software MeV v4.6.1 (http://www.tm4.org/mev/) for principal component analysis. Differential analysis was carried out separately for each comparison between the two culture conditions, by considering only genes with two-fold or more differential expression at a threshold of five-fold above background expression (i.e. a value of 1000) under at least one condition.

Mass spectrometric \(^{13}\)C-labeling pattern analysis - For quantification of \(^{13}\)C-labeling pattern in metabolic intermediates, rapid quenching of metabolic activity was necessary to avoid artifacts caused by the high exchange rates and small pool sizes of metabolites (19,36). For this purpose, 10 mL culture broth of mid-exponential batch cultures or N starving resting cultures after 5.5 h incubation were mixed with 40 mL of an aqueous -40°C cold 60% (v/v) methanol solution containing 10 mM ammonium acetate pH 7.5 (37), directly followed by centrifugation at -20°C and 15'500 x g for 1 min. The supernatant was immediately removed and cell pellets frozen in liquid nitrogen. To assure sufficient biomass between 10 mg and 20 mg cell dry weight for extraction, two 10 mL culture aliquots were independently quenched and pooled.

To extract metabolites, quenched cell pellets were extracted three times with 0.5 mL of a 78°C hot 60% (v/v) aqueous ethanol solution containing 10 mM ammonium acetate for 1 min and centrifuged at -10°C for 3 min at 14'000 x g. The pooled extracts were dried in a SpeedVac at 0.12 millibar and 30°C and stored at −80 °C until further analysis. For subsequent LC-MS/MS analysis of isotopologue distributions, dried pellets were resuspended in 60 µL deionized water, 8 µL of which were injected into using conditions published elsewhere (24).

For \(^{13}\)C-labeling pattern analysis in free intracellular amino acids by gas-chromatography (GC) MS, the obtained metabolite extract was further processed following a previously established protocol (24). Briefly, after drying the ethanolic extract in a vacuum centrifuge, 20 µL dimethylformamide (Fluka, Switzerland) was added. After resuspension, 15 µL supernatant was used with 15 µL N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (Sigma, Switzerland) for derivatization at 85°C for 1 h. For analysis of \(^{13}\)C-patterns in derivatized amino acids, published GC-MS settings were used (22).

\(^{13}\)C-constrained metabolic flux analysis - To estimate intracellular carbon fluxes, we used network-wide stationary isotopologue balancing (22,38). This procedure relies on the steady state \(^{13}\)C-pattern in metabolic intermediates that we obtained by LC-MS/MS (24), and measured extracellular rates of substrate consumption and product formation. These measured data are quantitatively connected to intracellular fluxes through a stoichiometric model of atom transitions between metabolic intermediates in central metabolism (i.e. an isotopologue model). The network-wide distribution of intracellular fluxes was then estimated indirectly with a computational procedure that iteratively improves the fit between simulated mass isotope patterns and extracellular rates and the actually measured data. For the model, we used the recently published reaction reversibilities for \textit{B. subtilis} (39). The publicly available software 13CFLUX (38) was used for flux computation and error estimation, following the principles of model construction, fitting, quality evaluation of the obtained fit and error estimation described elsewhere in a detailed step-by-step tutorial (22). The \(^{13}\)C flux fits were independently verified through \(^{2}\)H label experiments, enzyme assays and transcriptome data. To calculate NADPH production, we summed the estimated carbon fluxes through the NADPH-dependent reactions of glucose-6-phosphate dehydrogenase (Zwf), the 6-phosphogluconate dehydrogenase isoenzyme (GndA) (40), isocitrate dehydrogenase (Icd), and
initially also malic enzyme isoenzyme (YtsJ) (41), assuming 100% specificity for NADP⁺, except for Zwf and GndA that were recently shown to be only about 90% specific (31).

Kinetics of gapB derepression upon shift to N starvation - Strains carrying a P_{gapB}gfpmut3 transcriptional fusion were grown under vigorous shaking at 37°C in test tubes with M9 medium until an OD₆₀₀ of about unity. After centrifugation, cells were immediately resuspended to the same OD₆₀₀ in either the same medium or in medium lacking the nitrogen source. 100 µl of these resuspensions were placed in 96-well cell culture plates (CELLSTAR, Greiner bio-one) and incubated under constant shaking at 37°C in a Synergy™ II microplate reader (Biotek). The OD₆₀₀ and fluorescence (excitation 485/20 nm, emission 528/20 nm) were measured every 7 min in triplicate cultures. After correction for medium background fluorescence and autofluorescence of the parental strain (i.e. without the P_{gapB}gfpmut3 fusion), gapB promoter activity was estimated from the GFP production in resting wild-type B. subtilis-

RESULTS

Steady state physiology in N starvation-induced resting B. subtilis - To characterize metabolism in N-starving, resting B. subtilis without de novo biomass formation, we grew a bioreactor batch culture in glucose minimal medium until mid-exponential phase to an OD₆₀₀ of 1.6. Upon harvesting and resuspending in fresh medium without a nitrogen source, the culture immediately ceased to grow (Fig. S1) but maintained metabolic activity with a constant glucose uptake rate of 1.9 mmol·g⁻¹·h⁻¹ for at least 5.5 hours (Table 2), i.e. 23% of the uptake rate during exponential growth with 8.2 mmol·g⁻¹·h⁻¹ (Fig 1) (24).

These physiological data suggested a quasi steady state during N starvation. To determine the time required for metabolic intermediates to attain isotopic stationarity for ¹³C-flux analysis, we added uniformly labeled [U-¹³C]glucose to the resting culture about 1.5 h after entry into starvation. Since this ¹³C-tracer addition resulted in a final mixture of 50% [U-¹³C] and 50% naturally labeled glucose in the medium (Fig. S1), one hence expects 0.50 ± 0.02 fractional labeling and stable isotopologue distributions in all metabolic intermediates at isotopic steady state. As expected from similar experiments (42-45), we observed different dynamics of label enrichment that were a function of metabolite pool size, fluxes and the metabolic distance to the label entry (Fig. S2). Within 3 min, the most rapid isotopic steady state was achieved by glucose-6P, followed by the intermediates of glycolysis and pentose phosphate pathway within about 10 min. TCA cycle intermediates exhibited the slowest label enrichment, reaching 95% of the input fractional labeling after 200 min. This isotopologue buffering is probably caused by label exchange with the large pool of unlabeled free amino acids through the transamination reactions of glutamate and aspartate (44-45) (Fig. S2). To ensure quasi isotopic stationarity, all following ¹³C-experiments with resting cells were therefore conducted for at least 5.5 hours.

¹³C-flux analysis reveals large NADPH overproduction in resting wild-type B. subtilis - Based on the quasi steady state conditions for N starvation-induced resting B. subtilis, we quantified absolute intracellular carbon fluxes by network-wide stationary isotopologue balancing (22,38). In this procedure, an intracellular distribution of fluxes is indirectly estimated in silico from measured ¹³C-patterns and physiological rates as a best fit to the experimental data with a detailed stoichiometric model of atom transitions in metabolism. Since only little de novo protein biosynthesis occurs in resting cells, we could not rely on standard flux methods (19,36) that detect ¹³C-pattern in proteinogenic amino acids and instead determined ¹³C-pattern of intact and fragmented carbon backbones by targeted LC-MS/MS in metabolic intermediates (24). Exponentially growing shake flask cultures were harvested and resuspended in N starvation medium containing a mixture of 80% (w/w) [1-¹³C] and 20% (w/w) [U-¹³C]glucose that is well suited to resolve glucose fluxes in central carbon metabolism consisting of glycolysis, pentose phosphate pathway, TCA cycle, anaplerotic and gluconeogenic reactions (22). Judged by the consistent physiological rates in bioreactor and shake flasks, both culture conditions were equivalent (Table 2).

Flux computation based on network-wide isotopologue balancing with ¹³C-labeling pattern of intermediates (Table S1) revealed the relative distribution of intracellular fluxes in resting cells to be entirely different from the distribution in exponentially growing cultures (24) (Fig 1). While
the absolute glycolytic flux was about four-fold lower, the relative flux into the TCA cycle was four-fold increased and significant futile, ATP-dissipating cycling occurred in the PEP, pyruvate, and oxaloacetate triangle of resting cells. The latter two features were also described for very slowly growing carbon- or N-limited continuous cultures of B. subtilis (17,45). Rather surprisingly, however, we observed an extraordinarily high flux of 64% of the consumed glucose into the pentose phosphate pathway (Fig. 1B), a pathway normally considered to supply pentoses and NADPH for biomass formation that does not occur in our resting cultures. Summing up all NADPH-producing fluxes through the two reactions of the oxidative pentose phosphate pathway, isocitrate dehydrogenase in the TCA cycle and malic enzyme, the data revealed a large catabolic NADPH production of 5.0 ± 1.5 mmol·g⁻¹·h⁻¹ (Fig. 1B, Table S1). In contrast to exponential growing cells, however, it is unclear how this catabolic NADPH flux is reoxidized to NADP⁺. Indeed, in the absence of de novo biomass formation as the major NADPH sink, so far unknown mechanisms must operate in resting cells to balance NADPH formation and consumption (Fig. 1).

Transcriptional analysis in N starvation-induced resting B. subtilis - To identify such potential NADPH-consuming processes in resting B. subtilis, we compared the transcriptome of exponential growing and N-starving cultures. Out of 5737 measured transcript levels, about 40% changed significantly during starvation with 1290 transcripts being at least two-fold down-regulated and 1099 transcripts being at least two-fold up-regulated (Fig. S3 and Table S2). There was no indication of a general stress response because 131 of the 156 measured transcripts in the σB-dependent general stress regulon (4) did not change or were even down-regulated (Table S2). Likewise, we found no indication of an oxidative stress response because none of the twenty genes that are known to respond to oxidative stress induced by hydrogen peroxide or paraquat (46), including the katalase coding katA gene, were significantly induced in resting cells (Fig. S4). Several of the genes that are subject to stringent control (47) were also differentially expressed in N-starvation-induced resting cells, although often to a lesser extent. Moreover, some genes of the RelA regulon were repressed in N starvation-induced resting cells although they are under a positive stringent control in amino acid starvation conditions (e.g. the ilvBHCG/euaBC operon, ilvK (ywaA), ald, adeC). This confirmed that both starvation conditions are not equivalent and induce specific, but partially overlapping, responses (48). While some sporulation genes were upregulated, there was no coordinated sporulation expression pattern and sporulation frequency remained low (about 1% of the colony forming units) during several hours (Fig. S5).

As can be expected from an economic response to reduce biosynthesis and to liberate N-containing compounds that are not required under N starvation, we observed two pronounced metabolic gene expression responses: (i) an overall down-regulation of biosynthesis pathways, and ii) up-regulation of genes involved in uptake, salvage, or degradation of intra- and extracellular N sources. Generally, these results are consistent with an incomplete set of expression data from the transition of exponential growth to N starvation (48). The general biosynthetic down-regulation upon N starvation affected all pathways to the major biomass constituents. The pyrimidine and purine biosynthesis (i.e. the pyr-RPBC/AA/AB/KDFE and purEKBCQLFMANHD operons, and the pyrG, pyrH, purA, purT, guaA and guaC genes) were almost completely shut-off. Similarly, a strong down-regulation was seen for the biosynthesis pathways to the cell wall components peptidoglycan (mur genes) and teichoic acid (dlt, gga, gta but not the tag genes) and to vitamins and cofactors, e. g. biotin (bioWKFDBI), NAD (nadBCA operon, nadE, nadR and nifS), pyridoxal phosphate (pdbK), and thiamin (thiC). While most amino acid biosynthesis genes were more than two-fold down-regulated, genes for arginine, asparagine, glutamine, and threonine biosynthesis remained unchanged or were even up-regulated. Despite the general down-regulation of biosynthesis genes, the majority of them were still expressed above the background level.

The expected up-regulation of genes for utilization of extracellular N sources included the low affinity ammonium transporter amtB (nrgA), the nas genes for utilization of nitrate/nitrite, the dpp genes for degradation/uptake of cell wall peptides and the app/opp genes for oligopeptide uptake (Table S2). Up-regulation of nucleotide degradation and salvage pathways included the purine
salvage (adeC, adk, apt, deoD, gmk, guaD, hprT, ndk, ndrE, ndrF, ppgG, purA, purB, xpt) and degradation pathway genes (deoD, ppgG, drm, dra, puc and ureABC) (Table S2). Strikingly, the pucABCDE operon was induced from a silent state during exponential growth to the highest absolute transcription signal value observed under N starvation. In contrast to nucleotides, amino acid degradation exhibited a rather heterogeneous response. While the asparagine, glutamine, proline and serine degradation genes were typically 2- to 5-fold induced, alanine and aspartate degradation genes were 2- to 4-fold down-regulated and glycine, isoleucine, leucine, and valine degradation gene expression was virtually shut off. The remaining amino acid degradation genes remained at their exponential growth expression level that was moderate for arginine and very low for glutamate, histidine, threonine, and cysteine.

Consistent with the overall reduced metabolic activity in N starvation-induced resting compared to exponentially growing B. subtilis (Fig. 1, Fig. 2A), important glycolytic genes such as the ptsGHI operon (3-27-fold), the large cgGR-gapA-pgk-tpi-pgm-eno operon (6-10-fold), and the pyruvate dehydrogenase-encoding pdhABCD operon (5-9-fold) were essentially repressed. Likewise pentose phosphate pathway and TCA cycle were uniformly down-regulated 2-3-fold. Strikingly, the only up-regulated genes in central metabolism were the gluconeogenic gapB and pckA with 39- and 13-fold higher expression levels in resting cells, respectively (Fig. 2A, Table S2). Since these genes are normally fully repressed by CcpN in the presence of glucose during exponential growth (49-50), N starvation appears to alleviate glucose repression, despite the presence of high glucose concentrations.

It is noteworthy that the small regulatory RNA SR1 encoding ykzW gene, the only other gene known to be repressed by CcpN under glycolytic conditions (51), was also strongly derepressed (36-fold higher expression) in resting cells (Table S2). As a positive regulator of gapB/pckA/SR1, YqfL had been shown to modulate CcpN repressor activity (49). While YqfL appears to play only a modest role during exponential growth, our unpublished observations indicated importance of YqfL under nutritional deficiency, which led us to investigate the potential role of this regulator in derepression of gapB. For this purpose we determined expression of a P_{gapB}-gfp reporter fusion in wild-type and yqfL mutant during the shift from growth into N starvation. The P_{gapB} promoter was repressed during exponential growth on glucose and strongly derepressed immediately following the shift to N starvation. This strong derepression was completely abolished in a yqfL mutant (Fig. 2B). The same YqfL-dependent derepression upon N-starvation was also observed for the P_{sr1} promoter (data not shown). These results demonstrate the involvement of the YqfL regulator in the derepression.

MalS/YtsJ and GapA/GapB transhydrogenation cycles contribute to NADPH balancing during N starvation - Important for NADPH metabolism, simultaneous activity of the gluconeogenic, NADPH-dependent glyceraldehyde-3P dehydrogenase GapB and the glycolytic, NAD^D-dependent GapA (32) could potentially constitute a transhydrogenation cycle that interconverts the two redox equivalents. Although gapA was downregulated in resting cells (Fig. 2A), there was still significant residual expression (Table S2). Furthermore, the ¹³C-flux estimates indicated indeed some back-flux from 1,3-bisphosphoglycerate to dihydroxyacetone-P in resting cells (Fig. 1B). Since the global flux fit obtained by isotopologue balancing allows only for an indirect estimation of this exchange, we used deuterium-labeled glucose to directly assess the in vivo back-flux through the GapB-catalyzed reaction against the otherwise glycolytic flux in resting cells. Specifically, we chose [4-²H]-labeled glucose because the deuterium atom is split off in the GapA-catalyzed reaction that yields 1,3-bisphosphoglycerate (52-53). Hence, glycolytic intermediates above the GapA reaction should contain the ²H label, while it will be lost in 1,3-bisphosphoglycerate and downstream metabolites (Fig. 3A). A GapB-catalyzed in vivo back-flux should then reveal itself in higher relative contents of unlabeled metabolites in upper glycolysis upon feeding [4-²H]-labeled glucose. Relative to the negative control of a gapB deletion mutant, there was indeed a 15 ± 2% higher ²H label loss in upper glycolysis metabolites (FBP, F6P, G6P) of the resting wild-type culture (Fig. 3A).

To exclude that the relative ²H-label loss was caused by significantly different pentose phosphate pathway fluxes that transport mainly unlabeled intermediates (Fig. 3A), we verified similari-
ty of fluxes between resting cultures of wild-type (Fig. 1B) and gapB mutant (Fig. 3B) by 13C-flux analysis. Besides very similar relative net fluxes in upper glycolysis and pentose phosphate pathway, also the estimated exchange fluxes were similar, and consistently the global flux fit for the gapB mutant showed an absent GapB flux (Table S1). Finally, we confirmed GapB activity in resting wild-type cultures by in vitro enzyme assays with cell extracts from an exponentially growing ccpN mutant as a positive control (50) and the resting gapB mutant as the negative control (Fig. 3C). Since all data supported an active gluconeogenic GapB reaction in otherwise glycolytic resting B. subtilis, we assessed the contribution of the GapA/GapB transhydrogenation cycle to overall NADPH balancing from the apparent NADPH overproduction of the resting gapB mutant, again by summing up fluxes through all NADPH-generating reactions. The reduction of the apparent catabolic NADPH overproduction from 5.0 ± 1.5 mmol·g$^{-1}$·h$^{-1}$ in the wild-type to 4.7 ± 1.2 mmol·g$^{-1}$·h$^{-1}$, in the gapB mutant was disappointingly small and statistically insignificant (Fig. 3B, Table S1), suggesting that this cycle is either not relevant for redox homeostasis or that it is effectively replaced by another cycle.

A similar potential transhydrogenation cycle could consist of the NAD$^+$- and NADPH-dependent malic enzymes MalS and YtsJ (41) that were both expressed in resting cultures (Table S2). Akin to the GapA/GapB cycle, we quantified the NADPH balancing capacity of the putative MalS/YtsJ transhydrogenation cycle by 13C-flux analysis from a 80% (w/w) [U-13C]glucose labeling experiment with the ytsJ mutant. We found only a small reduction in apparent catabolic NADPH overproduction of 4.0 ± 0.5 mmol·g$^{-1}$·h$^{-1}$ (Fig. 4A, Table S1). Since these results showed that the NADPH-dependent malic enzyme YtsJ operated in resting cells in the NADPH consuming direction from pyruvate to malate, we could improve the confidence of our apparent NADPH overproduction estimate in wild-type to 5.0 ± 0.6 mmol·g$^{-1}$·h$^{-1}$ because only pentose phosphate pathway and TCA cycle fluxes must be considered for NADPH formation (Table S1).

Since both transhydrogenation cycles might synergistically contribute to NADPH balancing or replace each other, we determined NADPH production in a N starvation-induced resting culture of the ytsJ/gapB double mutant by 13C flux analysis. Effective disruption of both transhydrogenation cycles by deleting both NADPH-dependent isoenzymes genes caused high acetoin and citrate production, indicating reduced carbon flux through the NADPH-dependent isocitrate dehydrogenase reaction (Table 2). The apparent catabolic NADPH overproduction of 2.6 ± 0.3 mmol·g$^{-1}$·h$^{-1}$ in the ytsJ/gapB double mutant was indeed significantly lower than in either single deletion mutant (Fig. 4B, Table S1). Thus, the combined activity of both transhydrogenation cycles was capable to balance 2.4 ± 0.3 mmol·g$^{-1}$·h$^{-1}$, about half of the apparent catabolic NADPH overproduction in resting B. subtilis.

NADPH consumption through simultaneous ana- and catabolism of amino acids and a transhydrogenase reaction - How does B. subtilis metabolism cope with the remaining apparent NADPH overproduction of 2.6 ± 0.3 mmol·g$^{-1}$·h$^{-1}$ in wild-type? Since the transcription data suggested coexistence of de novo biosynthesis and degradation of amino acids, continuous cycling between the NADPH-dependent anabolism and the NAD$^+$-dependent catabolism could result in another NADPH-consuming mechanism (Fig. S6). If this hypothesis was true, one would expect significant 13C-label in certain free amino acids and their precursors in resting cells, which otherwise are expected to be unlabeled because amino acid biosynthesis is not required in the absence of cell growth. Indeed such in vivo 13C-label enrichment (Fig. S2) was found for the intermediates of one potential glutamate/aspartate cycle that consists of (i) the NADPH-consuming conversion of α-ketoglutarate to glutamate by GltAB, α-ketoglutarate regeneration through AspB-catalyzed glutamate transamination that forms aspartate from oxaloacetate, and (ii) NAD$^+$-dependent aspartate degradation to oxaloacetate by combined activity of ArgG, ArgH, FumC (CitG), and Mdh (Fig. 5). All involved genes were expressed in resting cells (Table S2). Actually, the genes argG and argH were about 4-fold upregulated in resting B. subtilis and are part of the urea cycle that was generally upregulated (argJ 1.5x, argB 1.7x, argC 2.3x, argD 2.0x, argF 1.8x, argG 4.5x, argH 3.6x, argI 0.7x, ureA 11.2x, ureB 10.4x, ureC 8.2x). Additionally, other glutamate
and aspartate degradation pathways are possible (Fig. S6).

Since stationary 13C-flux analysis cannot determine the flux through the NADPH-consuming GltAB reaction, we used kinetic flux profiling (28) to estimate the lower bound for the net flux. To determine a reaction flux by kinetic flux profiling, the experimentally determined rate constant of 13C label enrichment, i.e. the ratio of the flux to the total pool size, is multiplied with the intracellular pool size (28). For the NADPH-consuming GltAB reaction, the rate constant was determined by fitting a first-order integrated rate equation to the measured monoisotopic mass time course of glutamate (Fig. S2), followed by multiplying this rate with the known pool size of glutamate. For the free glutamate pool with a first-order rate of 3.9 ± 0.2 h$^{-1}$ and an averaged intracellular concentration obtained from different steady state conditions of 77.3 ± 8.6 µmol/gDCW (39), a lower bound of the NADPH-consuming flux of 0.3 ± 0.1 mmol·g$^{-1}$·h$^{-1}$ was calculated.

While this flux through the GltAB reaction would only account for $6 \pm 1\%$ of the apparent catabolic NADPH overproduction in resting B. subtilis, the overall contribution of amino acid synthesis to NADPH balancing could be significantly higher because half of the proteinogenic amino acids require NADPH for biosynthesis (Table S3, Fig. S6). Since our LC-MS/MS data contained only labeling information for aspartate and glutamate, we determined the 13C-label enrichment in free intracellular amino acids after 3.2 h of 13C labeling in the resting B. subtilis culture (Fig. S1) also by GC-MS (45). Supporting the hypothesis of significant NADPH consumption by continuous amino acid recycling, we found the free aromatic and branched chain amino acids to be significantly enriched for 13C-label (Table S3). Due to the complexity of amino acid metabolism (Fig. S6), however, the present data do not allow for a precise quantification of the NADPH consumption by this mechanism, but the 0.3 ± 0.1 mmol·g$^{-1}$·h$^{-1}$ NADPH consumption estimated for the GltAB reaction appears to be an underestimate.

Quantification of the NADPH balancing capacity of two combined transhydrogenation cycles and the coupled synthesis/degradation cycle for glutamate/aspartate still left some not yet accounted for apparent NADPH overproduction. Consequently, at least one further mechanism must exist, and the transhydrogenase reaction that directly transfers electrons from NADPH to NAD$^+$ is the most probable candidate (54). Although no genes were annotated for this reaction in B. subtilis, we found significant in vitro transhydrogenase activity in N starvation-induced resting wild-type that was only marginally lower in exponentially growing cells and similar in the ytsJ/gapB double mutant (Fig. 6A) (31,55-56). If this in vitro activity could be exploited in vivo, the transhydrogenase reaction could potentially contribute 1.1 ± 0.1 mmol·g$^{-1}$·h$^{-1}$ or about 21% to NADPH balancing.

DISCUSSION

How growth arrested, yet metabolically active bacteria balance their network-wide NADPH redox cofactor fluxes remained unknown because NADPH production and consumption could not be quantified under such conditions. Guided by a global transcript analysis, we identified here the metabolic key mechanisms of B. subtilis to recycle the catabolically produced NADPH into NADH, and quantified their relative contribution by a novel method for stationary 13C flux analysis (24), 2H-labeling experiments, and kinetic flux profiling (28). Based on intracellular carbon flux distributions in B. subtilis wild-type and isogenic deletion mutants in various pathways, we propose the following model of NADPH homeostasis in N starvation-induced resting B. subtilis (Fig. 6B). Sustained metabolic activity in the absence of cell growth leads to an apparent catabolic NADPH overproduction of 5.0 ± 0.6 mmol·g$^{-1}$·h$^{-1}$ that is recycled to NADH by (i) the combined activity of the MalS/YtsJ and GapA/GapB dehydrogenase isoenzyme transhydrogenation cycles, (ii) continuous cycling between ana- and catabolism of amino acids and (iii) a transhydrogenase reaction. In particular, the GapA/GapB transhydrogenation cycle was surprising because gapB was considered to be fully repressed by glucose (32,50). The here shown YqfL-dependent derepression of gapB provides first indication that YqfL could be a sensor of redox imbalance that would influence gapB expression by inhibiting the CcpN repressor activity on gapB. Since transhydrogenation cycles have so far only been shown in higher cells (57-58), we provide here first evidence for their in vivo relevance in NADPH balancing of bacteria.

The individual contributions of the above three mechanisms to overall recycling of the cata-
bolically produced NADPH in resting *B. subtilis* were about 50% for the two redox cycles, a lower bound of 6% for amino acid cycling, and about 20% for the transhydrogenase, leaving still an apparent NADPH overproduction of 1.3 ± 0.6 mmol·g⁻¹·h⁻¹ unassigned (Fig. 6B). In principle, the substitution of the three mechanisms for each other, like shown for the two redox cycles, could explain the remaining 25% of apparent NADPH overproduction, and the extent of amino acid cycling between NADPH-requiring anabolism and NADH-producing catabolism could be much larger than the lower bound of 6%. Another potential contributor to redox balancing could be NADPH consumption by detoxification of reactive oxygen species (59-60), although our transcript data provide no indication for oxidative stress. Lastly, redox cofactor unspecificity of central metabolic enzymes (31) could reduce the amount of catabolically produced NADPH, or, although not reported so far for *B. subtilis*, a small redox cofactor unspecificity of the respiratory chain could reoxidize some of the overproduced NADPH (61).

In the absence of biosynthetic NADPH requirements, overproduction of NADPH is inevitable in resting cells that continue to catabolize sugars to CO₂. The diverse, here described redox cycling mechanisms are a stoichiometric necessity to maintain redox homeostasis in the absence of NADPH requirements for biosynthesis or redox stress. The continued metabolic activity of resting cells ensures reactivity to changing nutritional conditions, a hypothesis that would be consistent with the observation that also very slowly growing *B. subtilis* under various limitations apparently overproduce NADPH and can restore maximum growth rates as soon as the limitation is reversed (17,45,62-63). The question remains, however, why N starvation-induced resting *B. subtilis* metabolism overproduces even more NADPH than would be necessary through the extensive catabolic pentose phosphate pathway fluxes rather than using exclusively the glycolytic pathway.

REFERENCES

NADPH balancing in resting B. subtilis

ACKNOWLEDGMENTS

This work was supported by the European Union BaSysBio Program Grant LSHG-CT-2006-037469. We thank K. Kobayashi and N. Ogasawara for generously providing B. subtilis mutants.

FOOTNOTES

The abbreviations used are: BPG, 1,3-bisphosphoglycerate; G6P, glucose 6-phosphate; GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; E4P, erythrose-4-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; PGA, phosphoglycerate; PEP, phosphoenolpyruvate; P5P, pentose 5-phosphate; R5P, ribose 5-phosphate; Ru5P, ribulose 5-phosphate; S7P, sedoheptulose 7-phosphate; X5P, xylose 5-phosphate.
FIGURE LEGENDS

FIGURE 1. Relative distribution of intracellular fluxes in exponentially growing batch (A) and N starvation-induced resting B. subtilis cultures (B). The 13C-labeling experiment was performed with 20% (w/w) [U-13C] and 80% (w/w) [1-13C] labeled glucose, using LC-MS/MS for 13C-pattern determination in metabolic intermediates. Flux values are normalized to the specific glucose uptake rate of each culture, while arrow sizes are relative to the glucose uptake rate of batch-grown B. subtilis wild-type. Callouts refer to the estimated forward and backward fluxes. Errors are standard deviations obtained from error propagation using multivariate-statistics (22,38). Abbreviations: G6P, glucose 6-phosphate; DHAP, dihydroxyacetone phosphate; E4P, erythrose-4-phosphate; F6P, fructose 6-phosphate; PGA, phosphoglycerate; PEP, phosphoenolpyruvate; P5P, pentose 5-phosphate; S7P, sedoheptulose 7-phosphate.

FIGURE 2. Transcript fold changes in central metabolism of N starvation-induced resting compared to exponentially growing B. subtilis wild-type cultures (A). Kinetics of P_{gapB} promoter activity in B. subtilis wild-type (black circles) and $yqfL$ mutant (open circles) upon entry into N starvation of P_{gapB}-gfp carrying strains (B).

FIGURE 3. Quasi isotopic steady state 2H-label distribution (A), intracellular fluxes (B), and in vitro GapB activity (C) of B. subtilis wild-type and gapB mutant. 2H-labeling was achieved by feeding 100% [4-2H] glucose to resting wild-type and gapB deletion mutant. Unlabeled molecules are denoted as m0 and single 2H-labeled molecules as m1. The relative distribution of intracellular fluxes in a N starvation-induced resting gapB mutant was obtained by LC-MS/MS analysis of 13C-pattern in intermediates upon labeling with 20% (w/w) [U-13C] and 80% (w/w) [1-13C] glucose. Flux values are normalized to the glucose uptake rate, while arrow size is relative to glucose uptake rate of an exponentially growing B. subtilis wild-type batch culture (Fig. 1A). Callouts refer to the forward and backward fluxes. As a positive control, in vitro GapB activity was determined in crude cell extracts of an exponentially growing ccpN mutant (50), where the errors represent technical replicates.

FIGURE 4. Relative distribution of intracellular fluxes in N starvation-induced resting cultures of a B. subtilis ytsJ mutant (A) and ytsJ/gapB double mutant (B). 13C-labeling pattern were detected by LC-MS/MS in metabolic intermediates from a 20% (w/w) [U-13C] and 80% (w/w) [1-13C] glucose experiment. Flux values are normalized to each cultures glucose uptake rate, while arrow sizes are relative to the glucose uptake rate of batch-grown B. subtilis wild-type (Fig. 1A). Callouts refer to the forward and backward fluxes and grey areas to the deleted enzymatic reaction.

FIGURE 5. Proposed transhydrogenation cycle of glutamate/aspartate biosynthesis/degradation in N starvation-induced resting B. subtilis.

FIGURE 6. Transhydrogenase activity (A) and quantification of NADPH balancing processes in N starvation-induced resting B. subtilis (B). Transhydrogenase activity was determined in crude cell extracts of exponentially growing B. subtilis wild-type (black bar) and of resting wild-type and ytsJ/gapB double mutant (gray bars), where error bars represent technical replicates. The error bars on the NADPH balancing reactions represent the confidence region of the 13C-flux estimates for the cycles and the error from the in vitro data for the transhydrogenase activity.

TABLES
Table 1. B. subtilis strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>168CA a</td>
<td>wild-type, trpC2</td>
<td>Lab stock</td>
</tr>
<tr>
<td>BSB168 b</td>
<td>wild-type</td>
<td>trp+ derivative of Marburg 168 (64)</td>
</tr>
<tr>
<td>BBA9006</td>
<td>PgapB-gfp/spec</td>
<td>(65)</td>
</tr>
<tr>
<td>GM1500</td>
<td>trpC2 gapB'::pMUTIN2(ery)</td>
<td>(32)</td>
</tr>
<tr>
<td>GM1608</td>
<td>trpC2 ytsJ'::pEC23-kan</td>
<td>(41)</td>
</tr>
<tr>
<td>GM2975</td>
<td>Δyqfl::phleo</td>
<td>chr. DNA PS1632 (49) → BSB168</td>
</tr>
<tr>
<td>GM2976</td>
<td>Δyqfl::phleo, PgapB-gfp/spec</td>
<td>chr. DNA PS1632 (49) → BBA9006</td>
</tr>
<tr>
<td>GTD107</td>
<td>trpC2 gapB'::pMUTIN(ery) ytsJ'::pEC23-kan</td>
<td>chr. DNA GM1500 → GM1608</td>
</tr>
<tr>
<td>PS1679</td>
<td>trpC2 Δ(ccpN-yqfL)::phleo</td>
<td>(49)</td>
</tr>
</tbody>
</table>

a Used strain for transcript analysis, enzyme assays, 13C- and 2H-label experiments.
b Used strain for monitoring kinetics of PgapB promoter activity.

Table 2. Physiological data of N starvation-induced resting B. subtilis wild-type and mutant cultures at 5.5 hours after resuspension.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Glucose uptake rate [mmol·g⁻¹·h⁻¹]</th>
<th>Specific production rates [mmol·g⁻¹·h⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acetoin</td>
</tr>
<tr>
<td>wild-type c</td>
<td>1.92</td>
<td>0.83</td>
</tr>
<tr>
<td>wild-type d</td>
<td>1.99</td>
<td>0.82</td>
</tr>
<tr>
<td>gapB d</td>
<td>2.32</td>
<td>1.06</td>
</tr>
<tr>
<td>ytsJ d</td>
<td>1.97</td>
<td>0.94</td>
</tr>
<tr>
<td>gapB/ytsJ d</td>
<td>1.63</td>
<td>0.49</td>
</tr>
</tbody>
</table>

a Errors were estimated from two independent wild-type experiments to be within 5% for glucose uptake and acetoin production rate, and within 10% for citrate and the other TCA cycle intermediates.
b Summed secretion rates of the TCA cycle intermediates α-ketoglutarate, succinate, fumarate, and malate. Acetate and pyruvate were not produced.
c Grown in bioreactor. Based on the physiological rates and a CO₂ production rate of 6.04 mmol·g⁻¹·h⁻¹ in this bioreactor experiment, the carbon balance closed to 98%.
d Shake flask experiments.
NADPH balancing in resting B. subtilis

Figure 1

[Diagram showing metabolic pathways and fluxes]
Figure 2 (colored)
Figure 3

A

- **Glucose 6-phosphate**
 - Mass lọc: m0, m1
- **Fructose 6-phosphate**
 - Mass lọc: m0, m1
- **Fructose bisphosphate**
 - Mass lọc: m0, m1
- **Bisphosphoglycerate**
 - Mass lọc: m0, m1

- **Wild-type**
- **gapB mutant**

B

- **q = 2.3 mmol g⁻¹ h⁻¹**
- **Glucose**
- **NAD(P)H**
- **180 ± 13**
 - **PGA**
- **181 ± 13**
- **GapB**
 - **S7P⁺**
- **Pep**
- **61 ± 0**
 - **DHA**
- **58 ± 6**
- **Hexokinase**
- **42 ± 4**
- **H+**
- **11 ± 7**
 - **Pyruvate**
- **2 ± 26**
- **Acetyl-CoA**
- **22 ± 20**
 - **Acetyl-CoA synthetase**
- **203 ± 25**
- **Citrate**
- **13 ± 5**
 - **Citrate synthase**
- **91 ± 13**
 - **oxo-Ketoglutarate**
- **2 ± 0**
 - **Succinate**
- **78 ± 13**
 - **α-Ketoglutarate**
- **78 ± 13**
 - **Malate**
 - **Malate dehydrogenase**
- **72 ± 13**
 - **Succinate dehydrogenase**
- **Succinate 4 ± 0**
 - **NADPH**
 - **NADP⁺**
 - **185 ± 47**

C

- **NADP⁺-dependent GAPDH activity (U/g cell protein)**
 - **ccpN mutant**
 - **N starvation**
 - **Wild-type**
 - **gapB mutant**
Figure 4

A

\[q_a = 2.0 \text{ mmol g}^{-1} \text{ h}^{-1} \]

Glucose \[\rightarrow \text{NAD(P)H} \]

100 ± 8

G6P

47 ± 4

F6P

82 ± 6

DHAP

182 ± 14

PGA

182 ± 14

PEP

232 ± 23

Pyruvate \[\rightarrow \text{Acetoin} \]

94 ± 14

Acetyl-CoA

54 ± 12

Citrate

9 ± 1

Oxaloacetate

81 ± 14

NADPH

86 ± 14

α-Ketoglutarate

83 ± 14

Malate

82 ± 14

Succinate

1 ± 0

Malate

1 ± 0

\[\text{NADP}^+ \rightarrow \text{NADPH} \]

181 ± 24

B

\[q_a = 1.7 \text{ mmol g}^{-1} \text{ h}^{-1} \]

Glucose \[\rightarrow \text{NAD(P)H} \]

100 ± 8

G6P

37 ± 3

F6P

79 ± 5

DHAP

*21 ± 2

PGA

*18 ± 2

PEP

179 ± 11

Pyruvate \[\rightarrow \text{Acetoin} \]

179 ± 11

Acetyl-CoA

94 ± 14

Oxaloacetate

80 ± 8

Citrate

39 ± 4

α-Ketoglutarate

41 ± 7

Malate

37 ± 7

Succinate

1 ± 0

Malate

1 ± 0

\[\text{NADP}^+ \rightarrow \text{NADPH} \]

155 ± 17
Figure 5
Figure 6

A

Transhydrogenase activity (U mol protein⁻¹)

- Wild-type
- gapA/J
- gapA/J mutant

B

Absolute NADPH flux (mmol g⁻¹ h⁻¹)

- Biosynthesis/degradation cycles
- Cofactor unspecificity of enzymes
- Reactive oxygen species

Maximal contribution of transhydrogenase
Minimal contribution of glutamate/aspartate cycle
MaeAY TsJ and GapA/GapB transhydrogenation cycles
13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis
Martin Ruehl, Dominique Le Coq, Stephane Aymerich and Uwe Sauer

J. Biol. Chem. published online June 27, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.366492

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/06/27/M112.366492.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2012/06/27/jbc.M112.366492.full.html#ref-list-1