Redox modulation of flavin and tyrosine determines photoinduced proton-coupled electron transfer and photoactivation of BLUF photoreceptors*

Tilo Mathes¹, Ivo H.M. van Stokkum¹, Manuela Stier², John T.M. Kennis¹.

¹Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
²Institut für Biologie, Experimentelle Biophysik, Humboldt Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, Germany.

*Running title: Redox modulation of photoinduced electron transfer in BLUF domains

To whom correspondence should be addressed: Tilo Mathes, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands, Tel: +31 20 59 87935, E-mail: t.mathes@vu.nl

KEYWORDS: Photoreceptor, flavin, redox potential, electron transfer, ultrafast spectroscopy

Background: Proton-coupled electron transfer is the key step in BLUF photoactivation.
Results: Redox modulation of flavin and tyrosine determines electron transfer rates, signaling efficiency and reveals a new photocycle intermediate.
Conclusion: Partial charge transfer from tyrosine to flavin takes place prior to full electron transfer.
Significance: Mechanistic details of protein modulated electron transfer processes are crucial to understand biological proton-coupled electron transfer reactions.

SUMMARY

Photoinduced electron transfer in biological systems especially in proteins is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone, since it provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (Blue light sensors using FAD) photoreceptors, proton coupled electron transfer (PCET) between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact, that although the various naturally occurring BLUF domains show little differences in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundreds of ps.

In this study we modified the redox potential of the flavin/tyrosine redox pair by site directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited-state charge transfer intermediate prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation.

BLUF (Blue light receptors using FAD) proteins are responsible for photoadaptive responses of many prokaryotes and a few eukaryotes (1,2). These blue light induced reactions vary from phototaxis (3,4) and photosynthetic gene regulation (5,6) in phototrophic organisms to biofilm formation (7) and even virulence (8) in pathogenic bacteria. These receptor proteins are modularly designed and contain the about 150 amino acid large flavin binding BLUF domain to modulate the activity of their corresponding effector domain. In many cases the effector domain is directly fused to the receptor. Lately these BLUF coupled effectors, predominantly BLUF domain regulated enzymes, have been successfully used as so-called optogenetic tools to manipulate for example the second messenger level in a given cell (type) by application of light (9-
Still the photoactivation mechanism and communication between receptor and effector are not well understood. After excitation with blue light, proton coupled electron transfer (PCET) from a nearby, conserved tyrosine side chain (Y8 in Figure 1B) to the flavin takes place (13). In the dark-adapted state this reaction occurs in a strictly sequential order of electron transfer followed by proton transfer, whereas in the light-adapted state, a highly concerted electron and proton transfer reaction leads to the formation of the same neutral flavin/tyrosine radical pair (13-16). The neutral radical pair recombines to the oxidized state, which results in a rearrangement of the hydrogen bond network mainly between flavin, tyrosine and a conserved glutamine residue. The rearranged hydrogen bond network is characterized by a downshift of carbonyl vibrations of the flavin, thus indicating a stronger hydrogen bond coordination at this functional group (17,18). This is most likely predominantly facilitated by the rotation of the glutamine amide sidechain (19,20) and leads to the red-shifted absorbance spectrum of the light-adapted state (5). Additionally, an unusually strong hydrogen bond is formed from the conserved tyrosine to the glutamine side chain (19,21). The molecular details of both dark- and light-adapted states as well as the implications for signal transduction are still under heavy debate, since the available crystal structures of BLUF domains gave contradicting results, especially on the orientation of the glutamine side chain (22-27). Additionally, theoretical calculations indicate that a tautomerisation of the glutamine side chain is another possible hydrogen bond switch mechanism, which is, however, still lacking hard experimental proof (28-31). The hydrogen bond switched state is also considered to be representative for the biologically active state. Still the structural changes - most likely induced by the hydrogen bond switch - that facilitate biological signaling by changes in the interaction of the BLUF domain with other proteins or directly fused effector domains are very small and poorly understood. So far only one structure of a BLUF/effector complex has been solved and a model for signal transduction was established (22). It is very likely though, that there are various molecular ways of signaling in BLUF photoreceptors similar to what is known about LOV-domain signaling (32).

In this article we address the very first reaction after blue light excitation in the BLUF domain: photoinduced electron transfer. In addition to their very intriguing signal transduction aspect, BLUF domains are also very powerful model systems to study PCET. PCET involving a tyrosine side chain is a key reaction in the oxygen evolving photosystem II complex and up to now not fully understood (33-35). Most model studies in this field are carried out using small heavy metal complexes or modified cytochrome c or azurin proteins. In contrast to these artificial model systems, BLUF domains present the smallest so far investigated evolutionary optimized model system to study PCET. In a previous publication we addressed the effects of hydrogen bonding in dark- and light-adapted states on the sequence of electron and proton transfer (15). In the light-adapted state we observed a highly efficient proton transfer reaction concerted with electron transfer within 1 ps. In the dark-adapted state, proton transfer lags electron transfer by (tens of) picoseconds. Thus the light-adapted state is preconfigured for proton transfer. Here we address the differences in photoinduced electron transfer between various BLUF domains. Although all BLUF domains are very similar in structure and sequence of the flavin binding pocket, the ultrafast electron transfer varies from a few picoseconds to hundreds of picoseconds within the BLUF family (13,14,36-44). A major factor, that determines electron transfer in chemistry and biology are the relative redox potentials of the reaction partners. Previously, Ishikita reported a theoretical study on the redox potential of the one-electron reduction of FMN in flavodoxin and its susceptibility to the protein environment (45). In a later study he addressed the effects of the hydrogen bond network in AppA on the redox potential of the reactive tyrosine (46). Accordingly, we observe here that modulation of the redox potential of both flavin and tyrosine significantly influences the rate of electron transfer. Due to these altered kinetic properties the observation of a previously occluded excited state charge-transfer intermediate is facilitated. Selected mutations and modifications were introduced into Slr1694 (also referred to as SyPixD) from Synechocystis sp. PCC 6803 and studied by ultrafast spectroscopy.

EXPERIMENTAL PROCEDURES

Expression strain generation and characterization

CmpX13 (47) was rendered tyrosine auxotrophic by *in frame* deletion of *tyrA* according to established homologous recombination protocols (48). A linear double-stranded DNA fragment containing a kanamycin resistance conferring cassette flanked by FLP recombinase recognition target (FRT) sites was amplified by PCR from pKD4 (49) including a 50 bp homology region flanking the *tyrA* gene at the 5'- and 3'-end using the primers DtyrA-5' and DtyrA-3' listed below (Table 1). After transformation of the recipient strain, clones were selected on kanamycin containing LB-Agar and colony purified. Successful disruption of the *tyrA* gene was confirmed by growth tests in minimal media with and without addition of...
L-tyrosine. The genomically integrated kanamycin resistance conferring cassette of a single correctly identified clone was removed by expression of FLP recombinase according to previously described protocols (47,49). The resulting clones were colony purified and selected for kanamycin sensitivity and tyrosine auxotrophy. A single clone, henceforth named CpXΔY, was verified by DNA sequence analysis and used for protein production as indicated below.

The tyrosine requirement of CpXΔY was determined relative to the glucose consumption. Cells were grown in M9 minimal medium under glucose limiting conditions (0.1% (w/v)) with varying concentrations of L-tyrosine. The cell density was estimated by absorbance measurements at 600 nm every 20 minutes during growth in a 96-well-plate shaking incubator at 37°C. After reaching the stationary phase the L-tyrosine minimal requirement was extracted at concentrations slightly below the maximum growth level in apparent L-tyrosine non-limiting conditions (not shown).

Mutants and protein production

Slr1694 mutants were produced from pET28(+)−slr1694 as described previously (44). Site-directed mutations were introduced according to the Quickchange™ (Stratagene) protocol using the primer pairs N31R/N31R_r and N31H/N31H_r as indicated below (Table 2). Mutations were confirmed by restriction digestion and DNA sequence analysis. The flavin composition of the purified, mutated proteins was determined by HPLC as previously described (47,50).

Homology modeling

Homology models of the two N31 mutants were created using the Swiss-Model server (51) on the basis of the Slr1694 crystal structure (23).

Fluorotyrosine labeling

For incorporation of 3- (AstaTech, Inc., USA) and 2-fluoro-tyrosine (Matrix Scientific, USA) a fed-batch fermentation protocol was established. CpXΔY cells transformed with pET28a(+)−slr1694 were grown in M9 minimal medium supplemented with 50 µM riboflavin and unfluorinated L-tyrosine in a 500 ml fermentation vessel (Multifors reactor, Infors HT AG, Basel) at 37°C with percolation of pressurized air and gentle agitation. By monitoring the pO2 level of the medium via an oxygen electrode the metabolic activity of the cells was observed indirectly. Upon consumption of essential nutrients (glucose, ammonia, tyrosine) the pO2 level rises abruptly since oxidative phosphorylation comes to a halt and the cells start to enter a stationary phase. This event was used to lower the temperature to 26°C and to start feeding new carbon and nitrogen sources as well as the fluorotyrosine analogs (160 mg/L). The protein production was induced by addition of 1 mM IPTG shortly after. The cells were further cultivated for about 13 hours under these conditions and harvested subsequently. Protein preparation from these cells was carried out as described below.

Spectroscopy

Steady state spectra were recorded on a two-beam scanning UV/vis photometer (Cary300bio, Varian). Dark state recovery was measured at 493 nm after blue light illumination using an LED (Luxeon Lumiled, 450 nm, 1W).

Ultrafast transient absorption spectroscopy and data analysis

Visible absorption spectroscopy was carried out using pump-probe setups as described earlier (44,52). The reaction was induced at 400 nm with an energy of ~800 nJ per pulse. In order to prevent multiple excitations of the same molecule the sample was put between two windows separated by a 200 µm spacer and moved perpendicularly to the probe beam in a Lissajous motion as described previously (14). Before analysis, a pre-processing method was applied to datasets to correct for the pre-time-zero signal by substraction of the average pre-time-zero signal at each wavelength. The time-resolved data can be described in terms of a parametric model in which some parameters, such as those descriptive of the instrument response function (IRF), are wavelength-dependent, whereas others, such as the lifetime of a certain spectrally distinct component, underlay the data at all wavelengths. The presence of parameters that underlay the data at all wavelengths allow the application of global analysis techniques (53), which model wavelength-invariant parameters as a function of all available data. The partitioned variable projection algorithm is well-suited to the optimization of model parameters for global analysis models (54). The algorithm has the further advantage of estimating the standard error of parameters estimates, an advantage that is useful in model selection and validation. A compartmental model was used to describe the evolution of the spectrally distinct components in time. Global analysis was then applied to estimate the lifetime and relative concentration of each component at each wavelength in the data. All data analyses were carried out using TIMP (54) and the Glotaran software package (55).

RESULTS
Positively charged amino acids close to C2=O increase cofactor selectivity in Slr1694

Mutations N31H and N31R close to the C2=O carbonyl group of the isoalloxazine ring of the flavin were successfully introduced into the BLUF domain of Slr1694. Both mutated proteins show wild-type like ground state absorption in the dark-adapted state, slightly shifted by 3 (N31R) and 4 nm (N31H) (50). The dark recovery is slowed down by a factor of about four in both mutants to about 28 s (N31H) and 29 s (N31R). Despite their similarity to AppA (N31H) and BlrB (N31R) the dark recovery seems not to be influenced strongly by these mutations alone. In the AppA-like N31H mutant a drastic slowing down of the dark recovery, while in the BlrB-like N31R mutant a behavior similar to that of Slr1694 WT was expected. Interestingly, the introduction of a positive charge at this position led to a preferential binding of FMN and FAD in the BLUF domain of both N31 mutants (50): BLUF domains heterologously expressed in E. coli usually show a quite heterogenous flavin composition with similar amounts of riboflavin, FMN and FAD bound to the photoreceptor domain (47,56). In the N31R and N31H mutants, the amount of riboflavin was below detection level. From the homology models of the two mutant proteins the changed residues are in hydrogen bond distance to the C2=O carbonyl of the flavin (Figure 1C). Additionally, the groups are close to the negatively charged phosphate group of the flavin, thus supporting its coordination by R30, a semi-conserved residue in the BLUF family, which is neither present in BlrB nor AppA.

Fluorotyrosine labeling of Slr1694

2- or 3-fluoro-L-tyrosine was exclusively incorporated into the BLUF domain using a custom-made tyrosine auxotrophic strain to prevent biosynthesis of unfluorinated tyrosine, which would compete most likely successfully with the tyrosine analog. In combination with a fed-batch procedure, high cell density was achieved along with complete consumption of the supplemented L-tyrosine before fluorinated tyrosine was added and the protein production was induced. After induction with IPTG the cells, if supplemented with natural tyrosine, usually double about once during the following protein production phase (not shown). However, after supplementation with fluorotyrosine the cell density increased only by about 50% indicating some interference with cell metabolism. The purified 2- and 3-fluoro tyrosine labeled BLUF domains showed WT like dark state absorbance spectra (Figure 2A). The dark recovery after blue light excitation was slowed down by a factor of about four in 2-fluoro-tyrosine labeled Slr1694 (SlrY2F) to about 40 s whereas 3-fluoro-tyrosine labeled Slr1694 (SlrY3F) was only slightly affected (Figure 2B).

Ultrafast dynamics of mutant and modified Slr1694 BLUF domains

The N31R, N31H, SlrY2F and SlrY3F proteins were investigated in H2O buffer by transient absorption spectroscopy using 400 nm excitation and white light probe beams. Since the dark recovery reaction is also H/D isotope dependent and slowed down in D2O, we were only able to measure SlrY3F in D2O buffer, which has a sufficiently fast dark recovery under these conditions. Because of their decreased dark recovery rate (see above) the remaining samples do not allow for a complete recovery in the described experimental setting, which would lead to a mixing of dark- and light-adapted states. Because of their spectral similarity both states would then be excited by the pump beam and a mix of spectral dynamics would be observed.

The main interest of this study is the first step in photoactivation of BLUF domains, which is photoinduced electron transfer. This process can be conveniently monitored at around 700 nm (Figure 3). At this wavelength only the excited state of flavin absorbs significantly without contributions of anionic or neutral flavin semiquinones that are expected to form as previously observed (13,36,44). A loss of absorbance at this wavelength therefore corresponds to excited state deactivation processes, which are dominated by photoinduced electron transfer in BLUF domains. In Figure 3 the corresponding traces are depicted along with the absorbance change of the WT protein at this wavelength (adapted from data presented in Gauden and coworkers (13)). All proteins show a clearly elongated excited state lifetime of the flavin. The excited state decay of all mutants and Slr-Y3F is similar to the wild type within the first 3 picoseconds, for the N31 mutants even within the first 6 picoseconds. Afterwards the decay clearly deviates from the wild type. Among these proteins, SlrY3F in both D2O and H2O shows the longest excited state lifetime. SlrY2F showed very similar photodynamics to SlrY3F on the ultrafast timescale (not shown) and is therefore not discussed here.

Spectral evolution

To obtain an overall picture of the spectral evolution and to assess whether reaction intermediates can be observed in the obtained datasets we first analysed the data globally using a sequential model with increasing lifetimes (1 ➔ 2 ➔ 3 ➔ 4...).
The corresponding evolution-associated difference spectra (EADS) are displayed in Figure 4. The following applies to all datasets: the first spectra (black) correspond purely to the singlet excited state of the flavin that is formed during the instrument response. The main components of these spectra typically are the ground state bleach (GSB) around 445 nm, excited state absorption (ESA) around 510 nm and above 600 nm, as well as stimulated emission (SE) at around 550 nm. The final, non-decaying spectra correspond to a species that does not decay on the timescale of the experiment and is predominantly assigned to the difference spectrum of the signaling state of the BLUF domain, as indicated by the dark state bleach around 445 nm and the red shifted absorption at around 490 nm. In all cases, a featureless absorption from 500 to 700 nm is observed in varying amounts, which is attributed to flavin triplet absorption(37). The spectral evolution from the black to the final spectra will be described for all studied BLUF domains as follows.

The Slr1694-N31R and N31H mutants behave similarly in their spectral evolution and are both sufficiently described using five lifetimes (Figure 4A, B). The red EADS is formed from the black in roughly 1 ps (N31H) and 1.2 ps (N31R) along with a significant blue shift and increase of the SE band from about 560 to 550 nm, which is indicative of vibrational relaxation in the flavin excited state (13,36,37,44). The red EADS then decays in 5.1 ps (N31H) and 5.5 ps (N31R) into the green EADS with a loss and further blue shift of the SE band. Additionally, the green EADS gain absorption between 570 and 620 nm, which indicates the formation of a flavin semiquinone species as observed previously (13,44). Its rise and decay are indicated at single wavelength traces around 600 nm (Figure S1). At the same time, ESA above 620 nm is diminished by about 25%. From the green EADS the blue EADS is formed in 36 ps (N31H) and 37 ps (N31R), which is characterized by a loss of GSB of about 50% and a complete (N31H) or almost complete (N31R) loss of SE. Additionally, a shoulder in the positive absorption at around 490 nm is formed, along with a further increase in absorption between 550 nm and 600 nm. The final magenta EADS is formed in about 240 ps in both mutants with a quantum yield of about 32% (N31H) and 29% (N31R) as judged from the induced absorption at 490 nm relative to the GSB in the very first spectrum compared to previous experiments (44). The N31H dataset seems to contain about two times more flavin triplet species than N31R as judged by the broad absorption near 650 nm.

The spectral evolution of SlrY3F (Figure 4C, D) and SlrY2F (not shown) is highly similar. We will therefore focus only on the description of the SlrY3F sample. Similar to the spectra of the N31 mutants, the red EADS is formed from the black in 1 ps with an increase and a slight blue shift of SE. The red EADS then evolves into the green with 2.7 ps and 4.3 ps (D2O). The green EADS shows a significant blue shift of the SE band. Additionally, the ESA feature at around 510 nm becomes narrower and shows a shoulder at around 490 nm. Similar to the spectral evolution of the N31R and N31H mutants, some absorption between 580 and 600 nm rises (see also Figure S2) but to a significantly smaller degree, whereas ESA above 625 nm remains unchanged. The green EADS evolves into the blue spectrum with a lifetime of 31 ps and 55 ps (D2O) with a ~50% loss of GSB and ESA. SE is also diminished but still clearly present. The blue EADS then evolves in 365 ps and 689 ps (D2O) into the non-decaying species. Compared to the dataset of the N31R mutant, the final spectrum of the SlrY3F datasets shows a larger amount of featureless absorption between 500 and 700 nm. The apparent broadening of the induced absorption at 490 nm, which is indicative of the BLUF signaling state, is due to spectral overlap with triplet absorption. As judged from the absorption at 650 nm the SlrY3F protein yields similar amounts of triplet in H2O and D2O similar as the N31H mutant. The quantum yield of signaling state formation estimated as above is significantly lower than for the N31 mutants with about 16%.

Target analysis of the N31R and N31H mutants

In the past, target analysis proved to be a powerful tool to reveal the ultrafast photochemistry of BLUF domains (13-15,36,37,43,44). By fitting transient data using branched compartmental models, parallel reaction pathways can be investigated and inverted kinetics, where a product is decaying faster than its formation, can be addressed. The resulting so-called species associated difference spectra (SADS) ideally represent the difference spectra of the true molecular species that occur during the reaction. Using this approach on transient absorption data of Slr1694 the presence of an anionic and a neutral semiquinone flavin radical was demonstrated previously (13,14). Due to the strong multieponentiality of the excited-state decay in BLUF domains ranging from few ps to hundreds of ps, the electron transfer from a nearby tyrosine and the resulting anionic flavin radical product, which occur in a few ps, is difficult to observe directly. Additionally, the subsequent protonation of the anionic flavin radical also occurs in only a few ps. Because also the protonated semiquinone lives only for tens of picoseconds, either intermediate is difficult to resolve kinetically. A
multiexponential excited state decay as previously observed for BLUF domains (13,14,36,44) is clearly visible in the transient absorption at 701 nm (Figure 3). To obtain spectra of the pure intermediate states we applied target analysis taking this behaviour into account. Additionally, we considered vibrationally hot excited state relaxation as it was indicated by the blue shift of stimulated emission observed in the sequential analysis above. Finally a non-decaying species is assumed for the red-shifted signaling state BLUF$_{\text{red}}$, which however may be mixed with triplet features that are not expected to decay on the timescale of the experiment and are therefore impossible to separate from each other. In the model for the N31H mutants (Figure 5A) two intermediates (Q1 and Q2) formed sequentially from the multiexponential excited state decay were included, identical to the model for the WT (13,44). SlrY3F however, was best described with only one intermediate (Q1) in both H$_2$O and D$_2$O (Figure 5A) and is therefore discussed separately. Similar to WT we also included a 50% loss after the Q1 intermediate, ascribed to radical recombination prior to proton transfer (13).

To get a better handle for discussion of the obviously slowed down excited state decay rates as already observed in the raw data (Figure 3) we describe this multiexponential process in the following by averaged lifetimes calculated as follows:

$$ k_{\text{avg}} = e^{-\frac{t}{\tau_{\text{avg}}}} $$

where k_n are the respective decay rates and f_n the corresponding fractions obtained by target analysis. The lifetimes and their corresponding fractions obtained from the target analysis below are displayed in Table 3. The average lifetimes τ_{avg} displayed in Table 3 and Figure 5A are the reciprocal values of k_{avg}. The logarithmic way of weight averaging the rates provides a more unbiased average than weight averaging either the lifetimes or the decay rates directly, since using the lifetimes will put more weight on the bigger lifetimes whereas using the rates will emphasize the shorter lifetimes/bigger rates.

The datasets of the N31 mutants were best fitted with a model identical to the WT as shown in Figure 5A and gave qualitatively identical spectra for both mutants (Figure 5B). This model includes two intermediates (Q1, Q2). The hot (black) and relaxed (red) excited state SADS represent flavin excited states with GSB around 445 nm, ESA absorption at 510 and above 600 nm as well as stimulated emission around 550 nm. The relaxed state is formed in 1 ps in both mutants and characterized by a blue shifted SE band. The decay of the relaxed excited state into the Q1 intermediate was described best using four lifetimes. The lifetimes differ only slightly between the two datasets (Figure 5A). Compared to the wild type (Table 3) the average lifetime is slowed down to 63 and 65 ps (WT: 17 ps) due to lower fractions of the fast components and the presence of clearly elongated lifetimes with significant contributions.

The Q1 intermediates in the N31H and N31R mutants significantly differ in their spectral properties from the Q1 intermediate detected in WT. The spectrum is characterized by the same induced absorption above 550 nm, which is characteristic for an anionic semiquinone species with charge transfer (CT) character (57). Strikingly, the Q1 SADS shows a negative band at 525 nm. Negative bands in transient absorption spectroscopy are assigned either to GSB or SE, and given that there is no ground state absorption at 525 nm, the negative feature must be assigned to SE. Thus, we conclude that this species, at least partly, corresponds to a flavin excited state. At first glance one may interpret the Q1 SADS as a WT Q1 spectrum that is “contaminated” by FAD*. However, this can be ruled out because the negative feature at 525 nm has a spectral shape that differs significantly from that of FAD*. Additionally the spectral evolution of N31H clearly indicates the formation of a shifted SE feature in contrast to WT (Figure S3). A target model without this intermediate lead to a significantly worse fit in this time domain (not shown), which proves that inclusion of an emission component in Q1 is strictly required.

The Q1 intermediates decay into the next intermediate (Q2) with WT-like lifetimes of 4.4 ps (N31H) and 5 ps (N31R). The Q2 intermediate nicely represents a neutral semiquinone flavin radical, which is characterized by the complete absence of SE and a broad absorbance between 550 and 650 nm. Similar to WT we observe a significant loss in GSB in both datasets (13,14,44), if the 50% loss mentioned above is not included. This loss is believed to originate from radical recombination of the anionic flavin semiquinone and tyrosyl cation thus preventing quantitative formation of the neutral semiquinone. The Q2 intermediates decay with 54 ps (N31H) and 63 ps (N31R) into the final non-decaying spectrum. This values are in close range of the 65 ps observed for the neutral flavin semiquinone in WT (13). The final non-decaying spectrum is identical to the one obtained from global analysis and shows the characteristic induced absorption of the red shifted signaling state at around 490 nm and a broad featureless absorption most likely corresponding to a flavin triplet.

Target analysis of the SlrY3F protein

For the fluoro-tyrosine substituted protein we extracted an intermediate, which is strikingly similar
to the Q1 spectrum of the N31 mutants, varying slightly by an increased absorbance above 650 nm and at 510 nm. The model (Figure 5A) again features hot state (black) cooling into the relaxed excited state (red) and formation of the non-decaying species (magenta) via the Q1 intermediate (blue, Figure 5C) without any further intermediate. Similar to the N31 mutants the excited state spectra perfectly match flavin excited state features with a blue shift of the SE band during the 1 ps hot state relaxation. The excited state decay into the Q1 intermediate was described best using four excited state lifetimes with varying concentrations (Figure 5A, Table 3). The kinetic isotope effect (KIE) on the slower components is small (1.1 – 1.3) and is not further interpreted. Compared to WT and the N31 mutants (Table 3) the average lifetime is slowed down further to 88 ps (100 ps in D2O) due to the dominating contributions of the slow components in the nanosecond timescale. The semiquinone characteristics of the Q1 intermediate at around 600 nm are clearly observed in kinetic traces around this wavelength (Figure S2) and support the global fitting procedure. The decay of the Q1 intermediate at 600 nm also shows a clear kinetic isotope effect of about 1.9, which is supported by the raw data (Figure S2). The final spectra in both datasets are very similar and resemble the red shifted signaling state together with contributions of rather featureless absorption between 500 and 700 nm assigned to flavin triplets.

Spectral fitting of the Q1 intermediate

The Q1 spectrum observed here is clearly distinguished from the Q1 intermediate observed in the WT and W91F mutant by pronounced additional negative features at ~510 and 540 nm, which indicate a stimulated emission contribution in this species. This observation implies that this SADS represents a fraction of flavins in an excited state. To identify the nature of the Q1 intermediate we reconstructed the difference spectrum by spectral fitting of a linear combination of experimentally known contributions and spectral characteristics of excited state absorption and stimulated emission of flavins in BLUF domains. We used experimentally determined spectra of the ground state absorbance to describe the ground state bleach (GSB) and skewed Gaussians to describe stimulated emission and (excited state) absorbance (Figure 6). In Figure 6 a comparison of spectral fits of the Q1 intermediate of N31H, N31R (Figure 6A, B), SlrY3F (Figure 6C, D) and WT (Figure 6E, F), the latter two in H2O and D2O are displayed. In WT, the Q1 spectrum is sufficiently described using the ground state bleach (green) and three skewed Gaussians (blue, red and magenta) for the absorption of the intermediate in H2O and D2O. In the modified proteins an additional Gaussian (black) at around 525 nm was necessary to account for the negative contributions at 500 nm and 540 nm. This additional contribution at ~525 nm can only originate from stimulated emission, demonstrating that Q1 corresponds at least partly to an excited state species. In Figure S4 we present a fit of all photocycle intermediates for the N31H mutant, with known contributions from ground state bleach, stimulated emission and red-shifted product absorption imposed in the fit. The FAD* species shows stimulated emission from the excited state to the ground state, peaking at ~510 nm, as follows from the fluorescence spectrum, whereas Q2 and the final product are devoid of any stimulated emission. The SE observed in the Q1 intermediate is therefore present only in this intermediate and red-shifted compared to the locally excited state FAD*. A red shift in fluorescence/SE may be indicative for the formation of a charge transfer (CT) state.

DISCUSSION

Up to now only few BLUF domains were studied regarding the primary photochemistry. Therefore the primary mechanisms that facilitate formation of the biological signaling state and determine most likely also biologically relevant parameters like photosensitivity (quantum yield of signaling state formation) are still not fully understood. Although the BLUF domains share a very similar amino acid composition of their flavin binding pocket, the differences in excited state lifetimes ranging from about a few ps in Slr1694 (J3) to hundreds of ps in AppA (37) have not been addressed on a molecular level. In this study we observed how the redox potential of the tyrosine/flavin reaction pair, which constitutes the first step in BLUF photoactivation, determines excited state lifetime as well as photoprodut quantum yield.

Observation of an excited state charge-transfer state in BLUF domains

The elongated excited state lifetimes in the N31 mutants and SlrY3F provided us with further insight into the BLUF photocycle by revealing a hitherto unobserved excited state. In both N31 mutants and SlrY3F, we found the presence of an intermediate (Q1), which features the previously observed charge transfer absorption of the anionic flavin semiquinone, but additionally shows stimulated emission features indicative of an excited state species. By spectral fitting of the Q1 intermediates observed here and the Q1 intermediates observed in WT before, we clearly assign the difference to stimulated emission that is red
shifted to ~525 nm compared to that of the locally excited state FAD\(^{\ast}\). Therefore, we believe that the Q1 intermediate indicates the presence of an excited state with strong charge transfer character, which is formed from the locally excited state (FAD\(^{\ast}\)) prior to full electron transfer (Figure 7A). Interestingly, fluorescence depolarization experiments in glutathione reductase provided evidence for an emissive flavin/tyrosine CT state with a shifted emission dipole moment decaying in the same time domain (58). Hence, we hypothesize that the excited CT state observed here most likely corresponds to significant electron redistribution from Y8 to FAD in the excited state.

The Q1 intermediate in the N31 mutants has a spectral signature of the anionic FAD\(^{\ast}\) CT absorption band near 600 nm that is very similar to that of WT. Moreover, its lifetime of ~5 ps is essentially the same as in WT. Therefore it is likely that the Q1 species is not a single molecular species, but that it represents a mixture of an excited CT state with the anionic semiquinone FAD\(^{\ast\ast}\). Such a mixture may appear in the case of heterogeneity in the initial reaction rates, which in a fraction of the BLUF domains results in transient accumulation of the excited CT state, and in the remaining fraction in transient accumulation of the FAD\(^{\ast\ast}\) species.

The question arises whether the proposed FAD\(^{\ast}\)/Y excited CT state forms an integral part of the photoreaction in WT BLUF or this species is a characteristic feature of the modified BLUF proteins only. Given that functionally the photoreactions in N31R and N31H are the same as in WT, it is very likely that in WT the reaction proceeds via such a species as well, but that it cannot be kinetically resolved due to a rate-limiting formation rate. We therefore propose that the FAD\(^{\ast}\)/Y excited CT state generally applies to the BLUF photoreaction, and that it becomes observable in the N31R/H mutants and Slr-Y3F protein through their modified reaction rates.

The Q1 species is subsequently protonated to the neutral semiquinone. In case of the N31 mutants one can safely assume that the proton transfer reaction from the tyrosine remains largely unaffected, which is indicated by the virtually identical rise- and lifetime of the neutral flavin semiquinone (Q2) in the WT.

The Q1 spectrum of SlrY3F is highly similar to the Q1 intermediate in the N31 mutants and therefore considered to be of almost identical nature. The decay of this species is slowed down threefold compared to WT Q1, and shows a clear kinetic isotope effect of 1.9. Due to the higher acidity of the hydroxyl group of the fluorinated tyrosine (59) one would assume that the proton transfer to the flavin is even faster than in WT and the value obtained here by global fitting.

This would then lead to an accumulation of the neutral radical form, which is apparently not the case. Thereby the subsequent radical recombination step, which involves proton-coupled electron transfer to form the red shifted state apparently occurs in the same time domain as its formation. Compared to WT this reaction is accelerated here, which is reasonable since the fluorination renders the tyrosine radical in an energetically less favorable redox state. Small contributions from a neutral semiquinone mixed with the CT and anionic semiquinone spectrum might account for the increased absorbance at 510 nm in SlrY3F Q1 compared to N31H/R-Q1 (Figure 6), which was previously observed to be higher in the neutral semiquinone than in the anionic form (13).

With these new experimental insights at hand we propose a more detailed photocycle scheme for BLUF proteins (Figure 7A). After excitation of the flavin, significant charge redistribution from tyrosine to flavin takes place before the complete electron transfer is accomplished. In Slr1694 WT, electron transfer is too fast to kinetically resolve this excited state FAD\(^{\ast}\)/Y CT intermediate and seems to directly proceed to the ground-state anionic flavin semiquinone. In Slr1694 proteins with slowed down electron transfer properties, this intermediate becomes partly detectable in transient absorption spectroscopy by its red shifted SE contribution. Because of its otherwise spectral and kinetic similarity to the WT flavin anionic semiquinone species it is most likely that we observe a mixture of excited FAD\(^{\ast}\)/Y CT state and flavin anionic semiquinone/tyrosyl radical pair.

Positive charges close to the flavin C2 carbonyl slow down electron transfer in Slr1694

Besides distance, orientation and reorganization energy the relative redox potentials in a given reaction partner system are of major influence for the free reaction energy and thereby also for electron transfer rates. The redox potential of a molecule can be influenced indirectly by changes in the environment (polarity, dielectric constant e.g.) or by subtle chemical modifications of the molecule itself. In a biological context redox processes are evolutionarily optimized and present the best fitting environment for the corresponding task. The redox potential of flavin is known to be strongly influenced by positive charges close to the C2 carbonyl of the flavin, which has been observed previously in many flavoenzymes (60,61). The positive charge close to this part of the flavin is thought to stabilize negatively charged flavins, since the charge density in flavins is generally more localized on the heteroatom-rich part of the isoalloxazine moiety, especially in the excited
state or in charge transfer states. So far redox potentials of flavin in BLUF domains have been experimentally addressed only for AppA and several mutants thereof (62). The redox potential for the ground state of the FAD/FAD\(^•\) redox pair in the WT BLUF domain was determined to about -260 mV (vs. SCE), about 50 mV lower than for FAD in solution. Interestingly BLUF domains are highly variable in their amino acid composition close to the C2 carbonyl (Figure 1A). Slr1694, which so far shows the fastest excited state decay (Table 3) and therefore also the fastest photoinduced electron transfer, contains a polar but uncharged asparagine at position 31 (Figure 1A, B). In BlrB and AppA, which show a slightly and significantly slower photoinduced electron transfer, respectively, contain an arginine or a histidine at the corresponding position (36,37). Both side chains are supposed to be positively charged in the protein under the experimental conditions applied here. The protonation state of H44 in AppA was previously confirmed by NMR spectroscopy (63). Assuming that these positive charges stabilize also a singly reduced flavin, one would expect an increase in the FAD/FAD\(^•\) redox potential and thereby a corresponding increase in free reaction energy. In contrast, a significantly slowed down photoinduced electron transfer is observed for these WT proteins and the Slr1694 N31R/H mutants (Figure 7B, Table 3). If we consider the overall protein configurations and especially the mutual distance and orientation of flavin and tyrosine identical to that in the WT protein, this putatively redox potential induced change in reactivity may be explained by Marcus’ theory (64-66). The increase in free energy by elevating the redox potential of the flavin might push the reaction into the so-called inverted region. In this region an activation barrier appears, which then slows down the reaction itself but still yields a higher free energy. Generally the reorganization energy for complex systems like proteins is very high and therefore it is usually hard to reach the inverted regime. Here however, we are looking at an excited state reaction, which most likely provides sufficient energy: the redox potential in the singlet excited state of flavin in is elevated enormously by ~1V (67). Additionally, Marcus’ inverted regions have also been found in ET reactions of photosynthetic reaction centers (68) and have been recently observed for the back electron transfer reactions to the neutral flavin semiquinone in DNA photolyase after DNA repair as well (69).

It should be noted that although we observe a significant effect on the ET rates the redox potential of the one-electron reduction of flavin might be shifted only slightly. In a previous theoretical study on flavodoxins a shift of 20 mV was calculated for mutants, where charged or polar side chains were introduced close to the flavin (45).

The average excited state lifetimes of N31H/R with 63 and 65 ps respectively are significantly slower than in WT (17 ps) but still clearly faster than BlrB with 110 ps or AppA with 287 ps. Interestingly, mutated AppA-H44R, which turns AppA into a BlrB-like protein with respect to the C2=O environment, leads to a significant speeding up of the primary reaction (39). In Slr1694 we are obviously not able to discriminate the AppA-like mutation N31H and the BlrB-like mutation N31R since the difference in the excited state lifetimes of all fractions are only marginal (Table 3).

Redox modulation of the electron donating tyrosine in Slr1694

In tuning the redox properties of the BLUF domain, we also applied a different approach directly affecting the tyrosine redox partner, which is a well-known procedure for modifying and investigating PCET in photosynthesis research (33). In this study we used a procedure in which a tyrosine analog, fluoro-tyrosine, is incorporated selectively into the protein in vivo using a tyrosine biosynthesis deficient *E. coli* strain. A similar procedure was previously employed to modify the GFP chromophore (70). Here we decided to design a novel tyrosine deficient *E. coli* expression strain using CmpX13 (47), a C41(DE3) (71) derivative with constitutive expression of a riboflavin transporter, as a parent strain. This strategy is advantageous for the production of flavoproteins under the conditions encountered here. For selective labeling the cells have to be cultivated in defined/minimal medium, which is usually not optimal for cell vitality. Additionally fluorinated tyrosine, which is present during protein production, is also incorporated into household proteins of the cell and might thereby impair their function. Both conditions might also lead to a lack or even a breakdown of cofactor biosynthesis, which is easily circumvented by external supplementation of riboflavin in the medium. In our experiments we indeed observed a lower vitality of the expression culture, indicated by the lowered biomass yield.

The introduction of a fluorine atom at the tyrosine ring resulted in a functional, photoactivatable BLUF protein. This chemical modification not only increases the redox potential from 650 to 700 mV (vs. NHE) of the Y\(^+\)/Y\(^−\) redox pair, but also lowers the \(pK_a\) of the phenolic group by more than one order of magnitude to about 8.4 thus increasing its acidity (59). Additionally, one should take into account that although the fluorine atom is very compact and the substitution can be considered by and large isosteric,
the fluorine substitution inverses the polarity of the former C-H bond and may therefore also act as a hydrogen-bond acceptor and establish new interactions within the protein (72). Since the protein still binds flavin similar to the WT protein and the dark-adapted state absorbance and also the dark recovery in at least the SlrY3F protein remains unchanged, one can assume that the flavin binding pocket is not significantly distorted by this tyrosine analog. The increased redox potential of the fluorinated tyrosine stabilizes its reduced form and is thus expected to transfer its electron to the excited state flavin slower as indeed observed here. It is also noteworthy that in AppA, the redox potential of the flavin is largely unaffected by the substitution of tyrosine by phenylalanine, which suggests that we can safely assume that only the redox potential of the tyrosine and not the redox potential of the flavin is changed by this modification (62). The average excited state lifetime (Table 3) of 88 ps (100 ps in D$_2$O) is clearly longer than for the N31 mutants and close to the BlrB average lifetime (110 ps/120 ps in D$_2$O (36)). The effect of changes in the redox potential of the tyrosine on the photoinduced electron transfer therefore appears larger than the indirect effect of the environment of the flavin C2=O carbonyl. The environment of the reactive tyrosine in BLUF domains, however, has not been studied so far. From our experience mutagenesis close to this tyrosine is generally difficult to accomplish without disturbing the protein fold (unpublished observation).

Studies on the environment of Y8 would be highly interesting, since another influence for the redox potential of Y8 may be the nature of hydrogen bonding to the conserved Q50 side chain amide. In a theoretical study by Ishikita on the ET driving force in light and dark-adapted states of the AppA BLUF domain, the redox potential of the tyrosine seemed to be influenced significantly by the side chain orientation of the conserved glutamine, while the flavin remained largely unaffected (46). The ET driving force would thereby be significantly enhanced for the light state, which is consistent with results of Toh and coworkers, who observed a dramatically increased electron transfer rate in the light state (73). It is difficult, however, to directly relate the results on AppA to the Slr1694 BLUF domain because photoinduced ET rates are much faster in the latter protein (17 ps vs 287 ps, see Table 3). In fact, in TePixD, which is highly homologous to Slr1694, ET in the dark-adapted state was found to occur at optimal ΔG on the top of the Marcus curve (42). The ET rate of the dark-adapted AppA is significantly slower and may be far off the maximum of the Marcus curve accordingly. Therefore, the enhanced ET rate in Slr1694 in the light state (which occurs very rapidly in 1 ps (15)) is most likely due to other factors like shortened Y/FAD distance or optimized MO overlap.

Because the change of the redox potential of the tyrosine and flavin leads to a lower or higher free reaction energy, respectively, and ET is slowed down in both cases, ET in WT-Slr1694 must be optimized almost perfectly and occur almost barrier-less according to Marcus’ theory. A similar proposal has been made by Shibata and coworkers who studied the highly homologous TePixD BLUF protein by time-resolved fluorescence spectroscopy (42).

Previously we modulated the tyrosine redox partner by exchanging the phenolic side chain by an indole moiety using site-directed mutagenesis (44,74). Although the Slr1694-Y8W mutant was able to photoreduce the flavin to a radical state with high efficiency, no signaling state was formed, probably due to alterations in the flavin-coordinating H-bond network involving Q50. The light induced reaction produced various spectrally distinct radical pair difference spectra on the ultrafast timescale, which were assigned to FAD/W8 radical pairs but might also correspond to a radical pair consisting of FAD and the semi-conserved W91. Using transient EPR spectroscopy a strongly coupled radical pair was detected in this mutant, which was significantly different from the WT radical pair and decayed slightly slower (74). Because the Y8W mutation, however, rendered the BLUF photoreceptor non-functional and the radical pairs likely originate from the FAD triplet state rather than the singlet excited state, these findings are difficult to relate to WT and functional BLUF mutants directly.

The quantum yield of signaling state formation is affected by redox modulation of FAD/Y

An interesting aspect in this study is the obvious decrease of the quantum yield of signaling state formation along with the elongation of excited state lifetime (Table 3, Figure 7B). In Slr1694, which shows the fastest excited state decay, we observe a quantum yield of roughly 40%, in BlrB the quantum yield ranges between 30-40% (36,75) as compared to about 24% AppA (37), which has the slowest ET reaction observed in BLUF domains so far. In AppA the quantum yield can be increased to about 30% by introducing the BlrB-like H44R mutation (39) – analogous to the Slr1694 N31R mutation. Additionally an increase up to 37% can be achieved by removal of a semi-conserved tryptophane side chain, that competes in the excited state electron transfer with the tyrosine, but only yields a futile reaction that does not contribute to signaling state
photoreceptors have been evolutionary adapted for their specific physiological function. Especially the region around the C=O carbonyl seems to be a key player for reactivity tuning. So far the physiologically best-studied BLUF containing protein is AppA, which is integrating both light and redox stimuli (5,6,76-81). The latter are most likely perceived by a C-terminal cysteine-rich domain and/or a recently discovered novel heme binding domain (82), which is localized between the BLUF domain and the PpsR interaction domain. Both domains are susceptible to redox changes in the environment and are able to induce structural transformations accordingly. The extent to which the redox potential of the environment directly affects the BLUF domain has not been addressed yet. As we observed here, the redox potential of both flavin and tyrosine determines the quantum yield in BLUF photoactivation. If these redox potentials are indirectly coupled to the environment, one may include another redox input into the integrated signal, which originates directly from the BLUF domain. Such a redox relay, however, has not been observed experimentally so far.

In conclusion, we demonstrate that the redox potential of the flavin/tyrosine redox pair in BLUF domains is a key determinant of excited state electron transfer. By modulation of the redox potential we provide experimental evidence for a previously unobserved excited-state charge transfer intermediate prior to electron transfer in the BLUF photocycle. Furthermore, the electron transfer rate correlates with the quantum yield of signaling state formation. Therefore, the redox potential of the tyrosine/flavin redox pair is directly coupled to the biological output. The biological reason for this divergent behaviour in excited state decay in various wild type BLUF domains, however, needs to be addressed in future studies.

REFERENCES

Acknowledgments: T.M. was supported by the Chemical Sciences council of the Netherlands Organization for Scientific Research (NWO-CW) through an ECHO grant to J.T.M.K, the LaserLab Europe access program (LCVU-1618) and the German Research Foundation (DFG). J.T.M.K was supported through a NWW-CW VICI grant. Additionally we would like to thank Roman Fudim (Humboldt University, Berlin) for assistance during the measurements and Peter Hegemann (Humboldt University, Berlin) for providing access to his biochemistry facility and general support.

Supporting information:
Supporting material on the analysis of the ultrafast dynamics is available.

TABLE AND FIGURE LEGENDS

TABLE 1. Oligonucleotides used for in frame deletion of tyrA. Regions homologous to tyrA are printed bold.

TABLE 2. Oligonucleotides used for site-directed mutagenesis on Slr1694. Mismatched basepairs corresponding to the changed amino acid codons are printed bold.

TABLE 3. Excited state decay lifetimes (τ) of various BLUF domains, their fractional contributions and the corresponding weighted average lifetimes (τavg). The last row shows the quantum yield of signaling state formation (Φred).

FIGURE 1. Amino acid composition in selected BLUF domains. Panel (A) shows a sequence alignment of the first 35 amino acids in the N-terminal part of various BLUF domains. The conserved tyrosine and the mutated position 31 are printed bold. From the dark-adapted state structure of the WT (B) the predominant interactions of the flavin cofactor with the protein are hydrogen bonds from Q50 to N5, a hydrogen bond from N31 to C2=O and hydrogen bonds between N3, C4=O and N32. Homology models (C) of the N31R (orange) and N31H (green) mutants show the putative positive charge of these mutated sidechains near the C2=O carbonyl group. Furthermore the residues are interacting with the negatively charged phosphate group of the flavin cofactor, supporting its coordination by R30.

FIGURE 2. Absorption and dark state recovery of SlrY2F (grey) and SlrY3F (black). The dark-adapted spectra of the fluoro-tyrosine substituted Slr1694 BLUF domains (A) are highly similar with absorption maxima of the S0-S1 transition at 441 nm identical to the WT. Minor differences are visible due to slight scattering of the SlrY3F protein indicated by an apparent increase in absorption towards shorter wavelengths. Dark recovery at RT after illumination at 450 nm was monitored at 493 nm (B). The time constants of the process are about 9 s for SlrY3F and 40 s for SlrY2F.

FIGURE 3. Excited state decay of the flavin in Slr1694 and mutants. The absorbance change at 701 nm is characteristic for excited state decay of the flavin. Slr1694-N31R/N31H (A, black) show a significantly slower decay than the WT (grey), especially at delays greater than 10 ps. SlrY3F in both H2O and D2O shows an even slower excited state decay (B).

FIGURE 4. Spectral evolution of Slr1694-N31R (A), Slr1694-N31H (B) and SlrY3F in H2O (C) and D2O (D). The evolution associated difference spectra (EADS) show the spectral evolution after femtosecond excitation. The spectra evolve sequentially with the indicated lifetimes (black ➔ red ➔ green ➔ blue ➔ magenta).

FIGURE 5. Target analysis of N31-mutants of Slr1694 (A/B) and Slr1694 substituted with 3-fluoro-tyrosine SlrY3F (A/C). The model used for the description of both N31H (B, solid lines) and N31R (B, dashed) is displayed in (A) together with the average lifetimes for the multiexponential reaction from the FAD* excited state (red) to Q1 (blue). The model used for the description of SlrY3F in both H2O (C, solid lines) and D2O (C, dashed lines) datasets is similar to the N31H/R model (A) except that the reaction proceeds from Q1 directly to the red shifted state (BLUFred).
FIGURE 6. Spectral fits of the Q1 intermediates of the N31 mutants (A, B) and SlrY3F (C, D) compared to WT (E, F) using experimentally determined ground state absorbance (green) and skewed Gaussians for (excited state) absorption (blue, red, magenta) and stimulated emission (black).

FIGURE 7. In the Slr1694 N31 mutants and modified proteins the slowed down excited state decay leads to an accumulation of a charge transfer state FAD*CT formed from the locally excited state FAD* (A) prior to formation of the anionic semiquinone (FAD•−), which appears to be formed instantly in WT. The lifetimes in the modified proteins correspond to a mixture of CT and anionic radical species. In the N31 mutants the subsequently formed neutral flavin semiquinone (FADH•) decays to the red shifted state with similar lifetimes as the WT. In SlrY3F this intermediate cannot be observed and the red shifted state appears to be formed directly from the FAD*CT/FAD•−. The average excited state lifetime (τavg) which corresponds to excited state electron transfer between tyrosine and flavin in BLUF domains (B) is slowed down by modification of the electron donor (SlrY3F) or a positive charge near the C2=O carbonyl of the acceptor (N31R, N31H). Additionally the quantum yield of signaling state formation (Φred) becomes lower with increasing excited state lifetime.
Table 1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5'→3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>DtyrA-5’</td>
<td>GGATCTGAACGGGCAGCTGACCGCTCGGCTGCTTTAAGAGGTTTATTATGGGTAGGCTGGAGCTGCTTC</td>
</tr>
<tr>
<td>DtyrA-3’</td>
<td>GATGATGTGAATCATCCGCACTGGAATTATTACCTGGCGATTGTCATTTGCCGCTGACATGGGAAATTAG</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5'→3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>N31R</td>
<td>CTTAGAATCTTCCCAAAGACGTAATCCGGCCCAATGGC</td>
</tr>
<tr>
<td>N31R_r</td>
<td>GCCATGGCCCGGATTACGGCTTTGGGAAGATCTAAAG</td>
</tr>
<tr>
<td>N31H</td>
<td>CTTAGAATCTTCCCAAAGACAATCCTCGCCCAATGGC</td>
</tr>
<tr>
<td>N31H_r</td>
<td>GCCATTGCCGGGATTATGGCTTTGGGAAGATCTAAAG</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Slr1694 WT(13)</th>
<th>Slr1694-N31H</th>
<th>SlrY3F</th>
<th>SlrY3F(D2O)</th>
<th>AppA(37)</th>
<th>BlrB(36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau) [ps]</td>
<td>7 (47%)</td>
<td>6.7 (20.6%)</td>
<td>6.9 (20.6%)</td>
<td>2.8 (7.3%)</td>
<td>2.8 (7.3%)</td>
<td>90 (38%)</td>
</tr>
<tr>
<td></td>
<td>40 (28%)</td>
<td>37 (34.6%)</td>
<td>43 (34.6%)</td>
<td>11.5 (26.6%)</td>
<td>11.5 (26.6%)</td>
<td>570 (59%)</td>
</tr>
<tr>
<td></td>
<td>180 (17%)</td>
<td>179 (38.2%)</td>
<td>181 (38.2%)</td>
<td>101 (34.5%)</td>
<td>111 (34.5%)</td>
<td>1000 (3%)</td>
</tr>
<tr>
<td></td>
<td>209 (0.1%)</td>
<td>3448 (6.6%)</td>
<td>1667 (6.6%)</td>
<td>943 (31.5%)</td>
<td>1266 (31.5%)</td>
<td></td>
</tr>
<tr>
<td>(\tau_{\text{avg}}) [ps]</td>
<td>17</td>
<td>63</td>
<td>65</td>
<td>88</td>
<td>100</td>
<td>287</td>
</tr>
<tr>
<td>(\Phi_{\text{red}})</td>
<td>40%</td>
<td>33%</td>
<td>29%</td>
<td>16.5%</td>
<td>15%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Figure 1

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str1694</td>
<td>M</td>
<td>S</td>
<td>L</td>
<td>Y</td>
</tr>
<tr>
<td>AppA 12</td>
<td>G</td>
<td>S</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>BlrB</td>
<td>M</td>
<td>D</td>
<td>E</td>
<td>L</td>
</tr>
<tr>
<td>TII0078</td>
<td>M</td>
<td>G</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>YcgF</td>
<td>M</td>
<td>L</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

B

C

Downloaded from http://www.jbc.org/ by guest on August 17, 2017
Figure 2

A

Absorbance, normalized

wavelength [nm]

SiY3F
SiY2F

B

ΔAbsorbance@493nm

t [Min]

SiY3F \(\approx 9 \) s
SiY2F \(\approx 40 \) s
Figure 3

A

\[\Delta \text{Abs@701 nm (mOD, normalized)} \]

\[\frac{t [\text{ps}]}{t \text{ [ps]}} \]

B

\[\Delta \text{Abs@701 nm (mOD, normalized)} \]

\[\frac{t [\text{ps}]}{t \text{ [ps]}} \]
Figure 4

A

B

C

D

\[\Delta \text{Abs} [10^3] \]

wavelength [nm]

wavelength [nm]

wavelength [nm]

wavelength [nm]

N31R

1.2 ps
5.5 ps
37 ps
242 ps
inf

Si\(\text{rY3F} (\text{H}_2\text{O})\)

1 ps
2.7 ps
31 ps
365 ps
inf

Si\(\text{rY3F} (\text{D}_2\text{O})\)

1 ps
4.3 ps
55 ps
889 ps
inf

N31H

1 ps
5 ps
36 ps
241 ps
inf
Figure 5

A

B

C

\[\Delta \text{Abs} [10^{-3}] \]

\[\text{wavelength [nm]} \]
Figure 6

A

B

C

D

E

F

\[\Delta \text{Abs} \]

-2

-1

0

1

wavelength [nm]

-2

-1

0

1

wavelength [nm]
Redox modulation of flavin and tyrosine determines photoinduced proton-coupled electron transfer and photoactivation of BLUF photoreceptors
Tilo Mathes, Ivo H. M. van Stokkum, Manuela Stierl and John T. M. Kennis

J. Biol. Chem. published online July 25, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.391896

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/07/25/M112.391896.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2012/07/25/jbc.M112.391896.full.html#ref-list-1