In vivo Regulation of Steroid Hormones by the Chst10 Sulfotransferase in Mouse.

Misa Suzuki-Anekoji‡, Atsushi Suzuki‡,1, Sz-Wei Wu§, Kiyohiko Angata‡,2, Keith K. Murai‡,3, Kazuhiro Sugihara¶, Tomoya O. Akama1, Kay-Hooi Khoo§, Jun Nakayama§, Michiko N. Fukuda‡, and Minoru Fukuda‡

From the ‡Glycobiology Unit, Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, §Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ¶Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Hamamatsu, Japan, †Department of Pharmacology, Kansai Medical University, Osaka, Japan, and Minoru Fukuda‡

To whom correspondence should be addressed: Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037. E-mail: michiko@sanfordburnham.org, TEL: 858-646-3143, and minoru@sanfordburnham.org, TEL: 858-646-3144.

Present addresses: †Department of Gynecology and Obstetrics, Keio University School of Medicine, Tokyo, Japan; ‡National Institute of Advanced Industrial Science and Technology; Tsukuba, Ibaragi, Japan; ¶Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, Quebec, Canada.

Key words: HNK-1, CD57, sulfotransferase, estrogen, glucuronidation.

Abbreviations: GlcUA, glucuronic acid; LacNAc, N-acetyllactosamine; E1, estrone; E2, 17β-estradiol; E3, estriol; Preg, pregnane; Etio, etiochlolane; T, testosterone; DHEA, dehydroepiandrosterone; Andro, androstane; ER, estrogen receptor; AR, androgen receptor; HPLC, high performance liquid chromatography.

Background: Chst10 transfers sulfate to glucuronic acid to form HNK-1 antigen carried by glycoproteins and glycolipids in neurons and NK cells.

Results: Chst10 transfers sulfate to glucuronidated steroid hormones, and Chst10 deficient mice exhibited subfertility.

Conclusion: Subfertility of Chst10 null females is caused by a loss of steroid hormone dysregulation.

Significance: This study identified a new regulatory mechanism mediated by sulfation of glucuronidated steroid.

SUMMARY

Chst10 adds sulfate on glucuronic acid (GlcUA) to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. While Chst10−/− were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10−/− females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10−/− females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Since steroid hormones are often conjugated to GlcUA, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates...
glucuronidated estrogen, testosterone and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in wide-spread regulation of steroid hormones in vivo.

Sulfated glycans play diverse roles in development, differentiation, and homeostasis. These glycans provide a ligand for lymphocytes homing to lymph nodes (1-9) or blastocysts rolling on endometrial epithelia (10-12), alter binding of growth factors to receptors (13), function in clearance of circulating glycoprotein hormones (13,14), participate in formation of a transparent cornea (15), and play critical roles in embryonic development of species as diverse as mice (16) and Drosophila (17).

Monoclonal antibodies specifically recognizing sulfated glycan epitopes have served as useful reagents for defining cellular activities mediated by sulfated glycans (5,18-23). The monoclonal antibody HNK-1, which was raised against human natural killer cells (24), recognizes a unique glycan structure terminated by sulfated glucuronic acid linked to N-acetyl lactosamine or SO₃→3GlcUAβ1→3Galβ1→4GlcNAcβ1→R (18). The HNK-1 epitope is carried by both glycoproteins and glycolipids (18,25-31). This antigen has been also found in neuronal cells (32,33). HNK-1 antigen found on adhesion molecules such as NCAM (32,33), MAG (34), L2 (35), P0 (36), GluR2 (37), RPTPβ (38), and CD24 (39) is suggested to modulate adhesion of HNK-1-positive cell types (35). Neurite outgrowth by mouse motor neurons is facilitated by an HNK-1 glycolipid substratum (40). On the other hand, neurite outgrowth on NCAM is inhibited by HNK-1 glycan (41). These findings suggest that HNK-1 glycan plays a regulatory role in neuronal cell-cell/matrix interaction.

To synthesize HNK-1 epitope, mammalian cells require two enzymes, B3GAT1 (or β1,3-glucuronyltransferase) (42) and CHST10 (or HNK-1 sulfotransferase) (43,44). Previously, we found that CHST10 contains a conserved RDP sequence in the 3'-PAPS (phosphoadenosine phosphosulfate) binding domain (44). CHST10 also shares a 5'-PAPS binding domain with cytosolic sulfotransferases, such as the estrogen sulfotransferase Sult1E1 (45,46). Sult1E1-deficient female mice are reportedly infertile due to a placental defect and exhibit spontaneous loss of embryos (47,48).

Steroid hormones, including estrogen, are synthesized from cholesterol in the ovary and testis via coordinated activities of enzymes such as cytochrome P450s (CYPs), 17β-hydroxysteroid dehydrogenases (HSDs), and aromatase (49). In liver, some steroid hormones are conjugated with glucuronic acid by uridine-diphospho glucuronic acid transferases (UGTs). UGT family proteins, encoded by UGT1 and UGT2 genes (50), consist of more than fifteen enzymes formed by alternative splicing of transcripts of these genes. Glucuronidation of steroid hormones blocks their binding to corresponding receptors, down-regulating bioactive hormones in vivo. Glucuronidation also converts steroid hormones into more water-soluble products, facilitating removal from the circulation. In addition to glucuronidation, sulfation also plays a role in down-regulating steroid hormones (51).

To investigate the in vivo role of Chst10, we generated systemic Chst10-deficient mice. Chst10 null mice grew to adulthood without exhibiting gross abnormalities. However, Chst10 null mice bred infrequently and had a small litter size. We used these mice to determine whether
Chst10 transfers sulfate to glucuronidated steroid hormones, with a focus on sulfation of glucuronidated estrogen. Those genetic studies, combined with biochemical approaches, suggest that Chst10 regulates estrogen in vivo in the female mouse.

Materials and Methods

Generation of Chst10-deficient mice —— A Chst10 targeting vector was constructed as shown in Fig. 1. Homologously recombined ES clones were selected by Southern hybridization using a probe adjacent to the targeting vector. Probe DNA (about 450 bp) was amplified by PCR using the following primers: 5-12s, TGTAGTCAAGGCAGCAACCAAGCA, and 5-13a, GAGCGCCAAACAGCAGCAG. Genomic DNA was digested with EcoRI to distinguish the targeted (3.8kb) from wild-type (7.4kb) allele. To assess whether the line is maintained, genotyping was performed by PCR using the following primers: 5-3 (5'-primer in Neo), GTGCTACTTCCATTGTCACG; 5-10 (5'-primer in the common sequence), TCTTTCAGTGAGATGGTGGCA; and 5-11 (5'-primer in deleted sequence), GCTGCTTTGTGAAATCGGGTACTTG.

Blood steroid hormone levels —— The estrus cycle of female mice was determined by vaginal smears following a standard procedure (52). Blood from female mice was collected in the mornings at the proestrus stage, and serum was separated and stored at -80 °C. Quantitative analysis of mouse blood steroid hormones was carried out by radioimmunoassay at the Ligand Assay and Analysis Core Facility of University of Virginia Center for Research in Reproduction.

In vitro sulfation and glycosylation of steroids —— Sulfation of GlcUA-steroids in vitro by recombinant Chst10 was performed as described (44). The reaction mixture (100 µl) contained 0.9 nmoles (3 µCi) of [35S]-labeled PAPS, 2mM unlabeled PAPS, 100mM Tris-HCl, pH 7.2, 0.1% Triton X-100, 10mM MnCl2, 2.5mM ATP and 3mM acceptor glucuronidated steroid. A recombinant protein A-conjugated soluble form of CHST10 was produced in COS cells. A protein A-CHST10 chimera collected from culture supernatants was purified and concentrated to approximately 50 times by CentriPrep YM-10 (Millipore). Purified enzyme was added to beads in the reaction mixture. After incubation at 37°C for 20 to 60 minutes, ice-cold ethanol (500 µl) was added to stop the reaction. The ethanol soluble fraction was collected and concentrated using a SpeedVac. Steroids were purified using a 0.2 ml bed volume solid phase extraction (SPE) column (High Load C18; Alltech). The sample was dissolved in 0.25 M ammonium formate, pH 4.0, applied to the column and washed with the same buffer. Sulfated steroids were eluted in 70% methanol and then concentrated and subjected to HPLC analysis described below.

Glcuronidation of steroid in vitro was performed in a manner similar to that described above. The reaction mixture contained: 50mM Tris-HCl, pH 7.5, 10mM MgCl2, 0.1 mg/ml phosphatidylcholine, 8.5 mM D-saccharic acid α1,4-lactone, 15 mM (3 µCi) of [3H]-labeled UDP-GlcUA, 0.5mM unlabeled UDP-GlcUA, and acceptor steroid. The reaction mixture was incubated at 37°C for 16 hours, and the reaction product was purified using High Load C18 SPE column described above and then subjected to HPLC analysis. The enzyme source was either recombinant UGT or a mouse liver microsome fraction, prepared as described (53).

HPLC analysis —— GlcUA- and/or SO3-GlcUA-modified steroids were analyzed by HPLC using an Ascentis C18 reverse phase column (4.6 mm x 15 cm, 5 µm particles) (SUPELCO). Solvent A was composed of 90% 5mM tetrabutyl ammonium sulfate (TBAS) in water, 7.5% acetonitrile and 2.5% methanol. Solvent B was composed of 30%...
5mM TBAS, 52% acetonitrile and 17.5% methanol. Unmodified and modified steroid hormones were separated using the following elution programs. Program 1: 100% A for 10 min followed by a gradient up to 100% B over 40 min, followed by 100% B over 15 min. The flow rate was 1 ml/min. Program 2 is the same as Program 1, except the initial elution with A is for 12 minutes. Elution positions of standard steroids (50 nmols) were monitored by absorbance at 220 nm. Radiolabeled GlcUA- or SO_3-GlcUA-modified steroids were collected every minute, and radioactivity was measured by a scintillation counter.

Preparation of SO_3-GlcUA-3-E_2 ---- The Chst10 reaction mixture (100 µl) was identical to that described above without radio-labeled PAPS (44,45). Product SO_3-GlcUA-3-E_2 was purified twice by HPLC using either an Ascentis C_18 column, as described above for mass spectrometry, or Zorbax SB-C18 (Agilent). A 4.6 mm x 25 cm column was programmed to be washed by a linear gradient of 30% buffer B (75% acetonitrile in methanol) in 70% buffer A (5 mM TBAS-H_2O) up to 10 min followed by a gradient to 60% B over 30 min, followed by 100% B over 5 min. The flow rate was 1 ml/min. Elution of SO_3-GlcUA-E_2 was monitored by UV absorbance at 220nm. Purified SO_3-GlcUA-3-E_2 was used for estrogen receptor reporter assay.

Digestion of steroid conjugates by glycosidases ---- HPLC analysis of glycosidase-digested samples was performed as follows. The radiolabeled steroid fraction was desalted using a High Load C_18 SPE column and dried in a tube under a SpeedVac. *E. coli* derived β-glucuronidase (Sigma) (1 µl) was added to the steroid fraction dissolved in 20 µl of 50mM Tris-HCl, pH 6.8, and incubated at 37°C for 16 hours. Aryl sulfatase from *Helix pomatia* (Sigma) (1 µl) was added to the steroid fraction dissolved in 20 µl of 50mM Tris-HCl, pH 6.5, plus 8.5 mM D-Saccharic acid α 1,4-lactone incubated at 37°C for one hour.

Mass spectrometry analysis ---- The samples were dissolved in 50% (v/v) acetonitrile in water and injected into a Q-TOF Ultima API mass spectrometer (Micromass) by direct infusion or by static nanospray. Both MS and MS/MS data were acquired in negative ion mode. For direct infusion, the flow rate was set as 0.3 µl/min and the spray voltage was set as 3.5 kV. Nanoflow Probe Tip (M956231AD1-S, WatersTM) was used for static nanospray and the spray voltage was set as 900 V. All spectra were interpreted manually.

Steroid binding assay ---- Cells cultured as monolayers in DME medium with 10% fetal bovine serum were detached with EDTA-based Cell Dissociation Buffer (Millipore) and washed with PBS. 1x10^6 cells were mixed with 2x10^5 cpm of [3H]-labeled E_2 or 6x10^4 cpm of [35S]-labeled SO_3-GlcUA-E_2 in 100 µl of PBS, and rotated at 37°C for four hours to allow incorporation of radioactive steroids into cells. Cells were recovered by filtering through a Whatman glass microfibre filter (2.4 cm diameter) and washed with 10 ml of PBS under vacuum. Radioactivity recovered on the filter was counted by a scintillation counter.

Estrogen-responsive element (ERE) gene activation assay ---- HEK293T cells were cultured in a 10 cm plate using phenol red-free DMEM containing 5% charcoal/dextran-treated FBS. Cells were transfected with the pBIND-ERα (Promega) expression vector, which contains the yeast Gal4 DNA-binding domain (Gal4-DBD) and an estrogen receptor-ligand binding domain (ER-LBD) gene fusion that can induce the transcription of luciferase gene in the pGL4.35 Vector when activated by a ligand.

Three hours after transfection, cells were seeded at 1x10^5 cells/well in 96-well tissue culture plates. One day later or on the second day of transfection, cells were
treated with serial dilutions of ligands including E2. Then, 24 hours after ligand stimulation, luciferin was added to the culture medium at 0.6 mg/ml, and chemiluminescence was measured in a Beckman DTX880 plate reader.

Results

Targeted disruption of Chst10 in the mouse

Targeting disruption of Chst10 for systemic gene knockout was performed using methods similar to those described previously (54). Since the RDP sequence found in the Chst10 catalytic domain (45) is encoded by exon 5, we disrupted exon 5 by homologous recombination (Fig. 1A). Two lines of ES cells harboring homologous recombinant clones were identified by Southern hybridization using probes adjacent to the targeting vector (Fig. 1B), and those cells were injected into blastocysts to generate mutant mice. Elimination of HNK-1 antigen in Chst10 null mice was confirmed by immunohistochemistry of brain tissue using anti-HNK-1 antibody (Fig. 1C).

Breeding of Chst10-deficient mutant mice

Neither male nor female Chst10−/− mice showed gross morphological anomalies in brain tissues (Fig. S1). However, both male and female Chst10+/− mice were subfertile: while crosses between Chst10+/− males and females yielded pups at the rate of 8.11/litter (n=17), those between wild-type and Chst10−/− mice often did not produce pups or produce pups at low rate as 5.4/litter (n=5, statistical significance with p=0.005 by unpaired two-tailed student t-test) (Fig. S2). These observations suggest that Chst10 functions in male and female reproduction.

Abnormalities in female reproductive organs of Chst10−/− mice

To assess a potential role for Chst10 in reproduction, we focused on female Chst10−/− mice. Analysis of morphology of female reproductive organs revealed that uteri of Chst10−/− females from the proestrus phase were larger than those from Chst10+/+ females (Fig. 2A upper panel and Fig. 2B). Sections of uterus tissue showed that endometrium was thicker in Chst10−/− compared to Chst10+/+ mice (Fig. 2A lower panel). Since growth of endometrial epithelia requires E2, this observation suggested that E2 is more active in Chst10−/− than in Chst10+/+ mice. Indeed, serum E2 levels in Chst10−/− females at proestrus stages were higher than those seen in Chst10+/+ mice (Fig 2C), suggesting that E2 down-regulation is impaired in the former. As anticipated, the hormonal cycle of uteri of Chst10−/− females was regular, whereas that of Chst10+/+ females showed signs of disruption (Fig. S3).

Chst10 transfers sulfate to glucuronidated sex steroid hormones

Steroid hormones are reportedly glucuronidated in liver as an excretion mechanism in vivo (51). Since glucuronide is a Chst10 substrate, we asked whether Chst10 transfers sulfate to glucuronidated steroid hormones (Fig. 3 and Fig. S4). In vitro analysis indicated that various glucuronidated steroids serve as good acceptor substrates for Chst10. These findings suggest that Chst10 prefers GlcUA at the 3-hydroxyl group of a sterol ring over 17-hydroxyl (Fig. 3, third and fourth columns). Among steroids tested, GlcUA-3-Andr (5β-androstane-3α, 17α-diol-11-one-17β carboxylic acid 3β-D-glucuronide), an androgen variant, appeared to be the best acceptor substrate, followed by GlcUA-3-E2 (17β-estradiol-3-GlcUA), a major form of estrogen. DHEA-3-GlcUA (dehydroepiandrosterone-3-GlcUA) and GlcUA-17-T (testosterone-17-GlcUA) also served as Chst10 acceptors (Fig. 3 and Fig. S5). Chst10 did not transfer sulfate to substrates lacking glucuronic acid (Fig. 3).

The kinetics of Chst10 relative to representative acceptor substrates was determined using radioactive [35S]-labeled PAPS as a donor. A reaction mixture of [35S]-PAPS and GlcUA-3-E2 yielded a single peak in HPLC for SO3-GlcUA-3-E2 (Fig. 4A, lower panel). Kinetic analysis (Fig. 5 and Table 1) suggested that GlcUA-3-E2 is a 3-
fold better Chst10 substrate than is GlcUAβ1-3LacNAc, the precursor of HNK-1 antigen. These results suggest strongly that Chst10 may transfer sulfate to the glucuronidated steroid hormones in vivo.

To confirm structures of sulfated glucuronidated steroid hormone products, SO₃-GlcUA-3-E₂ was prepared by incubating GlcUA-E₂ with non-radiolabeled PAPS and recombinant Chst10, and products were purified by HPLC (Fig. 4A, upper panel). Elution position of SO₃-GlcUA-3-E₂ was ascertained by assessing elution positions of radiolabeled peaks (Fig. 4A, lower panel). Based on nanoESI-MS/MS analyses, this product afforded the expected [M - H]⁻ molecular ion signal at m/z 527.22 in negative ion mode for SO₃-GlcUA-3-E₂. Further MS/MS analysis suggested common loss of the sulfate moiety (-80 m/z) and yielded the set of fragment ions at m/z 97, 175, and 255, corresponding to HSO₄⁻, GlcUA⁻, and SO₃-GlcUA, respectively (Fig. 4B). This analysis indicated that the product carried the expected terminally-sulfated GlcUA substituent.

We synthesized SO₃-GlcUA-E₂ in vitro by transferring [³⁵S]-GlcUA from [³⁵S]-UDP-GlcUA using a recombinant protein A-UGT1A1 fusion protein. The reaction product analyzed by HPLC showed two peaks, most likely GlcUA-3-E₂ and GlcUA-17-E₂, based on elution positions of authentic GlcUA-3-E₂ and GlcUA-17-E₂ (Fig. S6 upper panel). We reacted both peaks with [³⁵S]-PAPS and soluble recombinant Chst10, which resulted in disappearance of the two GlcUA-E₂ peaks and the appearance of a [³⁵S]-SO₃-[³⁵S]-GlcUA peak (Fig. S6 lower panel). Since both SO₃-GlcUA-3-E₂ and SO₃-GlcUA-17-E₂ were eluted at the same position in prior experiments (Fig. 4A), we conclude that the [³⁵S] and [³⁵S] double-labeled product peak represents a mixture of SO₃-GlcUA-3-E₂ and SO₃-GlcUA-17-E₂. These observations indicate that two recombinant enzymes, UGT1A1 and Chst10, can be used to synthesize glucuronidated and sulfated E₂ in vitro.

Detection of SO₃-GlcUA-E₂ in mouse serum ---- To detect SO₃-GlcUA-E₂ in vivo in the mouse, female mice were injected intravenously with either [³H]-E₂ or [³⁵S]-SO₃ (inorganic sulfate). Serum was collected 24 hours after injection, and radioactive products were analyzed by HPLC (Fig. 6). In Chst10⁻/⁻ mice, [³H]-E₂ was converted to several compounds (Fig. 6A, upper panel). One that eluted at 42 min matches the elution position of E₂, which was a prominent peak in Chst10⁻/⁻ serum (Fig. 6A, lower panel). A peak seen at 46 min in Chst10⁻/⁻ mice matched the elution position of SO₃-GlcUA-3-E₂ (Fig. 6AB, upper panels, shown by arrows). This peak was not detected in samples from Chst10⁻/⁻ mice (Fig. 6AB, lower panels).

Products derived from [³H]-E₂-injected Chst10⁻/⁻ were subjected to sulfatase and β-glucuronidase digestion (Fig. 6C). Digestion of products by β-glucuronidase dismissed peaks at 28, 31, 34, and 38 min (Fig. 6C, a and b), suggesting that these compounds are capped by glucuronic acids. On the other hand, arylsulfatase digestion of [³H]-E₂ products dismissed peaks at 31, 36, 38 and 46 min, suggesting that these compounds are sulfated at the terminus (Fig. 6C, a and c). The 46 min peak, presumably representing SO₃-GlcUA-3-E₂, was shifted to GlcUA-3-E₂ at 28 or 34 min after arylsulfatase digestion, indicating that sulfate was at the terminus of this compound and shifted to GlcUA-3-E₂ (Fig. 6C, c). Digestion of [³H]-labeled products with a mixture of β-glucuronidase and arylsulfatase dismissed all peaks except E₂ at 42 min (Fig. 6C, d), suggesting that all metabolites detected by HPLC in Fig. 6C-a are glucuronidated and/or sulfated E₂.

When [³H]-E₂ was injected intravenously into a Chst10⁻/⁻ mouse, [³H]-E₂ was not at all converted into those seen in wild-type (Fig. 6A, lower panel). When [³⁵S]-SO₄ was injected to Chst10⁻/⁻ mouse, several [³⁵S]-labeled peaks including SO₃-GlcUA-3-E₂

Downloaded from http://www.jbc.org/ by guest on September 1, 2017
(Fig. 6B, upper panel, shown by an arrow) appeared. By contrast, those major $[^{35}S]$-labeled peaks found in Chst10$^{+/+}$ mice were not detected in Chst10$^{-/-}$ (Fig. 6B, lower panel), suggesting that peaks shown in Fig. 6B upper panel are sulfated E2 derivatives.

Homing of SO$_3$-GlcUA-E$_2$ in vivo in the mouse To gain insight into SO$_3$-GlcUA-3-E$_2$ function, we performed a homing assay in the mouse. $[^{3}H]$-E$_2$ was injected intravenously into female mice and 3 hours later radioactivity in representative organs was determined. Significant radioactivity was recovered in uterus and liver (Fig. S7), consistent with the idea that E$_2$ homes to organs where estrogen receptors (ERs) are expressed at high levels (55). When $[^{35}S]$-labeled or $[^{3}H]$-labeled SO$_3$-GlcUA-3-E$_2$ was used in this assay, SO$_3$-GlcUA-3-E$_2$ was recovered largely from urine, from digested materials in small intestine and from serum (Fig. S7), suggesting that SO$_3$-GlcUA-E$_2$ is excreted from the body through the entero-hepatic pathway.

SO$_3$-GlcUA-3-E$_2$ activity in cells expressing estrogen receptors (ERs) SO$_3$-GlcUA-3-E$_2$ activity relevant to ERs was verified by luciferase-based promoter assays employing an estrogen-responsive element (ERE) (Fig. 7). Luciferase and ER vectors were co-transfected into ER-negative HEK293T cells, and cells were then treated with E$_2$, GlcUA-3-E$_2$, SO$_3$-3-E$_2$ or SO$_3$-GlcUA-3-E$_2$. Cells co-transfected with ER and luciferase reporter constructs showed luciferase activity when treated with 10^{-8}M E$_2$. By contrast, neither GlcUA-3-E$_2$ nor SO$_3$-GlcUA-3-E$_2$ promoted this activity at concentrations as high as 10^{-6}M, indicating that they are relatively poor activators of an ERE. These results strongly suggest that Chst10 down-regulates E$_2$ activity in vivo.

Discussion

In this study we report that Chst10, the enzyme responsible for biosynthesis of the carbohydrate antigen HNK-1, is capable of transferring sulfate to glucuronidated steroid hormones. This finding emerged from analysis of Chst10-deficient mice, which showed subfertility in both males and females. We hypothesized that Chst10 likely transfers sulfate to glucuronidated steroids, as the enzyme transfers sulfate to glucuronidated N-acetyl lactosamines in glycoproteins and glycolipids (18,33,44,56). Enzymatic activity of Chst10 to GlcUA-steroids was confirmed by in vitro activity assays using structure-defined steroids as acceptor substrates (Fig. 3 and Fig. S4). Structures of products or sulfated steroid hormones were validated by mass spectrometry (Fig. 4 and Fig. S5). The biosynthesis of sulfated and glucuronidated steroid hormones in Chst10$^{+/+}$ but not in Chst10$^{-/-}$ mice was demonstrated using radioactive acceptor substrates or inorganic SO$_3$ intravenously injected into mice (Fig. 6). Glucuronyltransferases associated with ER membranes transfer GlcUA to various substrates including steroids (50,57). We speculate that steroids enter the luminal side of the ER, where they are glucuronidated by glucuronyltransferase(s) and further sulfated by Chst10 in the Golgi.

While the existence of SO$_3$-3-GlcUA-17-E$_2$ has been known (51), the structure of SO$_3$-GlcUA-3-E$_2$ presented here has not been reported previously. Because these two molecules are isomers and difficult to separate to each other (Fig. S6), they could have been missed by biochemical analysis such as mass spectrometry or HPLC. In this study, we hypothesized that GlcUA-3-E$_2$ is sulfated by Chst10 to produce SO$_3$-GlcUA-3-E$_2$. Support for this hypothesis is shown in Figs. 3-6, and Fig. S6. Genetic deletion of Chst10 reported here thus revealed a new structure, SO$_3$-GlcUA-3-E$_2$, which was heretofore unknown. Genetic deletion of Chst10 reported here thus revealed a new structure, SO$_3$-GlcUA-3-E$_2$, which was heretofore unknown.

Glucuronidation of steroids is essential for maintaining hormonal balance and as a means to detoxify a wide variety of heterocyclic compounds. Glucuronidated
steroids are easily transported around the body and are secreted into the urine. Sulfation of glucuronidated steroids may facilitate this process by promoting efficient elimination of products from the body into urine and feces, an activity suggested by homing assay in this study (Fig. S7). Loss of Chst10 in mutant mice apparently blocked down-regulation of steroids in vivo, resulting in up-regulation of hormonally active steroid hormones in female mice (Fig. 2). Steroid hormones are sulfated by Sult1E1 (45,46). Sult1E1 null females (47,48) exhibited phenotypes similar to those shown in this study of Chst10. In Sult1E1 null mice, small litter size was attributed to a failure in placental development (47) and to ovulation defects resulting from a hormonal irregularity (48). Chst10 null mice also showed hormonal irregularities (Fig. S3). However, we have not determined the mechanism underlying the embryonic lethality seen in Chst10 nulls.

A mutant mouse line in which regions upstream of the Chst10 first exon were knocked out has been previously reported by others (58). These mice were viable and fertile, although the nulls showed impaired basal synaptic transmission and long-term memory deficits. It is possible that our targeting construct (Fig. 1A) produced a fragment of Chst10 protein translated from exons 1-4, which may function as a dominant negative for other sulfotransferases and thus give rise to stronger phenotypes than previously reported Chst10 nulls (58).

Chst10 is ubiquitously expressed in various tissues (44). Therefore Chst10 protein may function in tissues other than reproductive organs. We observed that intravenously injected E2 was not modified in Chst10−/− mice (Fig. 6), suggesting that activities of conjugation enzymes other than Chst10 are also suppressed in Chst10 nulls. Future studies should define whether steroid-modifying enzymes interact with one another or are regulated together.

HNK-1 antigen is highly expressed in neuronal cells (Fig. 1C, Fig. S1A) (32,33,36). It is worth noting that sulfated steroids bind to vomeronasal receptors and function as pheromones in mouse (59) and in fish (60). Pheromones are sex hormones but their function is linked to the nervous systems. Expression of a SO3-GlcUA-terminal structure as an HNK-1 antigen in neurons together with the existence of a similar structural modification of sex steroid hormones suggests that this modification may have an unidentified endocrine function linking steroid hormones to neuronal activation in mammals. Further studies are required to address this intriguing possibility.

Acknowledgements
The authors thank Drs. Xiakun Zhang and Lin Bingzhen of Sanford-Burnham Medical Research Institute for providing us with expression vectors for the estrogen receptor and Dr. Elise Lamar for editing the manuscript. This work was supported by NIH grant P01CA071932 (to MNF and MF) and EY014620 (to TOA), CA33895 (to MF), and Japanese ministry of education grant 24592530 (to AS).

References

Table 1. Kinetic properties of Chst10 activity toward three acceptors: GlcUA-3-DHEA, GlcUA-3-E₂, and GlcUA-LacNAc.

<table>
<thead>
<tr>
<th>Acceptor</th>
<th>Km (mM)± S. E.</th>
<th>Vmax (pmoles/min/mg Chst10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlcUA-3-DHEA</td>
<td>0.210±0.035</td>
<td>3194±157</td>
</tr>
<tr>
<td>GlcUA-3-E₂</td>
<td>0.321±0.081</td>
<td>3858±329</td>
</tr>
<tr>
<td>GlcUA-3-LacNAc</td>
<td>1.518±0.464</td>
<td>1723±331</td>
</tr>
</tbody>
</table>
Figure Legends

FIGURE 1. Targeting of the Chst10 gene. A, Targeting of the Chst10 gene. A, Chst10 was ablated by replacing exon 5 encoding the catalytic domain with PGK-Neo (Neo). XbaI-BamHI (5.5 kb) and BamHI-PstI (2.0 kb) fragments were subcloned into the targeting vector for homologous recombination. B, Southern hybridization. Genomic DNA was digested with EcoRI, and DNA fragments separated on agarose gels were transferred to a membrane, which was hybridized to a labeled-probe denoted by a black bar in A. C, Immunostaining of the mouse hippocampus by an anti-HNK-1 antibody. HNK-1 antigen is highly expressed in hippocampus of wild-type but not in Chst10-deficient mouse brain, confirming that Chst10 is the sole sulfotransferase that generates HNK-1 antigen. Nuclei are stained with Hoechst 33342 (blue).

FIGURE 2. Abnormalities in uteri from Chst10-deficient mutant female mice. A, Chst10−/− mice show enlarged uteri compared to wild-type mice based on histology and organ weight. Note extensive growth of endometrial epithelial layers in hematoxylin-eosin-stained uterine sections from Chst10+/+ compared to Chst10−/− females. B, Average weight of uteri from Chst10+/+ (n=10) and Chst10−/− (n=4). C, Estrogen levels in sera from Chst10+/+ (n=10) and Chst10−/− (n=3) females at the pro-estrus stage. In B and C, Student’s t-test was used for statistical analysis.

FIGURE 3. Chst10 sulfate-transferring activity toward various steroid hormones. [35S]-PAPS was incubated with each steroid plus Chst10, and the yield of sulfated product was determined. Structures of each substrate are shown in supplemental Fig. S4. Each measurement was done as duplicate. Error bars represent standard deviation.

FIGURE 4. HPLC and mass spectrometry analysis of sulfated GlcUA-E2 in vitro. A, GlcUA-3-E2 was incubated with Chst10 and [35S]-PAPS, and radioactive product was analyzed by HPLC using program 1 (see Methods). A prominent peak at 43 min matches the elution position of SO3-GlcUA-E2 (Fig. 4A, lower panel). A large peak in front of peak P is likely unmodified E2, as authentic E2 elutes at this position under the HPLC conditions used in this experiment (data not shown). B, The product was isolated and subjected to nanoESI-MS and MS/MS analysis. SO3-GlcUA-E2 afforded the expected [M-H]- molecular ions at m/z 527. This ion was further subjected to MS/MS and the major product ions observed were assigned as annotated.

FIGURE 5. Kinetics analysis of Chst10. A, Chst10 activity dependency on acceptor-concentration of GlcUA-3-DHEA, GlcUA-3-E2, and GlcUA-LacNAc substrates. B, Michaelis-Menten plots of GlcUA-3-DHEA (top), GlcUA-3-E2 (middle), and GlcUA-LacNAc (bottom).

FIGURE 6. Conversion of E2 in vivo in the mouse circulation. A, [3H]-E2 was injected intravenously into Chst10+/+ (upper panel) or Chst10−/− (lower panel) female mice. [3H]-E2 products were analyzed by HPLC using program 2 (see Methods). Each peak at 42 min and 46 min corresponds to E2 and SO3-GlcUA-E2, respectively. B, [35S]-SO4 was injected intravenously into Chst10+/+ (upper panel) or Chst10−/− (lower panel) female mice. [35S]-products were analyzed by HPLC. C, Digestion of [3H]-E2 products by β-glucuronidase and arylsulfatase. Panels a-d show HPLC profiles of undigested [3H]-E2 (a), β-glucuronidase-digested products (b), arylsulfatase-digested products (c), and β-glucuronidase- and arylsulfatase-digested products (d). Arrows at 46 min depict SO3-GlcUA-E2.

FIGURE 7. ERE promoter assay using E2, GlcUA-E2, SO3-3-E2, and SO3-GlcUA-E2. Luciferase activity was measured in HEK293T cells co-transfected with a gene encoding the ER plus an ERE-luciferase reporter gene and then treated with E2, GlcUA-E2, SO3-3-E2, or SO3-GlcUA-E2 at the indicated concentrations.
Fig. 2
Fig. 3

Sulfotransferase activity (pmols/min/mg Chst10)

- GlcUA-LacNAc
- GlcUA-3-E2
- GlcUA-17-E2
- GlcUA-3,17-E2
- GlcUA-3-E3
- GlcUA-17-E3
- GlcUA-16α-E3
- GlcUA-3-E1
- GlcUA-17-E1
- GlcUA-3-Preg
- GlcUA-17-Preg
- GlcUA-3-DHEA
- GlcUA-3-Etio
- GlcUA-3-Andr
- no acceptor
Fig. 4
Fig. 5
Fig. 6
Fig. 7

The graph shows the luminescence response to different concentrations of E_2 and its derivatives. The y-axis represents luminescence, while the x-axis shows the E_2 concentration in logarithmic scale ($\log[E_2]$, M).

- **E_2** (pink line)
- **GlcUA-3-E_2** (blue line)
- **SO$_3$-3-E_2** (green line)
- **SO$_3$-GlcUA-3-E_2** (red line)

The graph illustrates the varying luminescence levels across different concentrations for each derivative.
In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse

J. Biol. Chem. published online December 26, 2012

Access the most updated version of this article at doi: 10.1074/jbc.M112.433474

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2012/12/26/M112.433474.DC1

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/early/2012/12/26/jbc.M112.433474.full.html#ref-list-1