A LIMITED 4 Å RADIAL DISPLACEMENT OF THE S4-S5 LINKER IS SUFFICIENT FOR INTERNAL GATE CLOSING IN KV CHANNELS*

Élise Faure†, Greg Starek‡, Hugo McGuire§, Simon Bernèche† and Rikard Blunck†,‡,§,¶,1

†Groupe d’Étude des Protéines Membranaires (GÉPROM), Departments of ‡Physics and §Physiology, Université de Montréal, Montréal, QC, H3C 3J7 and 1Swiss Institute of Bioinformatics and Biozentrum, University of Basel, Basel, Switzerland ǁDepartment of Chemistry, University of California, Irvine, CA

* Running Title: Movement of the S4-S5 linker during gating

†To whom correspondence should be addressed: Dr. Rikard Blunck, Département de physique, C.P. 6128 succ. Centre-ville, Université de Montréal, Montréal, QC, H3C 3J7, Email: rikard.blunck@umontreal.ca

Keywords: Kv channel, gating, internal gate, lipid regulation, LRET, molecular dynamics simulations

Background: For Kv channels, crystal structures only for the open state are available. Results: Using LRET, we determined the movement of the S4-S5 linker during gating in KvAP channels. Conclusion: A small displacement of the S6 by only 4 Å is sufficient for closing of the Kv channels. Significance: We provide the first Kv channel closed state model based on cytosolic restraints.

SUMMARY

Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential controls pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. To overcome these problems, here, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer (LRET). We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.

INTRODUCTION

Voltage-gated potassium channels (Kv) play a central role in the physiology of all excitable cells and are particularly involved in the repolarization of action potentials in neuronal and muscle cells (1). Defects in Kv channels may cause severe conditions such as cardiac arrhythmias, epilepsy, muscular ataxia or congenital deafness (2). Function of Kv channels is tightly regulated through communication between its two main components: the voltage sensor domain (VSD) and the pore domain (PD). Kv channels are symmetrical tetramers formed by four – mostly – identical monomers, each consisting of six transmembrane helices (S1-S6). The first four alpha-helices of each monomer (S1-S4) yield to the formation of four peripheral VSDs while the
Movement of the S4-S5 linker during gating

Collective assembly of the last helices (S5 and S6) constitutes the central pore. Upon depolarization of the cell membrane, the S4 segments undergo a conformational change driven by the positively charged arginines in the electric field (3-6). This conformational change leads to pore opening in a process called electromechanical coupling.

Electromechanical coupling has been intensively studied in recent years (reviewed in 7). Voltage sensor and pore are covalently linked by the S4-S5 linker. This amphiphatic helix also anneals to the C-terminal end of S6 (S6T) of the same and neighboring subunit (8-14). The link to the S6T is essential for the voltage sensor-controlled pore opening, where the internal gate formed by the S6 is widened. Despite the considerable effort in recent years to study the electromechanical coupling in Kv channels, no structural information is available on the conformational changes on the cytosolic face of the channels, the site of electromechanical coupling. The existing models built using molecular mechanics techniques rely mainly on the open state crystal structure and experimentally defined restraints on the extracellular accessible part of the channel. The problem in obtaining biophysical information from the cytosolic face of the channel is that labeling methods – typically using thiol-reactive chemistry – are not practical for channels expressed in cells or Xenopus oocytes, as too many cysteines are available in the cytosol (15). Spectroscopic methods, on the other hand, were impeded by the inability to control the voltage in solution or in small vesicles. Here, we overcome this problem by controlling the state of the channel by varying the lipid composition. It has been described earlier that the voltage dependence of Kv channel opening shifts with differently charged headgroups of the surrounding lipid matrix (16-23). We made use of the positively charged lipid DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) to switch the KvAP channel into its resting-closed position. This allowed us to carry out Luminescence Resonance Energy Transfer measurements (24-26) in both open and closed conformation. We determined distances of residues all along the S4-S5 linker of KvAP-dimers reconstituted in lipid vesicles to determine the position of the S4-S5 linker in both conformations and reconstructed the movement of the cytosolic face of the channel in molecular dynamics simulations.

EXPERIMENTAL PROCEDURES

Molecular Biology

KvAP coding sequence starting from Methionine 14 was inserted in the vector pQE70 (Quiagen) between restriction sites Sphi and BgIII, with a thrombine cleavage site between the C-terminal hexa-histidine tag and the channel. The only endogenous cysteine residue of KvAP was replaced with a serine (C247S) by site-directed mutagenesis (Stratagene). Two KvAP inserts (I and II) were linked together by a stretch of 5 amino acids (QQQOS) to form the dimer. Insert I had a cysteine mutation in the S4-S5 linker whereas insert II was C-less. The first 8 residues of insert II were deleted.

Purification of KvAP dimers

KvAP dimers were expressed in E. coli M15 strain cell cultures (Quiagen) grown in LB medium with 100 μg/mL ampicillin and 25 μg/mL kanamycin. At OD600 = 0.6, channel expression was induced with 0.5 mM IPTG. At this time, also 50% glycerol and 10 mM BaCl2 were added to the medium, and the temperature was lowered to 25°C. After 3 to 5 hours, bacterial cells were harvested and lysed by pressure at 15 000 psi with an EmulsiFlex-C5 (Avestin). 1 mM PMSF was added to prevent protein cleavage. The membranes were isolated by centrifugation at 200 000 x g and solubilized with 20% decyl-maltoside (DM) (Anatrace) for 1h at 4°C. The sample was bound to a metal affinity column (Talon Superflow, Clontech) and washed with 10 mM imidazole (Sigma). Sample was maintained in a 200 mM NaCl, 50 mM KCl, 50 mM Hepes, and 0.25% DM pH 7.4 buffer. The cysteines are reduced with 10 mM tris(2-carboxyethyl)phosphine (TCEP) (Pierce) before elution with 400 mM imidazole. Sample was concentrated (Amicon 30K, Millipore) to 2-5 mg/mL and ran on SDS-PAGE to confirm presence of dimer and absence of monomer by Coomassie staining and immunoblotting.

Labeling

For the donor only condition (DO), sample was mixed overnight at 4°C with a 5-fold excess (mol:mol) of a terbium chelate complex
Movement of the S4-S5 linker during gating

(Lanthascreen, Invitrogen or synthesized in house, based on previous protocols (27,28)). For the donor and acceptor condition (DA), the terbium chelate complex and an organic fluorophore (AlexaFluor® 488 C3 maleimide, Tetramethylrhodamine-5-maleimide, Fluorescein-5-maleimide, all Invitrogen; Atto465M, ATTO-TEC GmbH) were mixed with proportions that allowed a final efficacy of labeling of 1:1. Excess of dyes was removed by successive washes and centrifugations in a concentrator with a cutoff weight of 50 KDa (Amicon, Millipore). Background labeling of KvAP C-less dimer was 10-14 times lower than specific labeling.

Channel reconstitution in lipid vesicles

DPhPC (1,2-diphtanyloyl-sn-glycero-3-phosphocholine) or DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) (Avanti Polar Lipids) small unilamellar vesicles were prepared by vigorous sonication. The lipids were mixed with the sample in a ratio of ~1:4 protein:lipid (w:w) at a final lipid concentration of 10 mg/mL, well vortexed (2-5 minutes), shortly sonicated and rocked for 1 hour at room temperature. To remove the detergent, sample was loaded in a dialysis device (Slide-A-Lyzer MINI 20K MWCO, Pierce) and kept at 4°C shielded from light. Dialysis buffer (450 mM KCl, 10 mM HEPES at pH 7.4) was exchanged twice a day for at least 5 days.

Electrophysiology recordings

Pure DPhPC, pure DOTAP (Avanti Polar Lipids) or a 3:4 DPhPC:DOTAP mixture (w:w) were dissolved in decane at 25 mg/mL to form planar lipid bilayers over an aperture (250 µm diameter) in a polymer partition that separated the internal and external solutions (150 mM KCl, 10 mM HEPES, pH 7.4). Vesicles containing the labeled channels were shortly sonicated and fused to the voltage-clamped bilayer. The elicited macroscopic currents were recorded using an Axiovert 1D amplifier (Axon Instruments) and registered using GPatch (UCLA, Dept. of Anesthesiology). Holding potential was -100 mV and depolarizing pulses ranged from -100 to +100 mV with 10 mV increments, with a waiting time of 90 seconds between each pulse to allow channels to recover from inactivation.

LRET measurements

The setup was based on a Zeiss Axiovert 200 microscope. Light at 337 nm from a pulsed 3 mW N2-laser (SpectraPhysics) was directed in a widefield illumination onto a drop of vesicles containing the labeled channels on a quartz coverslip. The light from the vesicles was collected using a 1.25 NA 40X glycerol immersion quartz objective (Spartec) and filtered with a bandpass emission filter. Light was detected by a photon counter (Laser Components). Before each measurement, the samples were vortexed and centrifuged. Analysis of the lifetime decays was done with an exponential fitting program (Matlab). Distances were determined using the following relations:

Energy transfer (E) = 1- (τSE/τDO),

where τDO is the time constant of the donor lifetime decay in absence of acceptor (donor only), and τSE the time constant decay of the sensitized emission of the acceptor.

Distance between the donor and the acceptor (r) = ((1-E)/E)^1/6 x R0,

with R0 the distance at which 50% energy transfer occurs. The R0 values for the different pairs of fluorophores were calculated from experimentally determined spectra based on the spectral overlap of the donor and the acceptor.

Molecular Dynamics simulations

The Kv1.2/2.1 chimera structure (PDB code 2R9R) was used as a template for model generation. Using the CHARMM27 force field for proteins (29), the initial structure was placed in a Generalized Born (GB) implicit solvent membrane model (30), minimized, and briefly simulated (50 ps) with harmonic restraints placed to mimic experimental results discussed herein. The resulting “closed” structure was then reconstituted into DPPC bilayers using the CHARMM-GUI web service (31) and equilibrated by gradually releasing protein backbone restraints over 450 ps. A potential of -500 mV was applied to the “closed” system with NAMD 2.8 (32) and the CHARMM27 and CHARMM 36 (33) force fields for proteins and lipids, respectively. The system was simulated for 100 ns with harmonic restraints applied to linker atoms throughout. Temperature was held constant at 303.15 K with Langevin dynamics, and pressure was held constant using the Langevin Nosé-Hoover method. Water was represented with the TIP3P water model, and high
Movement of the S4-S5 linker during gating

frequency hydrogen vibrations were constrained with the SHAKE algorithm. Aspartate, glutamate, and arginine residues were reparameterized to recently published values (34). Additional harmonic restraints between the alpha carbons of I230 and Y267, I230 and R290, and I177 and R290 were added to the closed system in accordance with previously published work (35,36).

One subunit from the closed simulation was used to create a fourfold symmetric model of closed protein. This tetramer was reinserted in a GB implicit membrane and minimized with harmonic restraints on the linker atoms, as well as light harmonic restraints along the linker backbone to promote helicity. The protein was again reconstituted into a DPPC bilayer and solvated with TIP3 water molecules, and re-equilibrated with gentle backbone helical restraints applied to the linker and the bottom of S4, as well as harmonic linker restraints between subunits.

RESULTS

KvAP dimers can be gated by the lipid environment

Luminescence Resonance Energy Transfer (LRET) is a powerful spectroscopic tool to determine atomic-scale distances within a protein (24-26,37,38). Here, we used LRET to measure the position of the S4-S5 linkers of KvAP in the closed and the open state. To do so, a series of cysteine mutations of several positions along the S4-S5 linker (F137-D146) were expressed and purified, to allow site-directed labeling with fluorophores attached to a maleimide linker (see Experimental Procedures).

In a homotetrameric protein – and hence 4 identical binding sites, – stoichiometric labeling would give us any combination of donor and acceptor pairs and two different distances (adjacent and diagonal), requiring a complex analysis of the signals (Fig. 1a and see 25). In order to circumvent these difficulties, we constructed a dimer of dimers, where 2 subunits are linked by their intracellular C- and N-terminal ends (Fig. 1b and Experimental Procedures). Dimer formation was confirmed by SDS polyacrylamide-gel electrophoresis and Western blot analysis (Fig. 1c). Liu et al. (39) demonstrated that such a construct assembles with identical monomers at diagonal positions. A single cysteine per dimer is then inserted by directed mutagenesis into the S4-S5 linker, allowing the specific binding of only two fluorophores per tetramer at identical positions within two opposite monomers (39). The dimer of dimers labeled with a 1:1 ratio of donor and acceptor will thus contain either two identical labels (only donors or acceptors) or one FRET-pair (each one donor and one acceptor). Only those proteins that are labeled with a FRET-pair will prompt energy transfer and show sensitized emission (acceptor emission upon donor excitation), leading to a single distance per protein (Fig. 1a). After purification and specific labeling, KvAP dimer channels are functionally reconstituted in lipid vesicles (Fig. 1d and see Experimental Procedures).

The investigation of voltage-gated ion channels with spectroscopic methods has always been hindered by the lack of control over the membrane potential. Also our LRET measurements are performed on KvAP channels reconstituted into liposomes in the absence of a membrane potential. Recently, more and more evidence indicated that the lipid environment has an important influence on channel behavior (17,40-42). In particular Schmidt et al. (18-20) showed that the state of the KvAP channel is dependent on the lipid environment. In typical phospholipid mixtures, the channels are open in the absence of a membrane potential. Adding increasing amounts of the cationic DOTAP to the membrane, however, shifts the voltage dependence to more positive potentials such that the open probability at 0 mV approaches zero at a DOTAP content of 67% (19). Here, we made use of this lipid dependence in order to control the state of the channel during our LRET recordings. The channels were reconstituted into vesicles comprised of DPhPC or DOTAP where KvAP channels reside in the open and closed state, respectively.

Due to the key role that the S4-S5 linker fulfills in electromechanical coupling, mutations in this region might influence channel function. Thus, we had to ensure that the labeled mutants were functional and that they followed the correct voltage dependence under both conditions (Fig. 1d-g). To this end, the reconstituted channels were fused into planar lipid bilayers formed of DPhPC.
Movement of the S4-S5 linker during gating and DOTAP, respectively. All dimer-mutants, except A144C, expressed functionally with no significant differences compared to wildtype KvAP. A145C did not show a clear pattern in the western blot analysis, and the cysteine in I141C was weakly accessible. Both mutants were thus excluded from further analysis. As predicted, at 0 mV all other mutants were mostly open and closed when reconstituted in DPhPC and DOTAP, respectively (Fig. 1e-g). Channels in pure DOTAP vesicles fused in a pure DOTAP bilayer were functional, but the bilayer was very unstable. For this reason, bilayers of mixed lipids (25% DPhPC + 75% DOTAP) were used with DOTAP vesicles, still leading to closed channels at 0 mV. Interestingly, the nature of the bilayer seemed to have less influence than the vesicle composition, suggesting a strong interaction between the voltage sensor and the lipids which it came into contact with first.

LRET reveals position of S4-S5 linker in both Closed and Open State

Identical samples of labeled KvAP dimer mutants reconstituted in lipid vesicles were used for the bilayer experiments and the LRET measurements (Fig. 2). A lanthanide (Tb3+) complex (Fig. 2a) was used as the donor whose characteristic long lifetime in the excited state (~1 ms) allowed detecting its temporal decay with high accuracy. More importantly, its fully isotropic emission evaded any inaccuracy due to the orientation between donor and acceptor typical for fluorescence-based RET (24). The comparison of the lifetimes in absence and presence of the acceptor reflects the efficiency of the energy transfer (see Experimental Procedures): if the acceptor is very close to the donor (closed state), then the energy transfer will be strong and the lifetime short and vice versa (Fig. 2b). We obtained cross-pore distances for seven positions along the S4-S5 linker in the open and closed position from LRET measurements on dimers reconstituted in DPhPC or in DOTAP, respectively (Table 1). The distances varied between 4 to 10 Å for each position between the different lipid conditions, i.e. between the closed and the open state. The open-state distances, except S139C, correlated well with the distances from the corresponding positions in the Kv1.2/2.1 chimera X-ray structure (PDB: 2R9R, Table 1, 43), indicating that our data reflect well the native conformation of the S4-S5 linker but, also, that the structure of Kv1.2/2.1 and KvAP in this region coincide. We ensured that the distances were independent of the specific donor-acceptor pair, by assessing distances with different acceptor fluorophores for the various positions (Table 2).

The distances among the different residues along the S4-S5 linker vary significantly but with a periodicity of 3-4 residues. These variations are caused by the helical structure of the S4-S5 linker and its orientation with respect to the pore. When projected onto a helical wheel, we observed that those residues pointing towards the central pore yielded the smallest cross pore distances, and vice versa (Fig. 2c). Following this logic, the residues F137, A140 and D143 are located toward the pore, while residues L138, S139 and A142 are oriented outward. The distance determined for the residue D146 does not fit perfectly the helical wheel, possibly because this residue is located at the C-terminal end of the linker, in the transition into the S5 segment. Based on these distance restraints and assuming an ideal alpha-helical conformation of the linker, we were able to predict the position and orientation of the helix in space relative to the pore in both open and closed state and to reconstruct the movement of the S4-S5 linker during gating (Fig. 2d).

When decomposed into four independent components (Fig. 2e), we observed a radial displacement of 3.1 Å, in combination with rotations of the S4-S5 linker around its own axis (17°), horizontally (10°), i.e. normal to the membrane plane, and – less marked – vertically (4°). Figure 2d displays the displacement of the S4-S5 linker during gating. The rotation is consistent with current models postulating a rotation of the S4 helix (44,45). According to our model, the S4 rotation seems to translate into a rotation of the S4-S5 linker. Also, the rather small shift radially away from the central axis is in agreement with predictions on the movement of the S4 helix (34,46). The channels are closed in the DOTAP environment, indicating that such a small movement is sufficient to allow and block ion conduction. In other words, limited linker displacement can open and close the internal gate of the Kv channels.
Atomistic model reveals closing of the pore by 3-4 Å displacement

Our “rigid helix” model assumes that the S4-S5 linker is a rigid, perfect alpha-helix, which does not necessarily have to be the case. In addition, the above model does not yet give any information about S4-S5 linker movements that are invariant in the diameter, i.e. rotations around the central axis of the channel and vertical translations of the entire linker. We also wanted to answer the question as to how the displacement of the S4-S5 linker leads to pore opening and closing. We therefore built a closed state model satisfying our experimentally obtained distances using molecular dynamics simulations. Starting with the open state structure of Kv1.2/2.1 (43), we used our closed state data as restraints and applied an electric field over the membrane. In order to more rapidly reach the resting state conformation of the voltage sensor domain, we used additional restraints that were previously reported (35,36, for details see Experimental Procedures). Under these conditions, the voltage sensor transited from the open state into its resting state and closed the ion conducting pore (Fig. 3a).

During the gating movement, the S4 helix was pulled downward by about 9 Å and rotated by 24° (Fig. 3a). The S4-S5 linker was moved inward, which pushed the S6 into the central pore by about 4 Å (Fig. 3c). As speculated, the S4-S5 linker did not remain rigid but was “bent” slightly by the C-terminal end of S4. The angle between S4 and the linker increased from 67° to 104°, while the horizontal tilt of the S4-S5 linker was slightly larger than predicted above (9°) probably due to the bending of the linker. The S4 had a 3_{10} helical conformation C-terminal to R296 (Fig. 3b).

The movement of the S6 helix was less pronounced than expected previously. Therefore, we verified that the pore was indeed closed. Figure 3d shows the water molecules in the central pore in the open (bottom) and closed (top) conformation. In the closed conformation, the water column is disrupted at a hydrophobic ring at position I398 just above the PVP motif (Fig. 3d, left; highlighted in red), indicating that the channel is indeed closed and ion conduction interrupted. Thus, a small radial displacement of only 3-4 Å is sufficient to push the internal gate of Kv channels into a closed state and prevent ion conduction.

DISCUSSION

In this study, we varied the composition of the lipid environment in order to control the state of Kv channels in the absence of a membrane potential. Using positively charged lipids modified the electric field around the voltage sensor such that the channel remains in its closed state even in the absence of a membrane potential. The lipid-induced closed state is likely to resemble the voltage-induced one: Membranes composed of DOTAP have been shown to have a very high surface potential (47) suggesting that it exerts a similar electrostatic effect on the voltage sensor as the electric field. This is further supported by the finding that negatively charged poly-unsaturated fatty acids develop the opposite effect (GV shifted to more negative potentials) which is mainly of electrostatic nature (21,22). Zheng et al. (42) also demonstrated that the lipid- and voltage-induced conformations are equivalent.

The use of lipids to control voltage-gated ion channels facilitated the use of spectroscopic methods for this class of membrane proteins. Interestingly, when fusing KvAP from vesicles into planar lipid bilayers, the composition of the lipid vesicles had a stronger influence than the composition of the bilayer itself. This suggests a tight interaction between protein and its immediate lipid environment and may have significant implications on lipid-induced regulation of the channels.

Using Lanthanide-based resonance energy transfer (LRET), we succeeded in determining the position of the S4-S5 linker in both the open and closed states with Å-resolution and obtained a model for Kv channels in their resting state satisfying these and previous restraints. This is, to our knowledge, the first closed state model based on restraints from the cytosolic face of the channel. In order to enter the closed state, the S4-S5 linker underwent a radial translation by 3-4 Å. It rotated around its own axis by 17° and tilted 4° vertically and 10° horizontally (Fig. 2e).

We also analyzed how the S4 helix in our model was displaced with respect to the open state structure since S4 helix and S4-S5 linker movements are tightly linked. In an interpolation between the open state crystal structure and our closed state model, the S4 is vertically translocated by 9 Å down along its axis, and tilts with respect
to the S4-S5 linker from 67° in the open structure to 104° in our resting state model (Fig. 3a). These movements of S4 are accompanied by a rotation around its own axis by 24°. The rotation ensures that the arginines keep towards the lumen of the VSD, while the translation downwards brings the R4 below the Phe233. The parameters predicted for the S4 movement are consistent with previous models. Values for the vertical displacement of S4 vary between 6-10 Å (44,45) and 15 Å (34). The angle between S4-S5 linker was proposed to change by 40° from 60° to 100° (45) in accordance with our experimental data.

The C-terminal portion of the S4 adopted a 310-helical conformation starting with the arginine R296 as it had been observed in the crystal structure of the Kv1.2/2.1 chimera (43). The extent of the 310-helix coincided with those observed in the crystal structure and other closed-state models (48), despite the proposed transition from a 310- to an alpha-helix, or an extension of the 310-helix in the resting state (43,45,49,50). The extension of the 310-region, however, might occur upon longer simulation times, as suggested by Bjelkmar et al. (50).

The more important aim of our study, however, was to define the movement of the S4-S5 linker and the mechanism how this movement controls the internal gate of the Kv channels. Here, two features of the S4-S5 linker movement give significant insight into the gating process. First, the S4-S5 linker, and with it the internal gate (S6) are radially displaced by only 3-4 Å, and second, the S4-S5 linker is slightly bent in the resting state. The movement of the S4-S5 linker is initiated by the displacement of the S4 helix described above. In particular the tilt and the rotation of S4 are translated into a similar rotation and the bent in the S4-S5 linker. The relatively small radial displacement of the S4-S5 linker is translated to closing of the internal gate by 4 Å (Fig. 3c). The interaction is mediated by annealing of the S4-S5 linker to the C-terminal end of S6 (S6T, 9,10,11,13,14,51). The S4-S5 linker “presses” against the S6 at the level of its PVP-motif, and accordingly, the pore closes with a “hydrophobic seal” by pushing the isoleucine 398 residues into the pathway, excluding most water molecules from the central cavity in the closed state (Fig. 3d).

If such a small displacement of S6 is sufficient to interrupt the water-filled column in the ion conducting pathway, it raises the question whether all four S6 have to be in the closed position or whether a single S6 in the closed position is sufficient to disrupt the water pathway. The movement of the four VSDs in Kv channels is supposed to occur independently followed by the cooperative opening of the pore (52). This implies that the energy generated by the movement of the first three voltage sensors has to be stored in the system before the final opening step. The flexibility and bending of the S4-S5 linker could potentially provide the required "elasticity" to the system. Disruption of the conduction pathway by the transition of a single voltage-sensor, and with it of one S6, would offer an alternative explanation for the observed cooperativity. In this case, the actual conformational changes for the other three subunits may already have occurred when the last S6 opens and allows access to the pore. However, this would contradict the suggested correlation of subconductance levels with partial opening (53); thus, this question will have to be addressed in direct measurements as performed for instance in KcsA (54).

CONCLUSION

In this study, we determined the movement of the S4-S5 linker during the gating process and established that a small radial movement of 4 Å is sufficient to control the cytosolic pore gate. Controlling the state of a voltage-gated potassium channel via its lipid environment opens up the possibility to investigate these channels with any spectroscopic method in both open and closed state even in the absence of a membrane potential.

ACKNOWLEDGEMENTS

We want to thank Mireille Marsolais and Michel Brunette for technical assistance and Drs. William Skene and Matthieu Starck for their help in synthesizing Tb-chelate.
FOOTNOTES
*This work was funded by the Canadian Institutes for Health Research (MOP-102689 to RB), the Canadian Foundation for Innovation (to RB) and the Swiss National Science Foundation (SNF-Professorship No 118928 to SB). RB holds a Canada Research Chair (950-225005). EF and HM hold student fellowships of FQRNT. GÉPROM is a research group funded by the FRSQ.
‡Groupe d’Étude des Protéines Membranaires (GÉPROM), Departments of ⁶Physics and ⁵Physiology, Université de Montréal, Montréal, QC, H3C 3J7 and
¹Swiss Institute of Bioinformatics and Biozentrum, University of Basel, Basel, Switzerland
&Department of Chemistry, University of California, Irvine, CA
¹¹To whom correspondence should be addressed: Dr. Rikard Blunck, Département de physique, C.P. 6128 succ. Centre-ville, Université de Montréal, Montréal, QC, H3C 3J7, Email: rikard.blunck@umontreal.ca

REFERENCES
Movement of the S4-S5 linker during gating

46. Li, Q., Wanderling, S., Somponpisut, P., and Perozo, E. submitted

FIGURE LEGENDS

Figure 1. KvAP dimer and response to lipid environment changes. (A) A tetramer formed of monomers leads to four possible fluorophore binding sites, with the possibility of two energy transfer distances between the donor (green) and the acceptor (fuchsia): a smaller distance between two adjacent monomers (adj) and a larger one between two opposite monomers (diag). Use of a dimer of dimers leads to only two binding sites, located on opposite monomers. Only one combination of fluorophores will lead
to an LRET signal, no energy transfer will occur between two donors or two acceptors. (B) The dimer of KvAP is formed by two monomers linked together by an intracellular loop. (C) Dimer expression was confirmed by SDS-PAGE (left) and immunoblotting (right). (D-G) Vesicles containing the channels are fused to a planar lipid bilayer. (D) Normalized conductance in function of the potential of the dimer (orange) confirmed that it retained its voltage dependence in a similar way than the monomer (green). (E-G) The midpoint activation potential of a N-terminal position (E), a middle position (F) and a C-terminal position (G) of the S4-S5 linkers in DOTAP environment (red) is shifted to more positive potentials, and the channels are mostly closed at 0 mV, whereas in a phospholipid environment (DPhPC, blue), they are mostly opened at 0 mV.

Figure 2. S4-S5 linker movement during gating determined by LRET measurements. (A) Structure of the lanthanide complex used as donor. (B) Acceptor-sensitized emission (SE) is shown for the D146C dimer reconstituted in DOTAP (red) and in DPhPC (blue). $\tau_{\text{SE}} = 285$ µs for the closed state (red), $\tau_{\text{SE}} = 602$ µs for the open state (blue). In black the control of donor in the absence of acceptor is shown ($\tau_{\text{DO}} = 1.17$ ms). (C) Residues of the S4-S5 linker of KvAP are projected on a helical wheel with an alpha-helical periodicity. The smallest experimental distances are from the residues on the inward side of the helix (green) with respect to the pore, and the largest ones, form the outward side (orange). (D) Top view of the movement of the S4-S5 linker shows the radial displacement and the horizontal rotation it undergoes from the open state (blue) to the closed state (red). Side view shows the vertical rotation. One subunit of the closed state is superposed with all possible helix orientations where the residues remain within the error margins of the experimental distances. From these variations, we can estimate the error for each parameter: radial distance to the pore: ± 0.1 Å; angle with respect to the helix axis: ± 4°; deviation from horizontal plane: ± 4°; angle within horizontal plane: ± 1°. (E) The 3-dimensional movement of the S4-S5 linker is decomposed into four components.

Figure 3. Closed state model satisfying LRET restraints. (A) From the open (blue) to the closed (red) state, the S4 helix undergoes a translocation of 9 Å along its axis together with a rotation of 37° relative to the S4-S5 linker and of 24° around its own axis. (B) In its resting state, the lower S4 adopts a 3_{10}-helical conformation. The S4-S5 linker is slightly bent. (C) The 4 Å radial displacement of the S4-S5 linker is transferred to the C-terminal part of the S6, therefore closing the internal gate. In white the open state crystal structure (2R9R), in light orange the closed state model is shown. One subunit is highlighted in blue (open) and red (closed). It shows the small displacement that is sufficient for pore closing. (D) The water-filled column is interrupted in the bottom part of the pore when the internal gate is closed in our model (top) compared to the open state (bottom). For clarity, only the voltage sensors, linkers and selectivity filter are shown. On the left, the view into the pore of closed model and open structure are shown. The pore is sealed by the ring of isoleucines I398 (highlighted in red) in the closed model whereas the selectivity filter is freely accessible in the open crystal structure (2R9R).
Distances (Å) between opposite S4-S5 linkers

Table 1. Distances between opposite S4-S5 linkers. Cross-pore distances (Å) for seven residues along the S4-S5 linker of a KvAP dimer were determined by LRET in the open and the closed state. Data are the average of at least $n = 5$ for each distance with standard deviation as the error. Distances for the corresponding positions of Kv1.2/2.1 chimera were measured from the crystal structure (2R9R) in the open state and served as a comparison reference (italic).

<table>
<thead>
<tr>
<th>Position</th>
<th>Closed</th>
<th>Open</th>
<th>Kv 1.2/2.1</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>F137C</td>
<td>33.4 ± 2.7</td>
<td>42.2 ± 0.3</td>
<td>42.9</td>
<td>G309C</td>
</tr>
<tr>
<td>L138C</td>
<td>42.8 ± 0.9</td>
<td>46.7 ± 0.6</td>
<td>49.8</td>
<td>L310C</td>
</tr>
<tr>
<td>S139C</td>
<td>40.2 ± 0.4</td>
<td>44.3 ± 1.4</td>
<td>52.4</td>
<td>Q311C</td>
</tr>
<tr>
<td>A140C</td>
<td>30.1 ± 0.5</td>
<td>35.4 ± 0.1</td>
<td>38.0</td>
<td>I312C</td>
</tr>
<tr>
<td>A142C</td>
<td>37.9 ± 1.5</td>
<td>47.8 ± 0.3</td>
<td>48.3</td>
<td>G314C</td>
</tr>
<tr>
<td>D143C</td>
<td>33.2 ± 1.1</td>
<td>42.4 ± 0.1</td>
<td>39.8</td>
<td>L315C</td>
</tr>
<tr>
<td>D146C</td>
<td>35.9 ± 0.3</td>
<td>41.9 ± 0.6</td>
<td>44.4</td>
<td>K318C</td>
</tr>
</tbody>
</table>
Comparison of distances (Å) obtained with different acceptors

<table>
<thead>
<tr>
<th>Dye</th>
<th>ATTO 465</th>
<th>Fluorescein</th>
<th>Alexa 488</th>
<th>TMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ro</td>
<td>30.6</td>
<td>42.7</td>
<td>43.4</td>
<td>50.8</td>
</tr>
<tr>
<td>F137C</td>
<td>45.3</td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A142C</td>
<td></td>
<td>47.9</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>D143C</td>
<td></td>
<td>42.3</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>D146C (O)</td>
<td>49.3</td>
<td>48.5</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>D146C (C)</td>
<td>36.3</td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison of distances obtained with different acceptors. Distances (Å) between two opposite residues were obtained with different pair of fluorophores without any significant variations. First line indicates the different acceptors used in combination with the same lanthanide complex donor and second line indicates their respective Ro. Table shows an example of one experiment for 4 different positions in the S4-S5 linker of KvAP.
Faure et al. Figure 2

A. Terbium-maleimide chelate

B. Dimer D146C

C. S4-S5

D. Top view

E. Side view

Radial displacement 3.2 Å
Rotation horizontally 11°
Rotation vertically 7°
Rotation around helical axis 13°
Faure et al. Figure 3

A

B

D

closed
open
A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels
Elise Faure, Greg Starek, Hugo McGuire, Simon Berneche and Rikard Blunck

J. Biol. Chem. published online September 27, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.415497

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2012/09/27/jbc.M112.415497.full.html#ref-list-1