Suppression of electron-transfer to dioxygen by charge-transfer and electron-transfer complexes in the FAD-dependent reductase component of toluene dioxygenase

Tzung-Yuan Lin¹, Tobias Werther¹, Jae-Hun Jeoung and Holger Dobbek

From the Institut für Biologie, Strukturbiochemie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany

*Running title: The role of CT- and ET-complexes in a FAD-dependent reductase

¹Both authors contributed equally to this work.

To whom correspondence should be addressed: Holger Dobbek, Institut für Biologie, Strukturbiochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10115 Berlin, Germany phone: ++49-30-2093-6369, fax: ++49-30-2093-6447, email: Holger.Dobbek@biologie.hu-berlin.de

Keywords: Toluene dioxygenase; electron-transfer complex; flavin; Pseudomonas putida, degradation of aromatic compounds.

Background: Toluene dioxygenase reductase converts the redox equivalents of NADH under oxic conditions.

Results: Reduced reductase forms a stable complex with NAD⁺ that shows slower electron transfer to dioxygen.

Conclusions: Charge-transfer complex formation regulates the reactivity of the reductase.

Significance: Charge-transfer complexes between flavins and nicotinamides are abundant and likely to have diverse mechanistic functions.

SUMMARY

The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S]-ferredoxin and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge-transfer complex between the reduced reductase and NAD⁺ at the end of the reductive half-reaction, which is substantially less reactive towards dioxygen than the reduced reductase in the absence of NAD⁺. A plausible reason for the low reactivity towards dioxygen is revealed by the crystal structure of the complex between NAD⁺ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation – both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron-transfer from the charge-transfer complex to electron acceptors further reduces the risk of unwanted side reactions and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron donating and accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity and reactivity of the observed charge-transfer and electron-transfer complexes are thought to prevent the reaction of reductase TOL with dioxygen and thus present a solution towards conflicting requirements.
Pseudomonas putida F1 to utilize toluene as the sole source of carbon and energy (1). TDO is a member of the Rieske-type oxygenase family, enzymes that typically consist of two or three components to mediate electron transfer from NADH to the active site of a Rieske-type oxygenase component, where dioxygen is activated and the substrate turned over (2). Recently, the crystal structures of all three individual components of TDO have been reported and the structure of the reductase component was found to belong to the glutathione reductase family (3,4). In TDO, the flavin adenine dinucleotide (FAD/FADH$_2$) redox center of reductase$_{TOL}$ acts as a transformer by accepting two electrons from soluble nicotinamide adenine dinucleotide (NAD$^+$/NADH) and donating them in two separate one-electron-transfer steps to a Rieske-type ferredoxin, termed ferredoxin$_{TOL}$ (5). From ferredoxin$_{TOL}$ the electrons are transferred to oxygenase$_{TOL}$.

Reducase$_{TOL}$ belongs to the large family of bacterial oxygenase-coupled, NADH-dependent ferredoxin reductases (ONFRs). ONFRs are found in conjunction with Rieske-type oxygenases or cytochrome P450 dependent monooxygenases to which the structurally characterized ferredoxin reductase components of biphenyl dioxygenase (BphA4) (6) and the putidaredoxin reductase (7) belong. All of these proteins share similar active site architectures with a conserved Lys-Glu ion-pair, which is in hydrogen-bonding distance to the N5 atom of the flavin cofactor. The Lys-Glu pair has also been identified in the crystal structure of reductase$_{TOL}$ (4).

Reduced flavins are typically oxidized by dioxygen producing reduced oxygen species like peroxide and superoxide. We became interested on how this unwanted side reaction may be suppressed in flavoenzymes, which have to function in an oxic environment. We selected the TDO system for which our combined kinetic and structural analysis revealed how the reactivity of the reduced reductase with dioxygen may be suppressed by formation of a stable charge-transfer complex and by rapid electron transfer to physiological and artificial electron acceptors.

EXPERIMENTAL PROCEDURES

Reagents—All chemicals used were of analytical grade. All chromatography materials were from Amersham Biosciences.

Cloning and expression of reductase$_{TOL}$ and ferredoxin$_{TOL}$—The nucleotide sequences of *todA* and *todB*, encoding for reductase$_{TOL}$ and ferredoxin$_{TOL}$, from *P. putida* F1 was obtained from GenBank (accession no. 74484327 and 74484327, respectively). The open reading frame of *P. putida* F1 *todA* and *todB* was amplified by polymerase chain reaction (PCR), using *P. putida* F1 genomic DNA as template and cloned into pET-15b or pET-11a (Novagen), respectively. The identity of the constructs was verified by DNA sequencing. Reductase$_{TOL}$ and ferredoxin$_{TOL}$ were expressed under aerobic conditions in *E. coli* CodonPlus (DE3)-RIL (Stratagene) using dYT medium (8) supplemented with 50 µg/mL carbenicillin and 34 µg/mL chloramphenicol at 22 °C. Expression was induced with 0.5 mM isopropyl-β-D-galactopyranoside (IPTG) at an optical density (OD$_{600}$ nm) of 0.5. Cells were harvested by centrifugation after 20 h or 18 h in the case of reductase$_{TOL}$ or ferredoxin$_{TOL}$, respectively, frozen in liquid nitrogen and stored at -30 °C until further use.

Purification of reductase$_{TOL}$ and ferredoxin$_{TOL}$—Frozen cells containing the overexpressed reductase$_{TOL}$ were resuspended in 50 mM Tris-HCl pH 8.0, 20 mM NaCl, 20 mM imidazole, and 0.1 mM phenylmethylsulphonyl fluoride (PMSF, Roth). Crude cell extract prepared by sonication and centrifugation was applied to a Ni-Sepharose High-performance column and the His-tagged protein was eluted with increasing imidazole concentration from 20 to 250 mM. Reductase$_{TOL}$-containing fractions were pooled, loaded on a Q-Sepharose FF column and eluted with a linear gradient of 0 to 500 mM NaCl. The fractions with the highest purity were pooled and the buffer was exchanged to 50 mM Tris-HCl pH 8.0 and 100 mM NaCl using a Sephadex G-25 column. Finally, the protein was concentrated to 23 mg mL$^{-1}$, frozen in liquid nitrogen and stored at -80 °C.

Frozen cells containing the overexpressed ferredoxin$_{TOL}$ were resuspended in 50 mM Tris-HCl pH 6.9, 1 mM DTT, and 1 mM PMSF. Supernatant obtained after sonication and centrifugation was applied on a DEAE Sepharose FF column. Elution was performed with increasing concentration from 0 to 500 mM...
NaCl with ferredoxin$_{TOL}$ eluting at around 270 mM NaCl. The pooled fractions were loaded on a CHT$^\text{TM}$ ceramic hydroxyapatite column equilibrated with 5 mM KH$_2$PO$_4$ pH 6.9 and 1 mM DTT. Ferredoxin$_{TOL}$ does not bind to the resin and is found in the flow-through. Subsequently, the buffer was exchanged to 50 mM Tris-HCl pH 6.9, 1 mM DTT, and 150 mM NaCl using a Sephadex G-25 column. Finally, the protein was concentrated to 10 mg mL$^{-1}$, shock-frozen in liquid nitrogen, and stored at -80 °C.

Enzyme Assays and Rapid Reaction Kinetics - Specific activities were determined by monitoring the NADH-dependent reduction of 2,6-dichlorophenolindophenol (DCPIP) using the assay described by Subramanian et al. (9).

Stopped-flow measurements were performed under anoxic conditions in 50 mM MOPS/NaOH pH 7.2 and 150 mM NaCl at 10 °C using an Applied Photophysics SX-20MV spectrophotometer with a 1 cm observation path length coupled either to a diode array detector or a photomultiplier. Enzyme solutions were made anoxic in a glass tonometer by repeated cycles of evacuation and equilibration with nitrogen gas. Apparent first-order rate constants (k_{obs}) were derived from the kinetic traces using the ProData software (Applied Photophysics, UK). All quoted concentrations are final concentrations after 1:1 (v/v) mixing.

Reducive half reaction - Spectral changes attributed to the reduction of reductase$_{TOL}$ were monitored for the reaction of 15.3 µM reductase$_{TOL}$ with 30 µM NADH using diode array detection. To estimate the limiting rate constant for the flavin reduction (k_{lim}) and the dissociation constant for the transient enzyme-substrate complex (K_d), 2.4 µM reductase$_{TOL}$ was mixed 1:1 with a solution containing 20 µM to 500 µM NADH. Each experiment was repeated at least four times for each substrate concentration. Hyperbolic plots of observed rate constants versus substrate concentration were fitted using the following equation:

$$k_{obs} = k_{lim} [S] / (K_d + [S])$$

assuming a fast binding step followed by a slower quasi-irreversible electron transfer.

Oxidative half reaction - To obtain fully reduced reductase$_{TOL}$, the anoxic enzyme was reduced by addition of either stoichiometric amounts of NADH or sodium dithionite, respectively. The reoxidation by potassium hexacyanoferrate(III) or oxygen as oxidative substrate were monitored with a diode array detector.

Crystallization, data collection, structure solution and refinement - Crystals of the NAD$^+$-reductase$_{TOL}$ charge transfer complex have been obtained by the hanging drop technique. Reductase$_{TOL}$ was prepared with three times the concentration of NADH and crystallized in 2.2 M sodium malonate pH 6.5. Crystals of the reductase$_{TOL}$-ferredoxin$_{TOL}$ complex have been obtained by the sitting drop technique. Reductase$_{TOL}$ and ferredoxin$_{TOL}$ had equimolar concentrations in the crystallization drop. Crystals grew above a reservoir solution of 0.1 M Bis-Tris pH 6.5, 20% (w/v) polyethylene glycol monomethyl ether 5,000.

Diffraction data were collected at -180 °C at beam line BL14.2 (BESSY, Berlin, Germany) (Tab. 1). Diffraction images were processed and data scaled using XDS (10).

The structure was solved using Patterson search techniques with the crystal structures of ferredoxin$_{TOL}$ (PDB-Id.: 3DQY) and reductase$_{TOL}$ (PDB-Id.: 3EF6) as homologous search models (4) using PHASER (11). The model was constructed using COOT (12). Positional, temperature factor and TLS refinements (13) were carried out with PHENIX (14). The final refinement statistics are shown in Table 1. All figures were prepared using the PyMOL Molecular Graphics System, Version 1.5.0.1 Schrödinger, LLC (15).

Model calculations - Electrostatic potential calculations were carried out using APBS (16) using the non-linear Poisson-Boltzmann equation with a solvent radius of 1.4 Å. The structures were prepared using PDB2PQR (17) and the Schrödinger 2010 suite (Protein preparation wizard, Epik version 2.1; Impact version 5.6, Prime Version 2.2). The partial charges of FAD used within Poisson-Boltzmann calculations were determined using semiempirical methods (PM3) as implemented in Gaussian03 (18). Partial charges for the [2Fe-2S]-cluster were gained from a model containing the [2Fe-2S]-cluster core, methylimidazoles and methylthiols optimized using hybrid density functional theory (B3LYP) as implemented in Gaussian03 (18).

Data Bank accession codes - Coordinates and structure factor amplitudes are deposited in the protein data bank with ID code: 4EMI (NAD$^+$:reductase$_{TOL}$ CT) and 4EMJ (ferredoxin$_{TOL}$:reductase$_{TOL}$).
RESULTS AND DISCUSSION

Reaction of reductase\textsubscript{TOL} with NADH and charge-transfer complex formation-The reductive half reaction of reductase\textsubscript{TOL} was studied by multiple wavelength stopped-flow spectrophotometry, which was used to follow the reaction of oxidized reductase\textsubscript{TOL} with NADH after rapid mixing under anoxic conditions. The first spectrum after mixing of the two components is similar to the spectrum of oxidized reductase\textsubscript{TOL} and does not show any characteristic signal for a charge-transfer (CT) complex between NADH and oxidized reductase\textsubscript{TOL} (Figure 1A). The NADH-dependent reduction of reductase\textsubscript{TOL} was followed by recording the time-dependent absorption decrease at 450 nm, while the concomitant formation of a CT complex was indicated by an increase in absorption at 520-720 nm, where the long-wavelength detection is limited by the diode array detector (Figure 1A). The observed transients can be described by a single-exponential function (Figure 1B and Figure 1C). Using the rapid-equilibrium approximation for a two-step reaction (equation 1) the dissociation constant (k_D) for the reductase\textsubscript{TOL} - NADH complex has been determined as $41 \pm 4 \mu$M with a limiting rate of reduction (k_red) of $152 \pm 4 \text{s}^{-1}$ (Figure 1D). The increased broad absorption band between 520-720 nm is typical for CT complexes involving reduced flavins (19). The kinetic trace at 690 nm monitors the formation of the CT complex and the agreement of the observed rate constants at 450 nm and 690 nm (Figure 1B) suggests that the reduction of the flavin is immediately followed by the formation of the CT complex. The reaction sequence thus indicates that the CT complex formed involves the reduced FAD and the oxidized pyridine nucleotide (NAD+:reductase\textsubscript{TOL}CT).

The amplitude of the phase at 690 nm was used to calculate an extinction coefficient at 690 nm (ε_{690}) of 2,082 M-1 cm-1, assuming the practically complete formation of the NAD+:reductase\textsubscript{TOL}CT complex at high NADH concentrations. The derived ε_{690}-value is in good agreement with the derived ε_{400}-value of $2,082 \text{M}^{-1} \text{cm}^{-1}$ observed for a CT intermediate of melilotate hydroxylase (20).

Reactivity of NAD+:reductase\textsubscript{TOL}CT-As the formed NAD+:reductase\textsubscript{TOL}CT complex was observed to be stable in the stopped-flow experiment, it may also act as the physiological electron donor for ferredoxin\textsubscript{TOL}. Formation of CT complexes between flavoproteins and ligands in either oxidation state of the flavin can modulate the reactivity of the enzymes (19) and we were therefore interested in the mechanistic significance of the observed NAD+:reductase\textsubscript{TOL}CT complex.

By titrating oxidized reductase\textsubscript{TOL} with NADH under anoxic conditions we were able to produce a dominant population of NAD+:reductase\textsubscript{TOL}CT with some additional NAD+ and reduced NAD--free reductase\textsubscript{TOL} being present in the assay. While the electron transfer to ferredoxin\textsubscript{TOL} would correspond to the physiological reaction, we chose the artificial electron acceptor ferricyanide instead, since the limited amounts of ferredoxin\textsubscript{TOL} together with its spectral overlap with reductase\textsubscript{TOL} precluded a comprehensive investigation. Single-turnover kinetics initiated by mixing NAD+:reductase\textsubscript{TOL}CT/reductase\textsubscript{TOL} with potassium ferricyanide (potassium hexacyanoferrate(III)) revealed rapid electron transfers. The first spectrum taken about 1-2 ms after mixing shows a strongly increased absorption at 400-500 nm with a maximum at 430 nm, compared to a mixture of NAD+:reductase\textsubscript{TOL}CT with buffer only (Figure 2A). To resolve the contributions of NAD+:reductase\textsubscript{TOL}CT and NAD--free reductase\textsubscript{TOL}, we also followed the reoxidation of DT-reduced reductase\textsubscript{TOL} with ferricyanide (Figure 2B). DT-reduced reductase\textsubscript{TOL} is almost completely reoxidized within the dead-time of the instrument by ferricyanide and the shapes of the spectra show contributions from ferricyanide and indicate that the DT-reduced enzyme tends to aggregate. We thus attribute the reoxidation of the mixture of NAD+:reductase\textsubscript{TOL}CT and NAD--free reductase\textsubscript{TOL} within the dead-time of the measurement to NAD--free reductase\textsubscript{TOL} alone. The NAD+:reductase\textsubscript{TOL}CT complex, in contrast was not oxidized in the dead-time of the measurement as the characteristic CT-band around 650-720 nm was not decreased (Figure 2A). The subsequent decrease of the CT-band (monitored at 690 nm) indicates the sequential oxidation of the NAD+:reductase\textsubscript{TOL}CT complex via a neutral (blue) semiquinone species to the fully oxidized quinone state (Figure 2C). Whereas the decay of the semiquinone species (monitored at 600 nm) and the formation of the quinone state occurred with the same rate, which is consistent with the second one-electron transfer step, the decay of the CT-complex is
faster (Figure 2C). Analysis of the oxidative half-reaction thus indicates that NAD⁺-free enzyme is rapidly reoxidized by the electron acceptor \((k_{\text{obs}} > 300 \text{ s}^{-1})\), whereas reoxidation of the NAD⁺:reductaseTOL_{CT} is slower and results in the intermediate population of the blue semiquinone species. The separation of the phases corresponding to the two sequential electron transfers is only visible at low concentrations of ferricyanide. A tentative and limited analysis of the electron transfer between NAD⁺:reductaseTOL_{CT} and ferredoxin_{TOL} indicates comparable electron transfer rates as found for the artificial electron acceptor ferricyanide (Figures 2E and F).

Reductase_{TOL} is part of a dioxygen-dependent multicomponent enzyme and thus has to selectively shuttle electrons to its physiological electron donor and not to the abundant dioxygen molecules. We therefore followed the oxidation of NAD⁺:reductaseTOL_{CT} and compared it to the reoxidation of dithionite-reduced reductaseTOL after rapid mixing with an air-saturated buffer (Figure 2D). An accumulation of intermediates during oxidation like semiquinone species was not observed. The reaction of dioxygen with both reduced reductaseTOL preparations was complex and cannot be interpreted in terms of a simple one- or two-step mechanism (Figure 2D). Despite this complexity it is obvious that dithionite-reduced reductaseTOL reacts with dioxygen by about two orders of magnitude faster than NAD⁺:reductaseTOL_{CT} (Figure 2D).

Formation of CT complexes has been observed for several flavoproteins and is considered for most enzymes only a catalysis-accompanying phenomenon, which is neither necessary nor beneficial for the reaction (19). In the AIF protein NADH binding and the subsequently slow reduction of the flavin results in the formation of an air-stable CT complex and a dimerization of the protein (21). The CT complex of AIF is ineffective in electron transfer and CT complex formation probably enables AIF to act as a redox-signaling molecule in apoptosis. For lactate monoxygenase, a change in reactivity with dioxygen upon CT complex formation has been observed (22), however the CT complex was observed to react more and not less rapidly with dioxygen. Being an oxygenase, lactate monoxygenase uses dioxygen as a substrate and a more rapid reaction with dioxygen may thus contribute to catalysis. ReductaseTOL is part of an oxygenase system and thus has to function in the presence of dioxygen, but a reaction of reductaseTOL with dioxygen would waste reducing equivalents and produce superoxide or peroxide anions. The substantially reduced reactivity of NAD⁺:reductaseTOL_{CT} with dioxygen compared to reduced reductaseTOL without NAD⁺ thus indicates that formation of the CT complex helps to control the reactivity of the reduced enzyme. In contrast to the related stable NAD⁺:AIF CT complex, which is ineffective in electron donation, NAD⁺:reductaseTOL_{CT} still transfers its electrons to electron acceptors. Thus formation of a stable CT complex with NAD⁺ likely serves under physiological conditions to reduce the risk of unwanted side-reactions of the reduced reductase with dioxygen.

Structure of the NAD⁺:reductaseTOL_{CT} complex-To understand how the CT complex modulates the reactivity of reductaseTOL_{CT} with dioxygen, we crystallized reductaseTOL_{CT} under anoxic conditions in the presence of NADH. Addition of NADH changed the color of the reductaseTOL_{CT} solution used for crystallization from yellow to a faint blue, demonstrating the formation of NAD⁺:reductaseTOL_{CT} with its broad absorption band at 500-720 nm (Figure 1A). In principle the blue color could also indicate the presence of the neutral semiquinone state of reductaseTOL_{CT}, however this would require the presence of electron acceptors and the semiquinone state proved to be reactive during our transient kinetics. We therefore assumed that the blue color is due to the formation of the stable NAD⁺:reductaseTOL_{CT} with the blue color originating from the CT-band. Crystals appearing after one week had the same blue color as the concentrated NAD⁺:reductaseTOL_{CT} and were frozen in liquid nitrogen inside the glovebox, in which they were grown previously. One of the blue crystals was used to collect a complete dataset at synchrotron beamline BL14.2 (BESSY, Berlin, Germany). The structure was solved using Patterson search techniques with the structure of oxidized reductaseTOL_{CT} as homologous search model (PDB-Id: 3EF6,(4)) and was refined to 1.8 Å resolution (Table 1). The crystal structure clearly reveals the complete protein structure of reductaseTOL_{CT}, with its overall fold and arrangement of domains being very similar to oxidized reductaseTOL_{CT} (4). As expected by the color of the crystal additional electron density in
The role of CT- and ET-complexes in a FAD-dependent reductase

The active site was observed, which clearly showed the presence of NAD⁺. The NAD⁺ molecule is well defined in the electron density map (Figure 3).

NAD⁺ is bound in an extended conformation and its nicotinamide ring is coplanar to the isoalloxazine ring and is lying above the Re-face of the flavin. The carboxamide group of NAD⁺ is near the pyrimidine ring of the flavin, while the pyridine ring is situated directly over the reactive “enediamine” subfunction of the flavin. The C4 atom of NAD⁺ is 3.2 Å from the N5 atom of the isoalloxazine and the N10-N5-C4 angle is 95°, both values are within the range typically found for flavoprotein – substrate complexes (23). The orientation of the nicotinamide in this product complex is such, that in the substrate complex (NADH + oxidized reductase TOL) the pro-S hydrogen of NADH would be directly above the N5 of the isoalloxazine. Thus, both the transient kinetics, as well as the crystal structure indicate that the CT complex is formed immediately after hydride transfer from NADH to FAD, both reactions occur with the same rate constants (Figure 1B) and conformational changes appear not to be necessary to form the CT complex after the hydride transfer occurs (Figure 3).

Binding of NAD⁺ is accompanied by a few small conformational changes of the protein and oxidized reductase TOL and reduced NAD⁺:reductase TOL CT can be superimposed with a r.m.s. deviation of Cα-atoms of 0.66 Å. While most conformational changes seem to originate from the interactions between the protein and the ADP part of NAD⁺, which are remote from the active site, the nicotinamide perturbs the structure in the direct vicinity of the isoalloxazine ring (Figure 3B). Binding of nicotinamide pushed the complete isoalloxazine ring down, tilting it by 10° compared to the oxidized enzyme (Figure 3B). The N5 atom of flavin moves 0.5 Å away from the C4 atom of nicotinamide and the carbonyl oxygen O4 shifts by 0.7 Å to move away from the carboxamide group of NAD⁺. The carboxamide group of the nicotinamide is in hydrogen-bonding distance to the carboxylate group of Glu157, thereby positioning the carboxylate 3.4 Å from the hydride donor/acceptor atom C4.

Conformational changes directly related to the reduction of the FAD are not discernible. The side chain of Lys48 adopts two conformations of which the main conformer is in hydrogen-bonding distance to the N5 atom of FAD, as has been observed in the oxidized state of reductase TOL (4). More surprisingly the isoalloxazine ring is completely planar in the reduced NAD⁺:reductase TOL CT, which is unanticipated as reduced flavin cofactors typically show a butterfly-bent shape along the N10-N5 axis (Figure 3C and D) (24). The unexpected planarity of the isoalloxazine ring is most likely due to the stabilization of the π-π donor-acceptor interaction in the CT complex (19,25).

The structure of NAD⁺:reductase TOL CT is similar to that of related flavoprotein NAD⁺-complexes like glutathione reductase (26,27), the reductase component BphA4 of biphenyl dioxygenase (6,28) and others. Notably in the apoptosis-inducing factor (AIF) only small conformational changes occur upon reduction, a nearly perfect coplanar arrangement of nicotinamide and isoalloxazine ring and a resulting stable CT complex have been observed (21,29), thus despite the different functions of AIF and reductase TOL, their structure-reactivity relation appears to be similar. A surprisingly large number of differences are found when we compare our structure with that of the reduced (hydroquinone) state of BphA4 reported by Senda et al. (28). Despite an amino acid sequence identity of 34%, conserved active site architecture and closely related functions in the hydroxylation of aromatic substrates, the structures of reduced BphA4 and reductase TOL in complex with NAD⁺ differ considerably. Despite our co-crystallization approach, which in contrast to soaking experiments would allow for large conformational changes in solution before the crystal lattice is formed, we did not observe the redox-dependent conformational changes observed for BphA4, neither the bending of the isoalloxazine ring, nor the flip of the ribityl chain of FAD, nor a conformational change of Lys48 (corresponding to Lys54 in BphA4) and also no movement of a subdomain, termed the backrest domain, in the hydroquinone state (28).

Structure of the reductase TOL-ferredoxin TOL complex-To determine the direction and distance between donor and acceptor in the physiological electron transfer of reductase TOL, we determined the crystal structure of the complex between reductase TOL and ferredoxin TOL. Prereduced reductase TOL was incubated with oxidized ferredoxin TOL and the solution was used for
crystallization. Complex formation and crystallization were carried out under anoxic conditions. Orange crystals appeared after two to three weeks indicating that reductaseTOL and ferredoxinTOL were both present in the crystal, but in their oxidized states. Crystals diffracted X-rays to 2.4 Å resolution and the structure of the reductaseTOL-ferredoxinTOL complex was determined by molecular replacement using the crystal structure of reductaseTOL as the homologous search model (Table 1). The presence of ferredoxinTOL in the crystal was immediately indicated after the replacement search by loose packing interactions and strong peaks in the $F_{\text{obs}}-F_{\text{calc}}$ difference maps, which revealed the position of the Rieske-type [2Fe-2S] cluster and its coordinating protein matrix. FerredoxinTOL was positioned in the electron density by Patterson search techniques.

The co-crystal structure of reductaseTOL-ferredoxinTOL reveals that ferredoxinTOL binds opposite to the substrate channel (Figure 4A). The FAD-binding domain and the C-terminal domain create two faces with perpendicular orientation, which are used to interact with two sides of ferredoxinTOL (Figure 4A). Only 14% of the solvent accessible surface area of ferredoxinTOL (759 from a total of 5,453 Å²), resp. 4.4% of reductaseTOL (769 from a total of 17,522 Å²) are covered upon complex formation. Salt-bridge formation by R378 with ferredoxinTOL is accompanied by a change of its side-chain conformation and an increased order of the C-terminal helix of reductaseTOL where R378 is situated. Residues 403-406 of the C-terminal helix of reductaseTOL are not visible in the structure of oxidized reductaseTOL (PDB-Id: 3EF6)(4), but are clearly defined in the complex despite a lack of crystalline contacts in this area and the lower resolution of the complex structure compared the structure of reductaseTOL (4). This small disorder-order transition is probably facilitated by the intramolecular salt-bridge formed between R378-E406 enabled by the conformational change of R378 following complex formation (Figure 4B).

Intra- as well as interprotein electron tunneling follows the same exponential rate dependence on distance (30) and short distances between electron donors and acceptors are needed or electron-transfer may become rate-limiting. The shortest connection between the two cofactors is between the histidine-coordinated iron ion and the N3 atom of the isoalloxazine ring and is at 11.7 Å, within a range allowing fast electron transfer between the two centers (31).

The electrostatic surface potentials of reductaseTOL and ferredoxinTOL reveal that the complex is most likely stabilized by Coulomb attraction between both proteins. The interface between the two proteins is dominated by large surface areas with opposing charges, positively charged on the side of reductaseTOL and negatively charged at the opposing side of ferredoxinTOL (Figure 4C and D). The Coulomb interaction between the large positively charged patch at the side of the C-terminal domain of reductaseTOL and the negatively charged patch of ferredoxinTOL are likely facilitating a long-range electrostatic attraction between both proteins in the cell, allowing a rough pre-orientation of the electron donating and accepting cofactor. Small electron carrier proteins, like ferredoxinTOL, are responsible for electron shuttling between donor and acceptor sites by diffusional encounter and the formation of transient protein complexes (for review see: (32,33)). It has been suggested that diffusional encounter of two electron-transfer partners would drastically slow down complex formation and electron transfer if not long-range interactions and attractive docking sites did not also allow bringing the redox centers in close proximity (31). In case of reductaseTOL and ferredoxinTOL electrostatic attraction between both partners likely allows the formation of non-specific complexes with a variety of different orientations in the ensemble, as suggested to occur for several different electron transfer systems (34).

ReductaseTOL belongs to a large family of flavoproteins, which have two dinucleotide binding domains in common (35). A shared feature of this enzyme family is a flow of electrons from a reduced pyridine cofactor via FAD by a reaction occurring on the Re-side of the isoalloxazine ring to a redox-active group, like disulfides or cysteine sulfenic acids, heme groups or iron-sulfur positioned more closely to the Si-side of FAD. Comparison of structures, which include the electron acceptor reveals largely superimposable positions for electron donor (FADH₂) and electron acceptors, both in intra- and intermolecular electron transfer, arguing for a rather strict conservation of the electron transfer pathway and its directionality in evolution (35). We observed the same
The role of CT- and ET-complexes in a FAD-dependent reductase

directionality of electron flow in complexes of reductase_{TOL} with NAD⁺ and ferredoxin_{TOL}.

CONCLUSIONS
The physiological role of reductase_{TOL} is to selectively transfer two reducing equivalents from NADH to ferredoxin_{TOL} resulting in the conversion of a hydride ion into a proton and two electrons. To achieve this goal reductase_{TOL} needs (a) to bind NADH selectively, we determined a K_D for the Michaelis complex between oxidized reductase_{TOL} and NADH of 41 ± 4 µM; (b) rapidly oxidize NADH, we determined a limiting rate constant for this reaction of 152 ± 4 s⁻¹; (c) attract ferredoxin_{TOL} to form a complex (crystal structure of ferredoxin_{TOL}:reductase_{TOL}); and finally (d) transfer the electrons sequentially to two molecules of ferredoxin_{TOL}. The last step in this sequence was investigated by us using the artificial electron acceptor ferricyanide, which allowed us to detect the formation of a neutral semiquinone state and the decay of the NAD⁻:reductase_{TOL} CT complex. Our combined kinetic and structural investigation uncovered that reductase_{TOL} employs at least two different strategies to overcome the problem of a reaction with dioxygen: 1) reaction with dioxygen is disfavored due to the formation of a stable NAD⁻:reductase_{TOL} CT complex in which the nicotinamide ring shields the reactive C4a position of the flavin and forces the isoalloxazine ring into a planar, less reactive conformation; 2) a rapid reoxidation of the reduced flavin by electron transfer to an acceptors substantially decrease the risk of unwanted side reactions by decreasing the half-life of the reactive species. Rapid electron transfers are likely enhanced by a long-range electrostatic attraction between reductase_{TOL} and ferredoxin_{TOL} and short distances between the electron donating and accepting cofactors in the complex of the two proteins.

REFERENCES
The role of CT- and ET-complexes in a FAD-dependent reductase

Acknowledgments–The staff at beam line BL14.2, BESSY (Helmholtz-Gesellschaft, Berlin) is acknowledged for help during data collection. HD acknowledges the Deutsche Forschungsgemeinschaft for funding of the project (grant DO 785/2-2).

FOOTNOTES
1The abbreviations used are: AIF, apoptosis-inducing factor; BphA4, ferredoxin reductase component of biphenyl dioxygenase; DT, sodium dithionite; ONFR, oxygenase-coupled, NADH-dependent ferredoxin reductase; TDO, toluene dioxygenase.

FIGURE LEGENDS
Figure 1. The reductive half-reaction of reductase TOL. (A) Time-dependent spectral changes of 15.3 µM oxidized reductase TOL reacting with 30 µM NADH. The dashed line represents the spectrum of oxidized reductase TOL and arrows indicate the direction of absorbance changes. (B) Time-dependent absorbance change at 450 nm and 690 nm for the reaction of 1.2 µM reductase TOL with 57 µM NADH. The solids lines show single-exponential fits to the data yielding observed rate constants of 86.6 ± 0.2 s⁻¹ (450 nm) and 85.3 ± 1.6 s⁻¹ (690 nm), respectively. (C) Stopped-flow traces for the reaction of 1.2 µM reductase TOL with different NADH concentrations. The traces have been shifted vertically for clarity. The solid lines are single-exponential fits of the data. (D) Dependencies of the observed rate constants at 450 nm on the concentration of NADH. The solid line shows the fit to eq. 1
yielding a dissociation constant for the Michaelis complex (reductase\textsubscript{TOL} with NADH) of 41 ± 4 µM and a limiting rate constant of 152 ± 4 s\(^{-1}\) for the reduction of reductase\textsubscript{TOL}.

Figure 2. Oxidative half-reaction of reductase\textsubscript{TOL} with various electron acceptors. Time-dependent spectral changes of (A) 15 µM NADH-reduced reductase\textsubscript{TOL} reacting with 30 µM potassium ferricyanide and (B) 8 µM dithionite-reduced reductase\textsubscript{TOL} reacting with 20 µM potassium ferricyanide. The dashed line represents the spectrum of reduced reductase\textsubscript{TOL} and arrows indicate the direction of absorbance changes. (C) Time-dependent absorbance change at 450, 600 and 690 nm for the reaction shown in A. (D) Time-dependent change in absorbance at 450 nm when reduced reductase\textsubscript{TOL} is mixed with an air-saturated solution. The trace labeled –NAD\(^{+}\) shows the reoxidation of dithionite-reduced reductase\textsubscript{TOL}, while +NAD\(^{+}\) labels the recorded trace for NADH-reduced reductase\textsubscript{TOL}, where the NAD\(^{+}\):reductase\textsubscript{TOL}\textsubscript{CT} is found in solution. (E) Absorption spectra of oxidized reductase\textsubscript{TOL} (solid black line), oxidized ferredoxin\textsubscript{TOL} (solid gray line), NAD\(^{+}\):reductase\textsubscript{TOL}\textsubscript{CT} (dashed black line), and sodium dithionite reduced ferredoxin\textsubscript{TOL} (dashed gray line). (F) Stopped-flow trace at 498 nm for the reaction of 19.8 µM reductase\textsubscript{TOL} with 10 µM ferredoxin\textsubscript{TOL}. At this wavelength the kinetics of the electron transfer to the iron-sulfur cluster of ferredoxin\textsubscript{TOL} is observed without significant contributions from the flavin species. The solid line shows a double-exponential fit to the data yielding observed rate constants of 153.8 s\(^{-1}\) and 21.4 s\(^{-1}\) and amplitudes of 0.0075 and 0.0056, respectively.

Figure 3. Structure of the NAD\(^{+}\)-reductase\textsubscript{TOL} charge-transfer complex. (A) Ribbon plot representation of NAD-reductase\textsubscript{TOL}\textsubscript{CT}. The N-terminal FAD-binding domain (residues 3-111) is colored in blue, the NADH-binding domain (residues 112-238) is shown in yellow, the C-terminal FAD-binding domain (residues 239-317) is depicted in light-blue, and the C-terminal domain (residues 318-404) is colored in red. FAD is shown as sticks with carbon atoms in white, nitrogen atoms in blue and oxygen atoms in red. NAD\(^{+}\) is also shown in stick presentation, with carbon atoms in white. (B) Interaction of NAD\(^{+}\) with the protein matrix. Superimposition of oxidized reductase\textsubscript{TOL} (red) with NAD-reductase\textsubscript{TOL}\textsubscript{CT} (blue). Main and side chains interacting with NAD\(^{+}\) are shown as sticks and likely hydrogen-bond and salt-bridge interactions are indicated by dotted lines. Residues coordinating NAD\(^{+}\) with main chain atoms only are labeled in italic, all others in regular font. (C) NAD\(^{+}\) bound in the active site of reductase\textsubscript{TOL}. A \(F_{\text{obs}} - F_{\text{calc}}\) omit map for the bound NAD\(^{+}\) is shown at a contour level of 5 \(\sigma\) (green mesh). (D) The coplanar arrangement of the nicotinamide (red) and isoalloxazine (green) ring together with residues of the protein matrix (grey) block access for dioxygen to the C4a carbon atom (magenta). All molecules are shown with transparent surfaces indicating their van-der-Waals radii.

Figure 4. Structure of the reductase\textsubscript{TOL}:ferredoxin\textsubscript{TOL} complex. (A) Overall structure of the reductase\textsubscript{TOL}:ferredoxin\textsubscript{TOL} complex. The cartoon representing ferredoxin\textsubscript{TOL} is colored according to secondary structure, with \(\beta\)-sheets in yellow, \(\alpha\)-helices in red and loop regions in green. Residues coordinating the Rieske-type [2Fe-2S]-cluster are shown as sticks and are labeled. Reductase\textsubscript{TOL} is color-coded as in figure 3A, with the FAD binding domain in blue and light-blue, the NADH-binding domain shown in yellow and the C-terminal domain in red. (B) Binding interface between ferredoxin\textsubscript{TOL}(magenta ribbons, blue carbon atoms) and reductase\textsubscript{TOL}(green ribbons, light-blue carbon atoms). (C) Electrostatic potential mapped on the solvent accessible surface of reductase\textsubscript{TOL}, with ferredoxin\textsubscript{TOL} displayed as in A. (D) Electrostatic potential mapped on the solvent accessible surface of ferredoxin\textsubscript{TOL}, with a cartoon representation of reductase\textsubscript{TOL}, as in A.
The role of CT- and ET-complexes in a FAD-dependent reductase

Tables

Table 1. Statistics on diffraction data and structure refinement.

<table>
<thead>
<tr>
<th></th>
<th>Charge-transfer complex NAD(^+)-Reductase(_{TOL})</th>
<th>Reductase({TOL})-Ferredoxin({TOL}) Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>0.91841</td>
<td>0.91841</td>
</tr>
<tr>
<td>Space group</td>
<td>(P4_1;2_1;2)</td>
<td>(P6_5)</td>
</tr>
<tr>
<td>Cell constants (Å)</td>
<td>78.4, 78.4, 158.7</td>
<td>120.3, 120.3, 60.4</td>
</tr>
<tr>
<td>Total / unique refl.</td>
<td>316,338 / 41,735</td>
<td>84,325 / 19,644</td>
</tr>
<tr>
<td>(R_s) (%)</td>
<td>5.3 (59.3)</td>
<td>15.2 (58.1)</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>20 – 1.80 (1.85-1.80)</td>
<td>20 – 2.40 (2.46-2.40)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>90.1 (99)</td>
<td>99.9 (100)</td>
</tr>
<tr>
<td>((I) / \sigma(I))</td>
<td>20.9 (2.8)</td>
<td>7.9 (2.9)</td>
</tr>
<tr>
<td>Model (R / R_{\text{free}})-factor (%) (^{b})</td>
<td>18.4 / 21.5</td>
<td>16.7 / 22.8</td>
</tr>
<tr>
<td>Rms deviation from ideal geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.011</td>
<td>0.004</td>
</tr>
<tr>
<td>Angles (°)</td>
<td>1.779</td>
<td>0.78</td>
</tr>
<tr>
<td>ML based coordinate error (Å)</td>
<td>0.24</td>
<td>0.32</td>
</tr>
</tbody>
</table>

\(^a\) \(R_s = \sum h \sum_i | I_i(h) - <I(h)> | / \sum h \sum_i I_i(h); \) where \(i\) are the independent observations of reflection \(h\).

\(^b\) The \(R_{\text{free}}\) factor was calculated from 5% of the data, which were removed at random before the refinement was carried out. The \(R\) factor has been calculated from the reflections of the working set and test set. Numbers in parenthesis correspond to the highest resolution shell.
The role of CT- and ET-complexes in a FAD-dependent reductase

Figure 1

A) Absorbance vs. Wavelength (nm)

B) Time (ms) vs. Absorbance

C) Absorbance at 450 nm vs. Time (ms)

D) [NADH] (μM) vs. k_{cat} (s^{-1})
The role of CT- and ET-complexes in a FAD-dependent reductase
Figure 3
Figure 4
Suppression of electron-transfer to dioxygen by charge-transfer and electron-transfer complexes in the FAD-dependent reductase component of toluene dioxygenase

Tzong-Yuan Lin, Tobias Werther, Jae-Hun Jeoung and Holger Dobbek

J. Biol. Chem. published online September 19, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.374918

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts