Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice

Cuiying Xiao¹,²#, Rui-Hong Wang¹#, Tyler J. Lahusen¹#, Ogyi Park², Adeline Bertola², Takashi Maruyama³, Della Reynolds⁴, Qiang Chen¹, Xiaoling Xu¹, Howard A. Young⁴, Wan-Jun Chen³, Bin Gao², Chuxia Deng¹

¹From Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
²Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism
³Mucosal Immunology Section, OIIB, National Institute of Dental and Craniofacial Research National Institutes of Health, Bethesda, MD 20892, USA
⁴Laboratory of Experimental Immunology, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA

These authors equally contributed to this work

*Running title: Sirt6 plays an anti-inflammatory role

To whom correspondence should be addressed: Chuxia Deng, Genetics of Development and Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA, Tel: (301) 402-7225; Fax: (301) 480-1135; E-mail: chuxiad@bdg10.niddk.nih.gov

Key words: Sirt6, c-JUN, inflammation, liver, and macrophages

Background: Sirt6 plays important roles in metabolism and lifespan, however its role in inflammation is unknown.

Results: Sirt6 deficiency in the immune cells of mice results in liver inflammation and fibrosis through activating the c-JUN signaling.

Conclusion: Sirt6 has anti-inflammatory function in mice.

Significance: Small chemical compounds that activate Sirt6 might be useful in therapeutic treatment of chronic liver inflammation.

SUMMARY

The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6⁻/⁻) mice developed chronic liver inflammation starting at about 2 months of age and all animals were affected by 7-8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6⁻/⁻ mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from bone marrow of Sirt6⁻/⁻ mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of pro-inflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN dependent expression of pro-inflammatory genes.

INTRODUCTION

Inflammation is a complex biophysical response of the body to pathogen infection and
Sirt6 plays an anti-inflammatory role

tissue injury. Immune cells are activated during inflammation and are recruited to the site of damage to initiate the healing process by eliminating pathogens and damaged cells (1-4). While acute inflammation is considered protective, chronic inflammation is associated with many diseases (5-8). Numerous evidence indicates that inflammation is tightly regulated by many factors, including cytokines, signaling molecules and transcription factors, such as transforming growth factor beta (TGF-β), activator protein-1 (AP1), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), sirtuin-1 (SIRT1), and signal transducer and activator of transcription proteins (STATs); all of which affect or regulate expression of cytokines (1-4).

Both SIRT1 and SIRT6 belong to a family consisting of seven sirtuins (SIRT1-7) that share homology with yeast Sir2. These proteins localize to different compartment of the nucleus (SIRT1, 6 and 7), the mitochondrion (SIRT3, 4 and 5), and the cytoplasm/nucleus (SIRT2) (9,10). Sirtuins serve as NAD+ dependent type III histone deacetylases and also deacetylate many proteins that play important roles in numerous biological processes (11-14). Currently, all seven sirtuins (Sirt1-7) have been mutated in mice by gene targeting, and the mutant mice exhibited distinct phenotypes (15-25). Sirt1-null mice exhibited the most severe phenotype and died at middle gestation to perinatal stages (23,24). Using a tissue specific Sirt1 knockout mouse model to bypass early lethality, it was shown that deletion of Sirt1 in macrophages activates NF-κB activity, resulting in increased transcription of several pro-inflammatory target genes (26). Sirt1 was also reported to suppress transcriptional activity of AP1 and expression of a pro-inflammatory gene cyclooxygenase-2 (Cox2) in macrophages (27).

It was previously reported that a strain of Sirt6-deficient mice carrying a targeted disruption of exon 1 died at about 4 weeks of age when they were in a 129 genetic background. These mice displayed profound lymphopenia, loss of subcutaneous fat, lordokyphosis, low insulin and hypoglycemia, and premature aging (17). Our analysis of Sirt6-/- mice, generated by a targeted deletion of exons 2 and 3 of the gene that blocks Sirt6 transcription and yields no SIRT6 protein, indicated that about 60% of homozygous mice died before 4 weeks of age when they were in a mixed genetic background of 129/Black Swiss/FVB (28). Analysis of these mutant mice demonstrated that Sirt6 negatively regulates AKT phosphorylation at Ser-473 and Thr-308 through inhibition of multiple upstream molecules, including insulin receptor, IRS1, and IRS2. The absence of Sirt6, consequently, enhances insulin/Akt/Glut1 mediated glucose uptake, leading to extreme hypoglycemia. Consistent with this hypothesis, when fed with water containing 10% glucose, blood glucose level of the mutant mice was significantly increased and up to 83% of these mice survived beyond the first month after birth. Of note, the majority of these mice, despite their normal levels of blood glucose, still gradually died within one year (28), suggesting Sirt6 is essential for the adulthood development and survival. Consistent with this data, neural Sirt6 disruption attenuated somatic growth and caused obesity (29) while hepatic specific deletion of Sirt6 resulted in fatty liver formation due to enhanced glycolysis and triglyceride synthesis (30). Conversely, transgenic mice overexpressing Sirt6 have a significantly longer lifespan than wild-type mice that is accompanied by reduced insulin-like growth factor 1 (IGF1) signaling (31).

Recent studies have indicated that SIRT6 positively regulates TNF-α (32) and negatively regulates NF-κB signaling (33), although whether or not SIRT6 plays a role in inflammation is unknown. Moreover, as both TNF-α and NF-κB are potent pro-inflammatory cytokines, positively regulating one gene while negatively regulating the other generates contradictory information and makes it difficult to predict a role of SIRT6 in inflammation. To decipher the functions of Sirt6 in the inflammatory response, organism survival and lifespan, we analyzed Sirt6 mutant mice that survived post-weaning lethality. Our data indicates that these animals exhibit massive inflammation in several organs, most severely in the liver. We further demonstrate that the absence of Sirt6 results in activation of c-JUN dependent transcription and enhanced expression of pro-inflammatory genes in immune cells, leading to chronic inflammation and liver fibrosis in the mutant mice.
EXPERIMENTAL PROCEDURES

RT-PCR and Real-time PCR - Total RNA from cells or tissues were extracted with RNA STAT-60™ following the manufacturer’s protocol (TEL-TEST, INC), and cDNA was generated by Cells-to-cDNA™ II (Ambion, Inc). Quantitative RT-PCR was performed using a SYBR green PCR Master Mix (Applied Biosystems) and the 7500 Real Time PCR system (Applied Biosystems).

Western blot analysis and Immunoprecipitation assay - Western blot analysis was carried out according to standard procedures using ECL detection from Millipore (Billerica, MA, USA). Antibody against c-JUN was from Cell Signaling Technology, β-Actin was from Sigma. For immunoprecipitation, 293T cells were transfected with SIRT6-Flag and c-JUN-HA. Flag M2-agarose beads (Sigma) were added to 1 mg of protein lysate for 16 hrs at 4°C while rotating. The immunoprecipitates were washed three times with cell lysis buffer and resolved by SDS-PAGE on 4-12% Tris-glycine gels (Invitrogen). Antibodies against SIRT6, Flag-M2, HA-7 were from Sigma (St. Louis, MO).

Histology, Immunohistochemistry (IHC) and Immunofluorescence (IF) analyses - Liver tissues were fixed in 10% formalin, blocked in paraffin wax, and sectioned. For histology, sections were stained with Hematoxylin and Eosin, and examined by light microscopy. For IHC and IF, paraffin sections of 5 µm thickness were deparaffinized, hydrated through a graded alcohol series, and antigen retrieval was carried out in pressure cooker with citrate buffer, pH6.0 for 20 min. Detection of primary antibodies was performed using the ZYMED Histomouse SP Kit (Zymed Laboratories Inc, South San Francisco, CA, USA) according to the manufacturer’s instructions. Antibodies against F4/80 was from Novus Biologicals, Littleton, CO, MPO was from Biocare Medical, Concord, CA, CD3 was from Dako, IL-1β was from R&D, Ki-67 was from Novocastra, PCNA was from Abcam. For CD3 and PCNA detection, after primary antibody reaction, sections were stained with Alexa Fluor 488 goat anti-rabbit IgG (H+L) (Invitrogen) (CD3), or Alexa Fluor 568 goat anti-mouse IgG (H+L) (Invitrogen) (PCNA) for 1 h at room temperature, washed, and mounted on slides with Prolong Gold anti-fade reagent (Invitrogen) and photographed.

ChIP assay - ChIP assays were performed as described previously (34). The antibodies against Ac-H3K9 and Me-H3K4 were purchased from Millipore. Antibody against c-JUN was from Cell Signaling and antibody against SIRT6 was from Sigma.

RNA interference - The sh-c-JUN lentiviral construct was purchased from Sigma (construct TRCN0000360511). The packaging and envelope vectors psPAX2 and VSV-G were obtained from Addgene. 293T cells were transfected with sh-c-JUN or sh-Luci, psPAX2, and VSV-G using Fugene 6 for 24 h. The medium was changed and collected after 24h, respectively. Lentivirus were collected and used to infect the Sirt6 MT and WT macrophages. Twenty-four hours later, cells were harvested for assessing mRNA levels and c-JUN protein level.

In silico analysis - The in silico analysis of promoter was performed by using the software MatInspector from Genomatix Software GmbH.

Immortalization of macrophages - Immortalized macrophage cell lines were established by infecting primary bone marrow cells from 3 week-old WT and Sirt6 KO mice with the J2 recombinant retrovirus as described (35). The packaging cell line CREJ2 was adapted from the parental J2 packaging line. CREJ2 contains the murine retroviral ecotropic coat protein, and the virus produced is replication defective. Single cell suspensions from bone marrow were prepared, placed in Dulbecco's modified Eagle's medium and centrifuged through a lymphocyte separation medium cushion (ICN Biochemicals, Aurora, OH). Cells were cocultured with 0.45 micron-filtered CREJ2 supernatants in Dulbecco's modified Eagle's medium supplemented with 10% heat-inactivated fetal bovine serum, antibiotics, 2 mM L-glutamine (complete medium) (BioSource International, Camarillo, CA), 5 mg/ml hexadimethrine bromide (Sigma-Aldrich Chemical Co., St. Louis, MO) and 1000 units/ml granulocyte macrophage-colony stimulating factor (Peprotech Inc., Rocky Hill, NJ) for 24 h. Non-adherent cells were removed from cultures and adherent cells were cultured in complete medium with 1000
units/ml granulocyte macrophage-colony stimulating factor and without hexadimethrine bromide. After 5 to 7 days, cells were cultured in complete medium without granulocyte macrophage-colony stimulating factor and monitored for growth. Cells growing in the absence of granulocyte macrophage-colony stimulating factor were considered immortalized.

Kupffer cell isolation from mouse liver and stimulation with LPS-Kupffer cells were isolated as previously described (36). Isolated Kupffer cells were treated with or without LPS (100 ng/ml). Cell supernatant was collected at 4h post-treatment and kept at -80°C until the levels of the inflammatory cytokines were determined.

Cytokine assays-Inflammatory cytokines were measured using cytometry bead arrays (BD Biosciences, San Jose, CA) according to the manufacturer’s protocol.

Mice-Mice carrying a Sirt6Δ2-3 allele and Sirt6Co allele were genotyped by PCR using conditions described previously (28, 30). Mice carrying a Sirt6Co allele were genotyped using primers F (5’-gggacttgccctgtagatca-3’) and R1 (5’-atcgccttctatcgccttcttgacgagttc-3’), WT allele was genotyped using F and R2 (5’-gtccctgcagaagaagatgc-3’); All three lines of cre mice, Alb-Cre (37), Lck-Cre and Lyz-Cre (Provided by Jackson laboratory), were genotyped using primer pair Cre-1(5’-atgcttctgtccgtttgccg-3’) and Cre-3 (5’-cctgttttgcacgttcaccg-3’). All experiments were approved by the Animal Care and Use Committee of the National Institute of Diabetes, Digestive and Kidney Diseases (ACUC, NIDDK).

Statistical analyses-Student’s t-test was used to compare differences between samples analyzed. Any P-value of <0.05 (P<0.05) was considered as statistically significant difference.

RESULTS

Sirt6−/− mice exhibited chronic inflammation in the liver-To further study the function of Sirt6, we analyzed Sirt6−/− mice at varying ages in comparison with wild type control mice. We found that the mutant mice suffered progressively massive inflammation in the liver starting from 2 months of age. Upon dissection, 14 out of 28 Sirt6 mutant mice examined between 2-8 months of age showed white foci on the surface of the liver (Fig. 1A, Table 1). As the mutant animals were getting older, the frequency of surface white foci was reduced; however, many animals developed visible nodules and rough surface on the liver (Fig. 1B-D, Table 1). H&E analysis on sections cutting through the white foci revealed patches of necrotic cells that were surrounded by leukocytes (Fig. 1F). Many of these necrotic areas were embedded inside the liver, without displaying white foci on the surface. Leukocytes were found throughout the entire liver of these mice (Fig. 1G). These abnormalities were not observed in control mice (Fig. 1E,H).

Our further analysis indicated that majority of the infiltrated inflammatory cells were CD3 positive (Fig. 1I). Considerable number of inflammatory cells were also positively stained by markers for macrophage (F4/80) (Fig. 1J) and neutrophil markers (MPO) (Fig. 1K). High levels of interleukin-1 beta (IL-1β), a cytokine that is usually secreted by inflammatory cells, was also detected in the Sirt6−/− liver (Fig. 1L), while the WT controls showed much less staining for these markers (Fig. 1N-P). Consistent with these phenotypes, we detected increased transcription of several pro-inflammatory genes in Sirt6 mutant mouse livers, including monocyte chemotactic protein 1 (Mcp-1), Il-6, chemokine C-C motif ligand 5 (Ccl5), Il-1β, cyclin D1, vascular cell adhesion molecule 1 (Vcam), interferon-γ (Ifn-γ), tumor necrotic factor alpha (Tnf-α), and inducible nitric oxide synthase (iNos), as well as C-C chemokine receptor type (Ccr2), marker for monocytes, and F4/80, marker for Kupffer cells/macrophages (Fig. 1Q). We also detected variable levels of inflammation in several other organs, including kidney, pancreas, and lung, which were much less severe compared to those in the liver (sFig. 1A-F).

We have examined Sirt6−/− mice (n=6) at age of 9 months and detected elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with wild type mice, however the increase did not reach a statistically significant level (sFig. 2A), suggesting the mutant mice might suffer a slightly or
Sirt6 plays an anti-inflammatory role

mmoderately impaired liver function at this age. Sirt6 mutant mice at this age also exhibited moderate, yet non-statistically higher serum levels of IL-6, MCP-1 and TNFα than did the wild type mice (sFig. 2B). Next, we examine liver fibrosis by performing Sirius Red staining on the Sirt6lox−/lox− mouse liver. Our data revealed that significant fibrosis was detected in the Sirt6lox−/lox− livers but not in wild type mouse livers (Fig. 2A-B). We also detected some hypercellular areas containing Proliferation Cell Nuclear Antigen positive (PCNA+) hepatocytes (white arrow, Fig. 2C), suggesting increased cellular proliferation. Double staining using antibodies for PCNA and CD3 indicated that some PCNA+ cells are CD3 positive (membrane staining, arrowhead), indicating some leukocytes were also proliferative. The staining of these two types of cells only appeared in Sirt6 MT (Fig. 2C), but not in WT (Fig. 2D) livers. Of note, both antibodies for PCNA and CD3 also stained non-specifically for red blood cells, which have no nucleus (red arrow) in both Sirt6 MT (Fig. 2C) and WT (Fig. 2D) livers. As the liver abnormalities were getting more severe in older animals, we also detected steadily decreased body weight in the older Sirt6 mutant mice (Fig. 2D). We also detected higher liver weight/body weight (LW/BW) ratio in the Sirt6 mutant mice at 4-6 month of age compared to WT mice (Fig. 2E), although no significant changes were detected in other age groups. Altogether, these data indicated that Sirt6 mutant mice developed severe liver inflammation, liver fibrosis, and declining health, conditions that might contribute to the lethality that was reported earlier (28).

Liver inflammation is primarily caused by Sirt6 deficiency in the lymphocytes and myeloid-derived cells rather than in the hepatocytes-As the inflammation occurred primarily in the liver, we investigated whether the absence of Sirt6 in hepatocytes is a primary cause for the inflammation. We first examined a mutant strain carrying hepatocytes specific mutation of Sirt6 (Sirt6lox−/lox−;Alb-Cre) (30), and detected no obvious inflammation in these mice, suggesting Sirt6 deficiency in the hepatocytes alone does not trigger inflammation.

Next we deleted the pLoxPneo gene from the Sirt6NeoxNeox mice using Alb-Cre to restore Sirt6 expression specifically in hepatocytes (sFig. 3A-B). Our examination of the Sirt6NeoxNeox;Alb-Cre mice detected a similar inflammatory phenotype in the liver compared with the Sirt6lox−/lox− liver described earlier (sFig. 3C,D). These data indicate that the inflammation observed in the Sirt6lox−/lox− mice was due to Sirt6 deficiency in the cell types other than hepatocytes.

As T cells and macrophages are predominant immune cells in the inflammatory liver in the absence of Sirt6, we generated two additional mutant strains carrying the T cell specific (Sirt6loxCo/Co;Lck-Cre), and the myeloid-derived cell specific (Sirt6loxCo/Co;Lyz-Cre) knockout of Sirt6, respectively. We revealed that both lines of mice showed liver inflammation, with the latter showing more severe phenotypes than the former, although both of them showed delayed onset of inflammation compared with Sirt6lox−/lox− mice (Supplemental Table 1). Both lines of mice also showed some degrees of liver fibrosis (data not shown). These data suggest that the inflammation in Sirt6lox−/lox− mice is caused by Sirt6 deficiency in more than one type of immune cells and the deletion of Sirt6 in myeloid-derived cells correlated with a more severe phenotype than in T cells.

Sirt6 loss activates T cells and myeloid-derived cells leading to liver inflammation-To understand how Sirt6 deficiency in T cells and monocytes causes liver inflammation, we isolated these cells from the liver, and performed flow cytometry analysis using various antibodies. Our data showed that Sirt6lox−/lox− liver contained a higher frequency of CD4+ T cells compared to those in wild type mice (Fig. 3A). It has been known that CD4+ T cells can induce contact-independent target cell death through secreting a number of soluble molecules, including IFN-γ (38). Consistent with this, we observed an increased proportion of IFN-γ secreting CD4+ T cells from Sirt6lox−/lox− liver (Fig. 3A). It was reported that macrophages and CD4+ T cells often cooperate to trigger a pronounced inflammatory reaction

Downloaded from http://www.jbc.org/ by guest on July 16, 2017
Sirt6 plays an anti-inflammatory role

The increase in IFN-γ inflammatory response observed in these mice likely serves as a main cause of the liver for the activation of the immune response in Sirt6-/- mice, which indicates the underlying mechanism responsible for the inducible expression of these cytokines, although our data indicate that Sirt6-/- cells still produced significantly more MCP-1 than WT cells (Fig. 4B). Consistent with the changes in IL-6 and MCP-1 production, we also observed a significant increase of the Il-6 and Mcp-1 mRNA levels in the Sirt6-/- cells (Fig. 4C,D). The LPS-induced upregulation of Il-6 and Mcp-1 mRNAs requires gene transcription as actinomycin D treatment completely blocked transcription of these genes (Fig. 4E,F). In addition, we also observed significantly increased mRNA levels of Il-1β, Ccr2, Tnf-α, iNos and F4/80 (Fig. 4G-K) in the Sirt6-/- macrophage cell line.

Sirt6 deficiency enhances inflammatory cytokine production in macrophages

To understand the underlying mechanism responsible for the activation of the immune response in Sirt6-/- mice, we established macrophage cell lines from bone marrow isolated from the Sirt6-/- and WT mice and analyzed the cytokine production by these cells. Under basal conditions, IL-6, MCP-1, and TNFα levels are significantly higher in the Sirt6-/- macrophage than those in the WT macrophage (Fig. 4A,B), suggesting that Sirt6-/- cells consistently make more of these cytokines. Upon LPS stimulation, production of these cytokine markedly increased in both type of cells (Fig. 4A,B), suggesting that Sirt6 is not required for the inducible expression of these cytokines, although our data indicate that Sirt6-/- cells still produced significantly more MCP-1 than WT cells (Fig. 4B). Consistent with the changes in IL-6 and
promoters of these pro-inflammatory genes.

SIRT6 interacts with c-JUN and negatively regulates inflammation signaling-AP-1 is a homodimer or heterodimer protein composed of proteins belonging to the c-FOS, c-JUN, activating transcription factor (ATF) and musculoaponeurotic fibrosarcoma protein (MBP) families (3,41). Activation of c-JUN/AP-1 and increased expression of their downstream pro-inflammatory genes, including IL-6 and MCP-1, have been found to cause inflammation in several tissues, including skin, lung, and bone (3,42,43). As SIRT6 binds to and deacetylates H3K9 in the promoter of these genes and Sirt6 deficiency results in their upregulation, we hypothesized that SIRT6 and c-JUN might work together to repress the transcription of these genes. To test this hypothesis, we checked their protein interaction, and the data demonstrated that SIRT6 and c-JUN indeed interact with each other (Fig. 5G). Of note, we also detected remarkably increased levels of c-JUN occupancy in the promoter of these genes in Sirt6-/− cells (Fig. 5H). This data suggests that increased expression of these pro-inflammatory genes could be a result of enhanced transcriptional activity of c-JUN upon Sirt6 deficiency. If this is the case, we hypothesized that inhibition of c-JUN should be able to reverse the increased expression of these genes. To test this, we performed c-JUN knockdown in the macrophage cell line and found that Il-6 and Mcp-1 mRNA levels in the Sirt6 deficient cells were brought back to similar levels as observed in the WT cells (Fig. 5I). This data strongly supports the model that the highly activated inflammatory response in the Sirt6-/− macrophages was due to activated c-JUN signaling.

DISCUSSION

In this study, we revealed that Sirt6−/− mice developed invariably chronic liver inflammation starting at about two months of age. Older mutant mice also developed liver fibrosis and some hypercellular areas with increased cellular proliferation. Further analysis indicated that the liver inflammation and fibrosis are mainly caused by the activation of pro-inflammatory signaling in multiple types of immune cells, and we uncovered a novel role for Sirt6 in inhibiting inflammation through repressing c-JUN/AP-1 signaling.

The Sirt6−/− mice carry a global disruption of Sirt6. Why do they exhibit much more severe inflammation in the liver than other tissues? The liver is an organ that plays an essential role in removing pathogens, antigens, and viruses entering from the circulation. Upon infection or injury, leukocytes are recruited to the liver through hepatic sinusoids, which are low-flow vascular channels (1,44). The accumulation of leukocytes and their slow clearance, in addition to the large quantity of Kupffer cells may serve as a source for initiation of inflammation and fibrosis. In this study, we found that Sirt6 deficiency activates multiple types of leukocytes, including T cells, Kupffer cells, and monocytes in other organs leading to wide spread inflammation. However the inflammation is most pronounced in the liver. To reinforce this model, we have performed the following three experiments: 1) specific disruption of Sirt6 in hepatocytes, 2) restoration of Sirt6 transcription in the hepatocytes specifically in Sirt6−/− mice, and 3) deletion of Sirt6 in T cells or myeloid-derived cells. All these experiments came up with the same conclusion that Sirt6 deficiency in the immune system causes liver inflammation and fibrosis, while loss of Sirt6 in the hepatocytes alone does not result in inflammation.

In theory, liver inflammation can be initiated by abnormalities in hepatocytes, leukocytes, or the combination of both (45). For example, targeted disruption of the tumor suppressor gene, cylindromatosis (CYLD), specifically in hepatocytes resulted in liver inflammation, fibrosis, and cancer (46). In this case CYLD deficiency triggers hepatocyte death via spontaneous and chronic activation of TGF-β activated kinase 1 (TAK1) and c-JUN N-terminal kinase (JNK). There is subsequent compensatory proliferation leading to tumorigenesis when the animals reached 1 year of age. In contrast, Sirt6−/− mutant liver does not exhibit obvious apoptosis revealed by Tunel assay (data not shown), and does not have statistically significant elevation of serum ALT and AST. This suggests that Sirt6 deficiency in hepatocytes does not cause strong liver injury. These observations may explain why loss of Sirt6 in hepatocytes alone does not cause inflammation. We have also examined 12 Sirt6−/− mice between 11 to 17 months of age and did not detect cancer formation in the liver and other organs. Thus, it is
Sirt6 plays an anti-inflammatory role

unlikely that Sirt6 has a tumor suppressor function in mice. While recent studies have indicated that Sirt1 (24,47), Sirt2 (48), and Sirt3 (49,50) may suppress tumorigenesis in mice and Sirt7 may promote it (51), it is conceivable that Sirt6 plays a distinct role in this process.

The most notable finding in this study is that Sirt6 deacetylase plays an essential role in mediating the inflammatory response through inhibiting c-JUN signaling. Both c-JUN and its activator, c-JUN-N-terminal kinase (JNK), play an important role in many biological processes, including apoptosis, cell differentiation and proliferation, metabolism, and tumorigenesis in the liver (52). We showed here that SIRT6 binds to the promoters of both IL-6 and MCP-1 and deacetylates H3K9. Loss of Sirt6 results in enhanced expression of these genes, suggesting that Sirt6 negatively regulates their expression. Our data clearly demonstrates that loss of Sirt6 enhanced c-JUN occupancy in the promoters of these genes, and more importantly, shRNA mediated acute knockdown of c-JUN reversed activated transcription of these genes in Sirt6 mutant cells. These observations provide strong evidence that Sirt6 deficiency enhances Il-6 and Mcp1 gene expression through activation of c-JUN transcriptional activity.

A previous study indicated that SIRT6 interacts with the NF-κB RelA subunit and deacetylates H3K9 at NF-κB target gene promoters, loss of Sirt6 caused activation of NF-κB dependent gene expression, and haploinsufficiency of RelA rescues the early lethality and degenerative syndrome of Sirt6 deficient mice (33). However, it was also reported that over-expression of wild type or a catalytically dead mutant of SIRT6 do not influence NF-κB responses (53). As activation of NF-κB is frequently observed in chronic liver inflammation (3), we have generated and analyzed Sirt6−/−;p65−/− mice. We did not find an obvious difference in phenotypes between the Sirt6−/−;p65+/− mice and Sirt6−/− mice, suggesting that haploinsufficiency of RelA did not attenuate liver inflammation (data not shown). In addition, we have also performed acute knockdown of NF-κB in the Sirt6−/− macrophages and found it also caused reduction of c-JUN transcription (data not shown), suggesting that NF-κB and c-JUN might modulate each other, consistent with the earlier report of a similar modulation between NF-κB and c-JUN/AP-1 (54). Thus, the relationship among NF-κB, c-JUN/AP-1, and SIRT6 is complex and deserves future investigation.

In summary, previous studies have revealed that Sirt6 is involved in many important biological processes, including glucose metabolism, lipid metabolism, triglyceride synthesis, DNA damage repair, telomere maintenance, and lifespan regulation (17,28,30,31,55,56). Our study uncovers a novel anti-inflammatory role of Sirt6 through inhibiting c-JUN signaling. This finding may have a significant clinic application in the future as chronic inflammation causes many diseases including fatty liver diseases, cirrhosis and hepatocarcinoma (5-8). In this case, small chemical compounds that activate Sirt6 deacetylase should be useful in therapeutic treatment to decrease inflammation and improve patient symptoms.
Sirt6 plays an anti-inflammatory role

REFERENCES

19. Lombard, D. B., Alt, F. W., Cheng, H. L., Bunkenborg, J., Streep, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M. D., Bronson,
Sirt6 plays an anti-inflammatory role

Sirt6 plays an anti-inflammatory role

reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer cell 19, 416-428

Acknowledgments—We thank the members of the Deng lab for critical review of the manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health, USA.

FIGURE LEGENDS

Figure 1. Liver inflammation in Sirt6 mutant mice. A-E. Gross morphological changes of Sirt6 mutant (MT) (A-D) and wild type (WT) (E) liver. Liver foci (A) in 5 month animal and nodules (B-D) in 9-15 month animals. F-H, H&E staining showing necrotic foci surrounded by inflammatory cells (F), and massive inflammation (G) in MT and WT (H) liver sections. I,M. CD3 staining in MT (I) and WT (M) liver section. Green signals in M are non-specific staining of red blood cells. J-L, N-P. F4/80, MPO and IL-1β IHC staining in Sirt6 MT (J-L) and WT (N-P) liver; Q. Hepatic expression of pro-inflammatory genes. Error bars indicated standard error of the mean, *p<0.05. Scale bar: 100µm (F); 50µm (G-P). For A-P, at least 5 pairs of mice were analyzed; For Q, 3 pairs of 8-9 month mice were analyzed.

Figure 2. Sirt6 loss results in liver fibrosis, elevated liver proliferation and global decline of body condition. A-B. Sirius Red staining images in WT (A) and mutant (MT) (B) mice liver. Eight pairs of mice were analyzed. C-D. PCNA and CD3 staining in MT (C) and WT liver (D). White arrow indicates PCNA positive only cell (most likely hepatocyte according to the morphology); arrowhead indicates PCNA and CD3 double positive cell (leukocyte); red arrows indicate non-specific staining of the red blood cells. At least 5 pairs of mice were analyzed for C-D. Scale bar: A and B: left panel 250µm, right panel 50µm; C and D: 20µm. E. Body weight of WT and MT mice. F. Percentage of liver weight (LW)
Sirt6 plays an anti-inflammatory role

versus body weight (BW) in 3 time points of WT and MT mice. Error bars indicated standard error of the mean. *p<0.05. At least 4 pairs of mice were analyzed for E-F.

Figure 3. Sirt6 loss activates immune cells leading to the liver inflammation. A. CD4+, CD8+ and IFN-γ, IL-17 secretion in CD4+ liver lymphocytes. B. IL-6 and TNFα secretion from Kupffer cells isolated from mouse liver. C. Thymidine uptake of splenocytes under the stimulation of anti-CD3 alone and anti-CD3+CD28.

Figure 4. Activation of Sirt6 mutant macrophages. A-B. Cytokines secreted from the macrophage cell lines with and without LPS stimulation. C-K. Pro-inflammatory gene expression in the macrophage cell lines. E-F. Levels of LPS-induced upregulation of Il-6 and Mcp-1 mRNAs with or without actinomycin D. Error bars indicated standard error of the mean. *p<0.05.

Figure 5. SIRT6 interacts with c-JUN, binds to and epigenetically modifies H3K9 in the promoter of pro-inflammatory genes. Immortalized WT or MT macrophages were utilized for Chromatin Immunoprecipitation (ChIP) analysis. A-B. In silico analysis to show AP-1 or AP1R binding sites on IL-6 and MCP-1 promoters from both mouse and human genes. Numbers indicate the positions of the fragments relative to translational start codon (ATG), which were amplified by PCR during ChIP assay. C. ChIP assay showing enhanced Ac-H3K9 occupancy on Il-6 and Mcp-1 promoters upon Sirt6 deletion; D-E. ChIP assay showing Me-H3K4 occupancy on Il-6 and Mcp-1 promoters. F. ChIP assay indicates SIRT6 binds to Il-6 and Mcp1 promoters in wild type cells. The background binding levels in mutant cells were set at 1. G. Immuno-precipitation assay displays that c-JUN and SIRT6 interact with each other. H. ChIP assay using c-JUN antibody demonstrates that upon Sirt6 deletion, the binding of c-JUN to Il-6 and Mcp-1 promoters was extremely enhanced. I. Expression of Il-6 and Mcp-1 upon c-JUN knockdown in both WT and MT immortalized macrophages. Inset indicates Western blot of c-JUN upon c-JUN knockdown.
Figure 1

Sirt6 plays an anti-inflammatory role
Sirt6 plays an anti-inflammatory role

Figure 2

A WT Sirius Red B MT Sirius Red

C MT PCNA CD3 DAPI Merged

D WT PCNA CD3 DAPI Merged

E Body weight (g)

<table>
<thead>
<tr>
<th>Age (Month)</th>
<th>WT</th>
<th>MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2-1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F % LW/BW

<table>
<thead>
<tr>
<th>Age (Month)</th>
<th>% LW/BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9-1.2</td>
<td></td>
</tr>
<tr>
<td>1.2-1.4</td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td></td>
</tr>
<tr>
<td>8-10</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3

A

Relative

CD4 CD8 CD4+HNg CD4+IL17 CD8+HNg CD8+IL-17

* * *

B

pg/ml

mock LPS

WT MT WT MT

IL-6 TNFa

* *

C

Thymidine uptake

(cpm*1000)

WT MT

Med CD3 CD3+28

* * *
Sirt6 plays an anti-inflammatory role

Figure 4

A

B

C

D

E

F

G

H

I

J

K

Sirt6 plays an anti-inflammatory role
Figure 5

A IL-6 Promoter -16 to -196
 mouse ggattTTCcatga
 Human ggattTTCcatga

B MCP-1 Promoter -779 to -958
 catcaTGACTaagc
 cataaTGACtttagc

C Ac-K9 Enrichment
 WT MT
 IL-6 MCP-1

D (Me)2K4 Enrichment
 WT MT
 IL-6 MCP-1

E (Me)3K4 Enrichment
 WT MT
 IL-6 MCP-1

F SIRT6 Binding
 WT MT
 IL-6 MCP-1

G IP
 - +
 + +
 Input
 SIRT6-Flag
 c-Jun-HA
 Flag
 HA

H c-Jun Enrichment
 WT MT
 IL-6 MCP-1

I Relative Expression
 shLuci shJun shLuci shJun
 WT MT
 p=0.0031 p=0.0001 p<0.0001

p=0.0001
Table 1.
Liver inflammation in Sirt6 KO mice

<table>
<thead>
<tr>
<th>Age (mon)</th>
<th>No. of mice</th>
<th>Liver inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 2-18</td>
<td>30</td>
<td>4 have moderate inflammation, no white foci, necrotic foci, and nodules were observed</td>
</tr>
<tr>
<td>KO 2</td>
<td>5</td>
<td>All had liver inflammation revealed by H&E, 3 had white foci on the liver surface</td>
</tr>
<tr>
<td>3-4</td>
<td>4</td>
<td>3 had liver inflammation, 2 had white foci on the liver surface, 2 showed necrotic foci on liver sections</td>
</tr>
<tr>
<td>5-6</td>
<td>10</td>
<td>9 had liver inflammation, 2 had white foci on the liver surface, 6 showed necrotic foci on liver sections</td>
</tr>
<tr>
<td>7-8</td>
<td>9</td>
<td>9 had liver inflammation, 7 had white foci on the liver surface, 1 had rough liver surface</td>
</tr>
<tr>
<td>9-10</td>
<td>6</td>
<td>All had liver inflammation, 1 had white foci on the liver surface, 3 had rough liver surface and small nodules</td>
</tr>
<tr>
<td>11-12</td>
<td>9</td>
<td>8 had liver inflammation, 1 had white foci on the liver surface, 1 had lots of small nodules</td>
</tr>
<tr>
<td>>12</td>
<td>3</td>
<td>3 had liver inflammation, 1 had lots of small nodules on the ventricular side</td>
</tr>
</tbody>
</table>
Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice

Cuiying Xiao, Rui-Hong Wang, Tyler J. Lahusen, Ogyi Park, Adeline Bertola, Takashi Maruyama, Della Reynolds, Qiang Chen, Xiaoling Xu, Howard A. Young, Wan-Jun Chen, Bin Gao and Chu-Xia Deng

J. Biol. Chem. published online October 16, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.415182

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/10/16/M112.415182.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2012/10/16/jbc.M112.415182.full.html#ref-list-1