MicroRNA-31 activates the Ras pathway and functions as an oncogenic microRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)*

Defang Sun*, Feng Yu*, Yutao Ma, Ran Zhao, Xi Chen, Jie Zhu, Chen-Yu Zhang, Jiangning Chen†, Junfeng Zhang†

From State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China

* Defang Sun and Feng Yu Contributed equally to this work.
†To whom correspondence should be addressed: State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China; Tel.: 0086-25-83686672, Fax: 0086-25-83324605; Email: jnchen@nju.edu.cn (J. Chen), jfzhang@nju.edu.cn (J. Zhang)

Key Words: Cancer; Colorectal cancer; MicroRNA; miR-31; RASA1; Ras signaling pathway; Proliferation

Background: MicroRNAs are important for colorectal cancer signal transduction.
Results: miR-31 stimulates colorectal cancer cell proliferation and tumorigenesis by directly targeting RASA1.
Conclusion: miR-31 activates the Ras pathway and functions as an oncogenic microRNA in human colorectal cancer.
Significance: Learning how miRNAs participate in tumor signaling is crucial for understanding tumor signal transduction and for cancer therapy.

SUMMARY

MicroRNAs (miRNAs) are known to play a vital role in colorectal cancer. We found a widespread disruption in miRNA expression during colorectal tumorigenesis using microarray and qRT-PCR analysis; of the 161 miRNAs altered in colorectal cancer compared with normal adjacent tissue samples, miR-31 was the most significantly dysregulated. We identified candidate targets of miR-31 using bioinformatics approaches and validated RAS p21 GTPase activating protein 1 (RASA1) as a direct target. First, we found an inverse correlation between miR-31 and RASA1 protein levels in vivo. Second, in vitro evidence demonstrated that RASA1 expression was significantly decreased by treatment with a pre-miR-31-LV, whereas anti-miR-31-LV treatment increased RASA1 protein levels. Third, a luciferase reporter assay confirmed that miR-31 directly recognizes a specific location within the 3'-untranslated region of RASA1 transcripts. Furthermore, the biological consequences of miR-31 targeting RASA1 were examined by the cell proliferation assay in vitro and by the immunodeficient mouse xenograft tumor model in vivo. Taken together, our results demonstrate for the first time that miR-31 plays a significant role in activating the Ras signaling pathway through the inhibition of RASA1 translation, thereby improving colorectal cancer cell growth and stimulating tumorigenesis.

INTRODUCTION

Colorectal cancer (CRC) is the second most frequent cause of cancer-related death in the
United States and Europe (1). The development of CRC involves a multistep process with the accumulation of both genetic and epigenetic changes, including changes in the Ras pathway (2); however, other signaling pathways also appear to show accumulated alterations. This suggests that alternative factors contribute to CRC and that underlying levels of regulation exist to control the complex crosstalk among different signal transduction pathways.

Recently, the classical family of protein-coding genes recognized as tumor suppressors and oncogenes has been expanded to include a type of non-protein-coding RNA molecule known as microRNAs (miRNAs) (3). miRNAs play critical roles in the negative regulation of gene expression by base pairing to complementary sites on target messenger RNAs (mRNAs), thus causing a block in translation or triggering the degradation of the target miRNAs (4). miRNAs modulate various critical biological processes including cell proliferation, differentiation, apoptosis, tumorigenesis, and the immune response (5).

miRNAs have been studied most intensively in the field of oncological research, and emerging evidence suggests that the dysregulation of certain miRNAs that regulate the translation of oncogenes and tumor suppressors is involved in the pathogenesis of cancers (6). For instance, miR-17-92, which targets HIF-1α in lung tumors (7), and miR-21, which targets PTEN, TPM1, and PDCD4 in breast tumors (8), have been shown to be oncogenic, while miR-15a and miR-16, which target Bcl-2 in chronic lymphocytic leukemia (9), and the let-7 family, which target Ras in lung tumors (10), are tumor suppressive. In CRC, multiple miRNAs have aberrant expression patterns (11,12), and several have been shown to directly targeting oncogenes or tumor-suppressor genes. These include miR-21, which targets PDCD4 (13), miR-143, which targets KRAS (14), and miR-10b, which targets BCL2L11 (15).

Among the aberrantly expressed miRNAs, miR-31 has been reported to be up-regulated in CRC compared with non-tumoral mucosa samples, and stage IV tumors have a significant increase in miR-31 levels compared to stage II tumors (12). These results suggest a possible role for miR-31 in colorectal tumorigenesis.

However, the previously discovered roles of miR-31 in tumors are complicated, as its expression level is increased in head and neck cancer (16), hepatocellular carcinoma and squamous cell carcinoma (17) but significantly decreased in breast cancer (18), gastric cancer (19), prostate carcinoma (20), and urothelial carcinomas (21). Furthermore, target research also reveals that on certain occasions, miR-31 can behave as either a tumor suppressor or an oncogenic miRNA. For example, it targets LATS2 and PPP2R2A in lung cancer (22), thus acting as an oncogene, whereas it exerts a tumor-suppressor function in breast cancer by targeting RhoA (18). Therefore, it is necessary to investigate the roles of miR-31 in an extended range of different tumors, including CRC, for a clearer view of its dynamic behavior.

In this study, we performed miRNA microarray analyses and quantitative reverse transcription PCR (qRT-PCR) on colorectal tissues and normal adjacent tissues from patients to identify the key miRNAs involved in CRC tumorigenesis. In silico analysis revealed a key tumor suppressor gene, RAS p21 GTPase activating protein 1 (RASA1), as the target of miR-31. Direct inhibition of RASA1 translation by miR-31 and a potential role of miR-31 as an oncogene in colorectal tumorigenesis were experimentally validated.

EXPERIMENTAL PROCEDURES

Clinical samples and cell lines

Human CRC tissue and paired normal adjacent tissue (NAT) samples were obtained from patients who underwent radical resection at Tianjin Medical University Cancer Institute and
Hospital (Tianjin, P. R. China), Jinling Hospital (Nanjing, P. R. China) and Jiangsu Province Hospital of TCM (Nanjing, P. R. China) from 2008 to 2012. All samples were gathered according to the Institutional Review Board–approved protocol and the written informed consent from each patient. For each case, samples from the primary tumor and the corresponding normal colorectal mucosa were collected for comparison and were moved to liquid nitrogen within 30 minutes after operation. The patient information (gender, age, tumor site, and TNM stage) was obtained from surgical and pathological records from the hospitals and is shown in Supplementary Tables 1 and 2.

Caco-2 and HT-29 human colorectal adenocarcinoma cells were obtained from the Institute of Cell Biology at the Chinese Academy of Sciences (Shanghai, P. R. China). Caco-2 cells were cultured in Dulbecco’s modified essential medium with high glucose (Invitrogen, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) (Invitrogen) and 1% of the MEM non-essential amino acid 100X solution (Invitrogen), while HT-29 cells were cultured in RPMI-1640 medium (Invitrogen) supplemented with 10% FBS. All cells were cultured in a humidified incubator at 37°C with 5% CO2.

Total RNA isolation

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. RNA quality was determined by formaldehyde-agarose gel electrophoresis, and the concentration of RNA was determined using an Eppendorf BioPhotometer plus (Eppendorf AG, Hamburg, Germany).

Microarray and qRT-PCR assays

A microarray-based approach was used to identify miRNAs that were differentially expressed between human CRC tissue and NAT (23). The commercially available Mammalian miRNA Array containing 924 non-redundant microRNA probes, Service V 3.0, was purchased from CapitalBio Corporation (Beijing, China). Labeling, hybridization, washing, and scanning were performed according to the standard operating procedure provided by CapitalBio Corporation. Briefly, 25-50 μg of total RNA was purified using a MirVana® miRNA Isolation Kit (Ambion, Austin, TX, USA) to enrich the small RNA fraction. After the quality of small RNA was detected by formaldehyde-agarose gel electrophoresis, the RNAs were fluorescently labeled with CU-Cy3 using T4 RNA ligase. Hybridization and washing were then performed. Finally, array scanning was performed using a confocal LuxScan scanner (CapitalBio Corp). The scanning setting was adjusted to obtain an equal visualized intensity of U6 spots across arrays. Data analysis based on the TIFF images obtained was performed using SpotData Pro software (CapitalBio Corp).

Quantitative RT-PCR assays to investigate differences in the expression of the miRNAs of interest were performed on a 7300 Sequence Detection System (Applied Biosystems, Foster City, CA, USA) using EvaGreen Dye (Biotium, Hayward, CA, USA) (23). Briefly, 2 μl of total RNA (1 μg/μl) was reverse transcribed into cDNA using AMV reverse transcriptase (Takara Bio, Shiga, Japan) and a stem-loop RT primer (Invitrogen) under the following conditions: 16°C for 30 min, 42°C for 30 min, and 85°C for 5 min. The conditions for the PCR reaction were as follows: 95°C for 5 min, 95°C for 15 sec, and 60°C for 1 min, for 40 cycles. All reactions, including the no-template controls, were run in triplicate. After the reactions were complete, the C_T values were determined using fixed threshold settings. MiRNA expression was normalized to U6 snRNA expression in this study. The amount of miRNA to relative to the internal control U6 was calculated using the equation 2^{ΔC_T}, in which \(ΔC_T = C_{T\text{miRNA}} - C_{T\text{U6}}\).
Overexpression or knockdown of miR-31 by Lentivirus infection

Recombinant lentiviruses, respectively carrying pre-miR-31 precursor (pre-miR-31-LV), pre-non-coding sequence (pre-NC-LV), anti-miR-31 inhibitor (anti-miR-31-LV) or anti-non-coding sequence (anti-NC-LV), were obtained from GenePharma (Shanghai, China). Each lentivirus contained a GFP sequence so that the infection efficiency could be monitored by the fluorescence. They were individually added to HT-29 cells of 30% confluence in 6-well plates or 10-cm dishes at a MOI of 25 together with polybrene at a final concentration of 5 μg/ml. Cells were then harvested at 3 days post-infection for Western blotting, qRT-PCR, or animal experiments.

Plasmid constructs and luciferase reporter assay

The whole human RASA1 3’ untranslated region (3’-UTR) sequence (1032 bp), obtained from the GenBank database, was amplified by PCR using a human genomic DNA template made from Caco2 cells. The PCR products were inserted into the Spe I/Hind III sites of the p-MIR-reporter plasmid (Promega, Madison, WI, USA) using the following primers:

Forward: 5’CTGACTATGTCAGCCTTCGCCCCAGTG 3’

Reverse: 5’CTGAAGCTTGCAAGATA TCCCTTGGTTT TA TTTTA 3’

Efficient insertion was confirmed by sequencing.

For the luciferase reporter assays, the Caco2 cells were cultured on 6-well plates. For each well, cells at 70-80% confluence were transfected with 1 μg of firefly luciferase reporter plasmid, 0.5 μg of β-galactosidase expression vector (Promega), and 100 pmol of precursor oligonucleotides (pre-miR-31), antisense oligonucleotides (anti-miR-31), or scrambled negative control RNA (ncRNA) (each from Ambion, Grand Island, NY, USA) using Lipofectamine 2000 (Invitrogen, Grand Island, NY, US) according to the manufacturer’s instructions.

The cells were assayed using luciferase assay kits (Promega) at 24 hours post-transfection. The β-galactosidase plasmid was co-transfected and used for normalization. Each transfection experiment was performed in triplicate.

Protein extraction and Western blotting

The HT-29 cells on 6-well plates were rinsed twice with cold PBS and lysed in RIPA Lysis Buffer (Sunshine Technology, Nanjing, China) containing protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA) at 1:100 dilution on ice for 30 min. Tissue samples were frozen solid using liquid nitrogen in a mortar, ground vigorously and rapidly, and lysed in RIPA Lysis Buffer containing protease inhibitor cocktail at 1:100 dilution on ice for 30 min. Insoluble components of cell lysates or tissue homogenates were removed by centrifugation (4°C, 12000 g, 10 min), and protein concentrations were measured using a Pierce BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). The RASA1 protein level was quantified by Western blotting analysis of 100 μg of cell extract or tissue extract using the antibody against RASA1 (B4F8) (1:100 or 1:200 dilution, mouse monoclonal antibody sc-63, Santa Cruz, CA, USA). Erk1/2 protein or phospho-Erk1/2 protein levels were quantified by Western blotting analysis of 100 μg of cell extract using the antibodies against MAPK (Erk1/2) (p44/p42) (1:1000 dilution, rabbit polyclonal antibody #4695, Cell Signaling, Boston, MA, USA) or against phospho-Erk1/2 (T202/Y204) (1:800 dilution, rabbit polyclonal antibody BS5016, Bioworld Technology, St. Louis, MN, USA). The RGS4 protein was examined by Western blotting analysis of 100 μg of cell extract or 300/450 μg of tissue extract using the anti-RGS4 (C-17) polyclonal antibody.
The LATS2 protein was detected by Western blotting analysis of 100/300 μg of cell extract or tissue extract using the anti-LATS2 monoclonal antibody (1:1000 dilution, Proteintech Group #20276-1-AP, Chicago, USA). Equal loading was confirmed by blotting using the HRP conjugated anti-glyceraldehyde-3-phosphate dehydrogenase antibody (1:10000 dilution, KangChen Bio-tech, Shanghai, P. R. China). Immunocomplexes were visualized using an Enhanced Chemiluminescence kit (Cell Signaling Technology) according to the manufacturer’s protocol.

Active Ras pull-down assay

An active Ras pull-down assay was performed with an active Ras pull-down and detection kit (Thermo Scientific, Rockford, IL, USA) following the manufacturer’s instructions. Briefly, HT-29 cells were seeded onto 10-cm dishes at an amount of 2 × 10⁶ cells each dish. After incubated for 24 hours, the cells were infected respectively with pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV, then lysed in 500 μl of lysis buffer containing protease inhibitors at 3 days after infection. Cell lysate was spun at 16,000 g at 4 °C for 15 min, and the supernatant (total lysate) was used in a protein assay using Pierce BCA Protein Assay. A 1 mg total lysate sample was then mixed with 80 μg of GST–Raf1-RBD bound to glutathione agarose beads and incubated at 4 °C for 1 hour with gentle rocking for affinity precipitation of Ras-GTP. After the beads were washed twice, 50 μl of reducing sample buffer was added to each pull-down reaction. The samples were incubated at room temperature for 2 min before analysis by Western blotting with the anti-Ras antibody (1:200 dilution, Thermo Scientific, included in the Ras pull-down and detection kit). The total Ras protein level in the lysates was quantified by Western blotting analysis using an anti-Ras antibody (1:1000 dilution, Biosciences, San Jose, CA, USA).

Cell proliferation assay

HT-29 cells were seeded onto 6-well plate at an amount of 2 ×10⁵ cells per well. After incubating for 24 hours, the cells were infected respectively with pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV. At 60 hours post-infection, the cells were harvested and the viable cells were seeded at a density of 6 ×10³ each well onto 96-well plates. The number of cells was determined using a Cell Counting Kit-8 (CCK-8) (Dojindo Molecular Technologies, Inc., Kumamoto, Japan) at 12, 24, 36, 48, 60 and 72 hours. The absorbance at 450 nm, representing the relative viable cell number, was measured at each time point.

The growth of HT-29 cells with miR-31 overexpression or knockdown was also assessed by the proliferation biomarkers Ki-67 and PCNA. The primers used in qRT-PCR for detection of Ki-67 and PCNA were as follows:

Ki-67:

Forward: 5'-ATGGATAAGCGCACGGATGAA T-3’

Reverse: 5'-TCGGGCTGCGAGATAGTC-3’

PCNA:

Forward: 5'-CAGGGCTCCATCCTCAAGAA-3’

Reverse: 5'-TCTTCATTGCCGGCCGCATT-3’

Immunodeficient mouse xenograft tumor model

All animal experiments were performed according to the regulations of P.R.China and Nanjing University, and approved by the animal care and use committee of Nanjing University.

HT-29 cells, which were respectively infected by pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV, were harvested by a brief trypsinization (0.05% trypsin/0.02% EDTA in Ca²⁺/Mg²⁺-free PBS) then washed twice in PBS and re-suspended in medium without serum to count the number of viable
cells by Trypan Blue staining using a hemocytometer.

Athymic BALB/c male nude (nu/nu) mice, approximately 4 weeks old on arrival, were obtained from the Model Animal Research Center of Nanjing University (Nanjing, China) and maintained under pathogen-limited conditions. They were equally divided into 4 groups (7 mice/group), and injected subcutaneously with 1×10^7 viable tumor cells infected respectively by pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV 3 days later.

After s.c. implantation of cells, animals were observed daily for tumor growth and s.c. tumors were measured on 8 days, 12 days, 15 days, 18 days, 21 days. Each tumor volume was calculated according to the following equation:

$$V (\text{mm}) = D^2 (\text{mm}^2) \times L (\text{mm})/2,$$

where D and L are the smallest and the largest perpendicular tumor diameters respectively. The mice were sacrificed and photographed at 21 days post-implantation; then xenograft tumors were excised, also photographed, and weighted.

Statistical analysis

All experiments were performed in triplicate, and all results are presented as the means ± SD. Hierarchical Cluster analysis was performed using Gene Cluster software (Stanford University). Differences/correlations between groups were calculated using Student’s t-test. P<0.05 was defined as statistical significance. Significance analysis of microarrays (SAM) was carried out. To exclude extreme outliers, the miRNAs with expression lower than a threshold ($C_T \text{miRNA} - C_T \text{U6} > 15$, mean fold change > 1.5 or < 0.67) were eliminated.

RESULTS

Aberrant miRNA expression in colorectal cancer

To identify aberrantly expressed miRNAs, we screened the miRNA expression levels in 12 colorectal cancer (CRC) samples and 9 non-tumor normal adjacent tissues (NAT) samples through a microarray-based approach (for the patient information, refer to Supplementary Table 1). The miRNAs with significantly different expression in the CRC samples compared to the NAT samples were identified by statistical analysis including SAM and Student’s t-test. The miRNAs with an expression fold change greater than 1.5 or less than 0.67 were identified. Based on these principles, SAM analysis generated a list of 87 miRNAs that were differentially expressed in the CRC samples compared to the NAT samples (Table 1). Among them, miR-31 was the most significantly up-regulated miRNA (6.13 fold up-regulation) in the CRC samples. miR-31 also had a relatively high score in SAM analysis (SAM score = 2.76, q value = 0.00, p value = 0.00). Notably, the set of differentially expressed miRNAs described here, which includes miR-31, miR-203, miR-142-5p, miR-143, and miR-145, is similar to those reported in previous papers (11,14,24,25). These studies, together with our results, firmly support the notion that miRNA expression profiling could generate a unique molecular signature for CRC. Differences in the miRNA expression pattern between the CRC and NAT samples were further revealed by unsupervised clustering analysis of CRC and NAT samples blinded to their clinical annotations. Hierarchical cluster analysis generated a dendrogram with two major branches in both columns (CRC vs. NAT) and rows (up-regulated vs. down-regulated genes) (Figure 1a).

To further validate the microarray data, we performed qRT-PCR to quantify the levels of certain differentially expressed miRNAs in 6 new pairs of CRC and NAT samples. The qRT-PCR analysis revealed the same trends in expression for these miRNAs (Figure 1b) (for patient information, refer to Sample 1 to Sample 6 in Supplementary Table 2).
Identification of RASA1 as a target of miR-31

It is well known that a single miRNA can affect multiple targets via distinct mechanisms (26). To study the mechanisms responsible for colorectal cancer tumorigenesis, we performed bioinformatics analyses to search for miR-31 target mRNAs. Targetscan (27), Miranda (28), and Pictar (29) were used independently to predict miR-31 targets. Because individual computer-aided algorithms generate a high number of false positives, we used a combination of these three approaches to provide a more accurate assessment of the miRNA targets.

Because the expression of miR-31 was dramatically increased in several CRC tissue samples and cell lines, it is considered an important miRNA for colorectal tumor formation (30,31). Therefore, we focused our efforts on the identification of candidate tumor suppressor genes regulated by miR-31 and selected several candidates, including RASA1, LATS2, and RGS4.

When studying LATS2 as a target of miR-31 in CRC, we found its protein level in both NAT and CRC to be too low to be detected by Western blotting (Supplementary Figure 1a), even when loading up to 300 μg of tissue lysate (Supplementary Figure 1b), which is consistent with previous reports that LATS2 mRNA and protein levels are extremely low in colon (32,33). Meanwhile, we also found RGS4 protein level showed no significant difference between CRC and NAT samples (overall fold change -7.54%, p=0.105) (Supplementary Figure 1c). Most importantly, though miR-31 in HT-29 cells was significantly over-expressed or down-regulated by lentivirus infection (Figure 3a), RGS4 protein level detected by Western blotting had no significant difference (Supplementary Figure 1d).

Consequently, we focused on RASA1 as the target of miR-31. RASA1 has long been considered a major member of the RAS pathway (34,35) and also an important tumor suppressor (36). The free energy value of the hybrid between RASA1 3’ UTR and miR-31 was -14.75 kcal/mol, which is well within the range of real miRNA-target pairs. Moreover, there was perfect base pairing between the “seeds” (the core sequence that encompasses the first 2-8 bases of the mature miRNA) and cognate targets, and the “seeds” were conserved among species (Figure 2a).

RASA1 was deduced to be a miR-31 target by not only computational prediction but also by validating an inverse correlation between miR-31 and the RASA1 protein level during colorectal tumorigenesis. The microarray analysis identified miR-31 as one of the most significantly up-regulated miRNAs in colorectal tumorigenesis (fold change = 6.13, p value = 0.00). Consistently, in the qRT-PCR reaction performed on another set of 12 control-matched CRC samples (for patient information, refer to Supplementary Table 2), the overall miR-31 level was up-regulated by 7.56-fold (p value =0.00) (Figure 2b). In agreement with this observation, the overall RASA1 protein level in the CRC samples was 60.4% lower than that in NAT samples from the same patients (p value =0.00) (Figure 2c).

The correlation between miR-31 and RASA1 was further examined by evaluating the expression of RASA1 in human colorectal adenocarcinoma HT-29 cells after overexpression or knockdown of miR-31 (Figure 3). In these experiments, miR-31 overexpression was achieved by infecting the cells with pre-miR-31-LV whereas miR-31 knockdown was achieved by infecting the cells with anti-miR-31-LV. Control experiments were performed in the same manner but used cells infected with pre-NC-LV or anti-NC-LV. The efficiency of infection at 72 hours screened by GFP (green fluorescent protein) signal was higher than 80% (data not shown), while the
efficiency of infection was also measured by qRT-PCR. As shown in Figure 3a, miR-31 level was increased by 10.5 folds after cells were infected by pre-miR-31-LV compared with the pre-NC-LV whereas miR-31 level was reduced by 68.5% after cells were infected by the anti-miR-31-LV compared with the anti-NC-LV. The expression of RASA1 was significantly decreased in miR-31 over-expressed cells or enhanced in miR-31 knock-down cells (Figure 3b). These results suggest that miR-31 negatively regulates RASA1.

Recently, we became convinced that miRNAs sometimes decrease the levels of a specific target mRNA by affecting its stability (37). To determine how miR-31 influences RASA1, we infected HT-29 cells with pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV, and then evaluated the RASA1 transcript levels 72 hours after infection. In contrast with the decrease observed in the RASA1 protein level after pre-miR-31-LV infection, the RASA1 mRNA level was not repressed by overexpression of miR-31, nor stimulated by knockdown of miR-31 (Figure 3c). These results suggest that miR-31 regulates RASA1 expression via a post-transcriptional mechanism only, rather than by affecting its mRNA stability (“mRNA decay”) (38).

Luciferase binding assays were conducted using a pMIR-REPORT™ luciferase plasmid to determine whether miR-31 suppressed RASA1 through direct binding to its 3'-UTR. Wild-type RASA1 3'-UTRs and mutants whose seed sequence TCTTGCC was replaced by AGAACGG were independently cloned into pMIR-REPORT, which contains a firefly luciferase gene, and transfected into Caco2 cells along with a control plasmid (β-gal). As expected, the overexpression of miR-31 resulted in a 35% reduction of firefly luciferase reporter activity (normalized to β-gal activity) compared with the cell transfected with pre-ncRNA, whereas inhibition of miR-31 resulted in a 14% increase in reporter activity compared with the control cells (Figure 3d). Mutation of the miR-31–binding site abolished these effects. These results unequivocally demonstrate that miR-31 directly recognizes the 3’-UTR of the RASA1 transcript. Thus, up-regulation of miR-31 enhances the suppression of RASA1 and induces tumorigenesis, supporting an oncogenic role for miR-31.

Role of miR-31 in tumorigenesis by targeting the Ras pathway

To test the downstream biological consequences of miR-31-driven inhibition of RASA1 expression, HT-29 cells were infected with pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV, and the cell proliferation rate was determined using a CCK-8 assay. As shown in Figure 4a, HT-29 cells treated with pre-miR-31-LV had a significant increase in cell proliferation rate compared with cells infected with pre-NC-LV. By contrast, knockdown of miR-31 resulted in a decrease in the cell viability. These results indicate that miR-31, which targets RASA1, plays a role in the Ras pathway and accelerates cell proliferation. In support of this idea, the cells infected with pre-miR-31-LV showed an increase in cell proliferation at 72 hours, as indicated by the induction of the proliferation biomarkers Ki-67 and PCNA (proliferation cell nuclear antigen), whereas knockdown of miR-31 had the opposite effect on cell proliferation (Figures 4b).

We next analyzed the molecular biological consequences of miR-31-driven inhibition of RASA1 gene expression in HT-29 cells. Previous reports have shown that the inhibition of RASA1 can trigger the Ras-MAPK signaling pathway by activating the GTPase activity of Ras, consequently increasing cell proliferation, suppressing apoptosis, deregulating the cell cycle and eventually resulting in a malignant transformation that leads to human CRC (39).
Therefore, Ras activation was then examined using an Active GTPase Pull-Down and Detection Kit at 72 hours after HT-29 cells were infected with pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV or anti-NC-LV. This assay relies on measurement of the level of the Ras-GTP form, which increases as the GTPase activity of Ras decreases. As shown in Figure 4c, the level of GTP-bound Ras was significantly increased by the treatment of pre-miR-31-LV and inhibited by anti-miR-31-LV; there was no significant change in the total Ras. We next examined ERK1/2 phosphorylation, which is a characteristic downstream signature of Ras pathway activation. At 72 hours after overexpression or knockdown of miR-31, the ratio of phospho-ERK1/2 to total ERK1/2 was significantly increased by treatment with pre-miR-31-LV and significantly inhibited by treatment with anti-miR-31-LV (Figure 4d). These results suggest that the inhibition of RASA1 expression by miR-31 increases GTP binding by Ras, thus activating the Ras pathway and inducing the constitutive phosphorylation of ERK1/2. Therefore, modulation of the RASA1 protein level by miR-31 partially explains why the down-regulation of miR-31 promotes cell proliferation.

To further examine in vivo biological role of miR-31, we conducted the experiment of tumorigenicity in nude mice using HT-29 cells, in which miR-31 was successfully over-expressed or knock-down by lentivirus infection. After 4 groups of nude mice (7 mice/group) were subcutaneously implanted with the infected tumor cells, we observed that the size of tumors in the pre-miR-31-LV group was significantly larger than those in the pre-NC-LV group at each time point, whereas the size of tumors in the anti-miR-31-LV group had an opposite trend (Figure 5a). The excised tumors from the pre-miR-31-LV group were 62.5% heavier in weight than those from the pre-NC-LV group at 21 days post-implantation, while the tumors from the anti-miR-31-LV group weighted 30.8% less than those from the anti-NC-LV group (Figure 5b). As shown in Figure 5c and d, the tumor size in the pre-miR-31-LV group is much larger than that of the control whereas the tumor size in the anti-miR-31-LV group had an opposite trend. These results are consistent with that of the cell proliferation assay, which firmly validates the role of miR-31 in tumorigensis by targeting the Ras pathway.

As a conclusion, in studying the potential mechanisms of miRNA action in colorectal cancer, we identified RASA1 as a target of miR-31 by bioinformatics analysis and binding assays, confirming that it is indeed down-regulated by miR-31. A biological association between miR-31 and RASA1 was uncovered. We confirmed that as a result of RASA1 suppression by miR-31, there were increases in GTP-bound Ras, phosphorylation of ERK1/2, levels of pro-proliferative factors including PCNA and Ki-67, and eventually cell proliferation, which led to tumorigensis.

DISCUSSION

The aberrant expression of miR-31, which targets RASA1, exerts profound influence into the cell signaling network in colorectal cancer, since RASA1 and its down-stream proteins play essential roles in the control of cellular growth and differentiation (35). The Ras protein cycles between the inactive GDP-bound and the active GTP-bound state, and the GTPase activity of normal Ras p21 is stimulated by RASA1 (40). RASA1 acts as a suppressor of RAS function by enhancing the weak intrinsic GTPase activity of RAS proteins (41), thus resulting in an increase in the inactive GDP-bound form of RAS, thereby leading to aberrant intracellular signaling through the RAF–MEK–ERK and PI3K–Akt pathways (35,36,42). Because the RAS–RAF–MEK–ERK pathway regulates
normal cell cycle control, down-regulation of RASA1 causes an increase in cell proliferation. Aberrant signaling through the PI3K–Akt pathway activates a cascade of anti-apoptotic and pro-survival signals (43). In addition, RASA1 is suggested to play a probable role in angiogenesis and tumor progression (44). These down-stream effects further support the hypotheses that miR-31 functions as an oncogene in colorectal cancer and that up-regulation of miR-31 has the potential to drive tumor progression (Figure 6).

That up to 54% of the total reported CRC cases and cell lines lack mutations in the Ras protein (45-48) implies there are other mechanisms leading to increased cell proliferation in colorectal cancer. Because Ras can be activated by either an activating mutation in the Ras gene or by mutations in genes that signal through Ras and because our experiments were performed in the Ras GTPase-wild-type colon cancer cell line HT-29, the miR-31 regulation of wild-type Ras protein could be an important factor leading to the aberrant activation of Ras signaling in colorectal cancer. This discovery adds to our understanding of aberrant Ras signaling activation in CRC cases that contain wild-type Ras protein.

The cellular influence of miR-31 through the regulation of the gene expression network implies possible therapeutic prospects. Since the initial discovery of a functional RNA interference (RNAi) system in mammals, significant efforts have been devoted to the development of therapeutics that utilize this system (49). Researchers are now focused on linking miRNAs with their targets, and with RNAi theory, to form a new therapeutic system. It has recently been shown that a novel class of chemically engineered oligonucleotides, termed “antagomirs”, can effectively silence endogenous miRNAs in vivo (50). Other modified oligonucleotides, such as locked nucleic acid (LNA)-modified oligonucleotides, can inhibit endogenous miRNAs, leading to the up-regulation of the cognate target protein (31). These studies demonstrate powerful methods to silence miRNAs, which can be applied to abolish aberrant expression of miRNAs; such approaches have been already successfully applied in a murine liver cancer model and in chronic hepatitis C infection (51,52).

However, a word of caution should be raised about unwanted effects given the multiplicity of miRNA targets (47,53). This will be an important concern in the future when the goal is the restoration of the loss or gain of miRNA expression. The network of miRNAs and their targets is extremely complicated, as a single miRNA normally targets hundreds of targets, and a single protein can also be targeted by multiple miRNAs. Not until we have had a clearer overview of the complete network of miRNA-protein interactions can a wider variety of new therapies based on miRNAs be developed. A better understanding of the network of genes and cellular pathways regulated by miRNAs will undoubtedly enable us to understand tumor pathogenesis and therapy. To accomplish this, identifying the genome-wide targets of these miRNAs is essential.

ACKNOWLEDGEMENTS
We thank Dr. Ting Guo and Dr. Guangxin Zhou for their assistance in clinical tissue sample collection and pathological diagnosis. This work was supported by the National Science Fund for
Distinguished Young Scholars (81025019), the National Basic Research Program of China (2012CB517603), the National Natural Science Foundation of China (31070722, 31271013, 31071232, 31170751, 31200695, 51173076, 91129712 and 81102489), the Key Project of the Chinese Ministry of Education (108059), the Ph.D. Programs Foundation of the Ministry of Education of China (20100091120020), NSFC J1103512, the Fundamental Research Funds for the Central Universities.

REFERENCES

FOOTNOTES
The abbreviations used are the following: miRNA: microRNA; ncRNA: scrambled negative control RNA; NC-LV: lentivirus carrying non-coding sequence; CRC: colorectal cancer; NAT: normal adjacent tissue; UTR: untranslated region; and SAM: significance analysis of microarray; PBS: phosphate buffered saline; qRT-PCR: quantitative reverse transcription polymerase chain reaction; s.c.: subcutaneous.

TABLE LEGEND
Table 1: Aberrantly expressed miRNAs in colorectal cancer revealed by a microarray scan. SAM and t-test analysis generated a list of miRNAs that were differentially expressed in the CRC samples compared to the NAT samples.

FIGURE LEGENDS
Figure 1: Cluster analysis of aberrant miRNA expression in colorectal cancer according to a microarray scan and qRT-PCR validation. **P<0.05 verses controls. (a) Dendrogram generated by cluster analysis showing the separation of CRC from NAT samples based on miRNA profiling. (b) The miRNA expression ratios (CRC relative to NAT) from the qRT-PCR data versus the microarray data.

Figure 2: Hybridization of miR-31 and RASA1's 3' UTR and in vivo inverse correlation between miR-31 expression and RASA1 protein level. **P<0.05 verses controls. (a) Schematic depicting the conserved binding sites for miR-31. The seed-recognizing site is marked in red; all nucleotides in this region were completely conserved among several species. Hypothesized duplexes formed by the interaction of the binding sites of RASA1's 3' UTR (top) and miR-31 (bottom) are illustrated, and the predicted free energy of each hybrid was indicated. The short solid lines between the two chains represent hydrogen bonds between Adenine (A)-Thymine (T) pairs or Guanine (G)-Cytosine (C) pairs, while hollow lines represent G-U pairings. (b) Relative miR-31 expression in CRC and NAT samples. (c) Relative RASA1 protein expression in paired CRC and NAT samples.

Figure 3: In vitro Identification of RASA1 as a target of miR-31. **P<0.05 verses controls. pre-miR-31-LV: lentivirus carrying pre-miR-31 precursor; pre-NC-LV: lentivirus carrying pre-non-coding sequence; anti-miR-31-LV: lentivirus carrying anti-miR-31 inhibitor; pre-NC-LV: lentivirus carrying anti-non-coding sequence. (a) Relative miR-31 level after infection with pre-miR-31-LV or anti-miR-31-LV in HT-29 cells. One representative experiment of three is shown, with the average values of triplicate wells. (b) Relative RASA1 protein expression after infection with pre-miR-31-LV or anti-miR-31-LV in HT-29 cells. One representative experiment of three is shown. (c) Relative RASA1 mRNA levels after infection with pre-miR-31-LV or anti-miR-31-LV in HT-29 cells. One representative experiment of three is shown. (d) Relative luciferase activity after transfection with pre-miR-31 or anti-miR-31 in Caco-2 cells. One representative experiment of three is shown.

Figure 4: The biological effect of miR-31 in the Ras-MAPK pathway in HT-29 cells. **P<0.05 verses controls. (a) The growth-promoting function of miR-31. One representative experiment of three is shown. (b) PCNA and Ki-67 levels assessed by qRT-PCR after overexpression or knockdown of
miR-31. One representative experiment of three is shown. (c) The relative level of GTP-bound Ras (Ras-GTP) detected by Western blotting after overexpression or knockdown of miR-31. One representative experiment of three is shown. (d) Phospho-ERK1/2 and total ERK1/2 levels assessed by Western blotting analysis after overexpression or knockdown of miR-31. One representative experiment of three is shown.

Figure 5: The biological role of miR-31 in tumorigenesis by targeting the Ras pathway. **P<0.05** verses controls. (a) The volume of xenograft tumors in nude mouse derived from subcutaneous implantation of HT-29 cell. (n = 7 per group) (b) The relative tumor weight at 21 days post-implantation. (c) The photograph of the nude mice bearing xenograft tumors at 21 days post-implantation. (d) The photograph of the excised tumors at 21 days post-implantation.

Figure 6: An illustration of the entire signaling pathway described in this article, including the interaction between miR-31 and RASA1, along with a brief description of the portion of the Ras-MAPK pathway mentioned in the article.
<table>
<thead>
<tr>
<th>Name</th>
<th>Fold Change</th>
<th>Score (SAM)</th>
<th>q-value (t-test)</th>
<th>p-value (t-test)</th>
<th>Name</th>
<th>Fold Change</th>
<th>Score (SAM)</th>
<th>q-value (t-test)</th>
<th>p-value (t-test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Genes (Fold change≥1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Negative Genes (Fold change≤0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mir-31</td>
<td>6.134</td>
<td>2.762</td>
<td>0.000</td>
<td>0.01</td>
<td>miR-151</td>
<td>1.780</td>
<td>1.658</td>
<td>1.667</td>
<td>0.05</td>
</tr>
<tr>
<td>mir-203</td>
<td>6.001</td>
<td>3.038</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-27b</td>
<td>1.675</td>
<td>4.951</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>miR-224</td>
<td>5.401</td>
<td>2.168</td>
<td>0.000</td>
<td>0.01</td>
<td>miR-17-3p</td>
<td>1.632</td>
<td>2.095</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>miR-429</td>
<td>3.823</td>
<td>4.728</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-200a</td>
<td>1.632</td>
<td>4.382</td>
<td>0.000</td>
<td>0.00</td>
</tr>
<tr>
<td>miR-20b</td>
<td>3.674</td>
<td>2.970</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-186</td>
<td>1.617</td>
<td>1.260</td>
<td>3.226</td>
<td>0.02</td>
</tr>
<tr>
<td>miR-223</td>
<td>3.606</td>
<td>2.926</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-181d</td>
<td>1.595</td>
<td>1.107</td>
<td>4.384</td>
<td>0.04</td>
</tr>
<tr>
<td>miR-98</td>
<td>3.428</td>
<td>2.031</td>
<td>0.000</td>
<td>0.01</td>
<td>let-7d</td>
<td>1.594</td>
<td>1.344</td>
<td>2.951</td>
<td>0.16</td>
</tr>
<tr>
<td>miR-18a</td>
<td>3.427</td>
<td>3.522</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-362</td>
<td>1.536</td>
<td>1.293</td>
<td>2.951</td>
<td>0.03</td>
</tr>
<tr>
<td>miR-18b</td>
<td>3.266</td>
<td>2.294</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-193b</td>
<td>1.520</td>
<td>1.178</td>
<td>3.810</td>
<td>0.09</td>
</tr>
<tr>
<td>miR-142-5p</td>
<td>3.176</td>
<td>3.239</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-128a</td>
<td>1.506</td>
<td>1.304</td>
<td>2.951</td>
<td>0.02</td>
</tr>
<tr>
<td>miR-20a</td>
<td>3.053</td>
<td>4.497</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-30e-5p</td>
<td>1.505</td>
<td>1.383</td>
<td>2.951</td>
<td>0.02</td>
</tr>
<tr>
<td>miR-221</td>
<td>3.035</td>
<td>4.071</td>
<td>0.000</td>
<td>0.00</td>
<td>miR-16</td>
<td>1.503</td>
<td>2.474</td>
<td>0.000</td>
<td>0.03</td>
</tr>
<tr>
<td>miR-19b</td>
<td>2.812</td>
<td>7.800</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-17-5p</td>
<td>2.784</td>
<td>8.321</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-182</td>
<td>2.757</td>
<td>2.162</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-193a</td>
<td>2.738</td>
<td>2.229</td>
<td>0.000</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-335</td>
<td>2.714</td>
<td>2.448</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-34a</td>
<td>2.695</td>
<td>3.638</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-106a</td>
<td>2.531</td>
<td>7.451</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-19a</td>
<td>2.423</td>
<td>2.830</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-222</td>
<td>2.414</td>
<td>3.839</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-210</td>
<td>2.375</td>
<td>2.210</td>
<td>0.000</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-423</td>
<td>2.343</td>
<td>2.619</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-107</td>
<td>2.339</td>
<td>4.421</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-130b</td>
<td>2.291</td>
<td>2.524</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-146b</td>
<td>2.226</td>
<td>3.355</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-27a</td>
<td>2.174</td>
<td>8.055</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-15b</td>
<td>2.165</td>
<td>1.967</td>
<td>0.000</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-106b</td>
<td>2.149</td>
<td>3.591</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-146a</td>
<td>2.145</td>
<td>2.900</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-331</td>
<td>2.144</td>
<td>3.352</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>let-7e</td>
<td>2.118</td>
<td>1.500</td>
<td>2.308</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-128b</td>
<td>2.076</td>
<td>2.355</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-148b</td>
<td>2.069</td>
<td>1.293</td>
<td>2.951</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-368</td>
<td>2.053</td>
<td>1.679</td>
<td>1.667</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-15a</td>
<td>2.031</td>
<td>3.068</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-452</td>
<td>2.010</td>
<td>1.299</td>
<td>2.951</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-338</td>
<td>1.990</td>
<td>1.711</td>
<td>1.667</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-141</td>
<td>1.972</td>
<td>2.323</td>
<td>0.000</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-103</td>
<td>1.893</td>
<td>4.682</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-130a</td>
<td>1.861</td>
<td>1.578</td>
<td>2.308</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-101</td>
<td>1.816</td>
<td>2.122</td>
<td>0.000</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-93</td>
<td>1.816</td>
<td>3.079</td>
<td>0.000</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>miR-365</td>
<td>1.809</td>
<td>1.050</td>
<td>4.384</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3

(a) Graph showing relative miR-31 level with bars indicating statistical significance.

(b) Graph showing relative RASA1 level with bars indicating statistical significance.

(c) Graph showing relative RASA1 mRNA level with bars indicating statistical significance.

(d) Graph showing relative luciferase activity with bars indicating statistical significance.

Legend:
- pre-NC-LV
- pre-miR-31-LV
- anti-NC-LV
- anti-miR-31-LV

Significance levels:
- $p>0.1$
- $p>0.1$
- **statistical significance**
Figure 4

(a) CCK-8 Absorbance (OD) over time after infection (hours) for different conditions: pre-miR-31-LV, pre-NC-LV, anti-miR-31-LV, and anti-NC-LV. The graph shows a significant increase in absorbance over time for all conditions, with pre-miR-31-LV showing the highest absorbance.

(b) Relative mRNA level for Ki-67 and PCNA across different conditions: pre-miR-31-LV, anti-miR-31-LV, and pre-NC-LV, anti-NC-LV. The bar graph indicates a significant increase in mRNA level for both Ki-67 and PCNA in the pre-miR-31-LV group compared to the others.

(c) Western blot analysis showing the levels of Ras-GTP and total Ras. The blot images show a higher expression of Ras-GTP in the pre-miR-31-LV condition compared to the other groups.

(d) Western blot analysis showing the levels of p-ERK1/2 and total ERK1/2. The blot images indicate a significant decrease in p-ERK1/2 level in the anti-miR-31-LV group compared to the other conditions.
MicroRNA-31 activates the Ras pathway and functions as an oncogenic microRNA in human colorectal cancer by repressing RAS p21 GTPase activating protein 1 (RASA1)

Defang Sun, Feng Yu, Yutao Ma, Ran Zhao, Xi Chen, Jie Zhu, Chen-Yu Zhang, Jiangning Chen and Junfeng Zhang

J. Biol. Chem. published online January 15, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M112.367763

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2013/01/15/M112.367763.DC1