NIEMANN-PICK TYPE C2 DEFICIENCY IN HUMAN FIBROBLASTS CONFERS ROBUST AND SELECTIVE ACTIVATION OF PROSTAGLANDIN E2 BIOSYNTHESIS

Andrey Frolov 1*, Hua Dong 2, Min Jiang 3, Lihua Yang 1, Erik C. Cook 1, Rahul Matnani 1, Bruce D. Hammock 2, and Leslie J. Crofford 1

From the 1Division of Rheumatology, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, and 2Department of Entomology and UCD Cancer Center, University of California, Davis, CA 95616, and 3Division of Cardiovascular Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267

*Running title: NPC2 regulates PGE2 biosynthesis

To whom correspondence should be addressed: Andrey Frolov, Division of Rheumatology, Department of Internal Medicine, University of Kentucky, 900 S. Limestone Street, Wethington Health Sciences Building, Room 451, Lexington, KY 40536, Tel 859-323-4814; Fax 859-257-8258
E-mail: andrey.frolov@uky.edu

Key words: NPC2, activated fibroblasts, lipidomics, PGE2, arachidonic acid

Background. NPC2 is a protein that negatively regulates fibroblast activation.

Results. NPC2-null human fibroblasts display induction of cPLA2, COX-2, and mPGES-1 expression that may contribute to the observed robust and selective activation of PGE2 biosynthesis.

Conclusion. NPC2 may regulate the activated fibroblast inflammatory program through modulation of a cPLA2-dependent biosynthetic pathway.

Significance. NPC2 may represent a novel therapeutic tool for the treatment of inflammatory diseases.

SUMMARY

Activated fibroblasts, also known as myofibroblasts, are mediators of several major human pathologies including proliferative fibrotic disorders, invasive tumor growth, rheumatoid arthritis and atherosclerosis. We have previously identified Niemann-Pick Type C2 (NPC2) protein as a negative regulator of fibroblast activation. (Csepeggi, C. et al. 2011. J. Biol. Chem. 286:2078). Here we report that NPC2-deficiency leads to a dramatic up-regulation of the arachidonic acid (AA) metabolic pathway in human fibroblasts. The major enzymes in this pathway, cPLA2 type IVA, COX-2, and mPGES-1 were dramatically upregulated at both the transcriptional and translational levels. The specific phenotypic changes resulted in a more than 10-fold increase in the production and secretion of a key modulator of inflammation and immunity, prostaglandin E2 (PGE2). More importantly, AA metabolome profiling by liquid chromatography / tandem mass-spectrometry (LC/MS/MS) revealed the very specific nature of PGE2 up-regulation as the other analyzed AA metabolites derived from the COX-2, CYP450, 5/15-LOX, and non-enzymatic oxidative pathways were mostly down-regulated. Blocking activity of cPLA2 efficiently suppressed expression of inflammatory cytokines, IL-1β and IL-6, thereby identifying cPLA2 as an important regulator of the inflammatory program in NPC2-null cells. Altogether, these studies highlight NPC2 as a specific regulator of AA metabolism and inflammation that suggests potential for NPC2 protein or its related signaling in the treatment of inflammatory diseases characterized by the presence of activated fibroblasts.

Activated fibroblasts (AF) are increasingly recognized as key effector cells in the development of major human diseases, including cancer (1), tissue fibrosis (2,3), atherosclerosis (4), and rheumatoid arthritis (5,6). Originally termed as myofibroblasts due
to their expression of α-smooth muscle cell actin (α-SMA), AF have now been shown to represent a diverse cell population originating from multiple precursors whose functions extend from the governance of connective tissue remodeling (7) to regulation of the innate and adaptive immunity (8,9). With regards to the latter, AF are known to serve as nonprofessional antigen-presenting cells as well as to modulate immune inflammatory functions by influencing a variety of immune cells through either direct cell-cell contact or by secretion of soluble mediators that include PGE2 (10).

PGE2 production in AF can either be induced by exogenous stimuli such as thrombin (11) and TNF-α (12), or be constitutive in nature as reported for AF from lamina propria (13) and cancer-associated AF (14). In addition to its well-known role as a mediator of classical inflammation through its effects on endothelial cells and nociceptive pathways, PGE2 can serve as a potent regulator of innate immunity, suppressing neutrophil and macrophage functions. Indeed, PGE2 has been shown to suppress granulocyte functions (15), inhibit CCL5 expression in activated macrophages (16), reprogram classically activated macrophages (M1) into the alternatively activated macrophages (M2) (17), and to skew monocyte-to-macrophage differentiation toward M2 (18).

NPC2 protein was originally identified as a human epididymis 1 (HE1), which represents a major secretory protein of epididymal fluid (HE1) (19) and was later assigned to the second NPC disease locus, NPC2 (20). NPC2 gene encodes ubiquitous, 14-18 kDa protein whose precise physiologic function remains to be elucidated. NPC2 is highly conserved amongst species, has a strong amino acid sequence homology and striking structural resemblance to the dust mite allergen Der p2 (21) as well as the Toll-like receptor 4 (TLR4) adaptor protein MD-2 (22). Besides its strong presence in epididymal fluid, NPC2 is also found in large quantities in milk, bile, and plasma (21,23). Because NPC2 is able to bind unesterified cholesterol with a high affinity (24), it was thought to participate, along with NPC1, in regulation of intracellular cholesterol trafficking (25). However, this view has been recently challenged (26,27). Consistent with this notion, several very important physiologic processes such as hematopoiesis (28), immunity (29), and somatic cell plasticity (30,31) have been shown to be regulated by NPC2 independently of its cholesterol binding ability.

We have recently reported that human skin fibroblasts with a natural nonsense mutation in the NPC2 gene were characterized by constitutive receptor tyrosine kinase (RTK)/growth factor receptor (GFR) → ERK1/2 signaling (30). Constitutive RTK/GFR activation has also been observed in mature human adipocytes after silencing NPC2 gene expression by siRNA (31). This evidence points strongly toward RTK/GFR signaling module as a proximal target for the negative regulation by NPC2.

RTK/GFR → ERK1/2 signaling is one of the major driving forces for PGE2 production where it upregulates the expression and activity of the components in the cPLA2 → COX1/2 → mPGES-1 → PGE2 biosynthetic pathway (32-34). Furthermore, sustained ERK1/2 activation is required for maximal PGE2 production (35). We therefore reasoned that this pathway should be persistently activated in NPC2-null human fibroblasts that bear the AF phenotype (30).

In the present study we confirmed our hypothesis and demonstrated that NPC2-deficiency results in the upregulation of cPLA2 → COX1/2 → mPGES-1 biosynthetic axis at both the transcriptional and translational levels leading to a robust and specific increase in PGE2 production. Furthermore, inhibiting this biosynthetic pathway in NPC2-deficient cells through suppression of cPLA2 activity resulted in a significant reduction of pro-inflammatory cytokine expression.

Altogether, our studies begin to unveil a novel and important role for NPC2 in regulation of the PGE2 biosynthetic pathway which could modulate inflammation and innate immunity.

EXPERIMENTAL PROCEDURES

Materials - Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), glutamine, and penicillin/ streptomycin were obtained from Cellgro. cPLA2 specific inhibitor was purchased from Calbiochem (Cat# 525143).

Cell Lines – Normal skin fibroblasts (CRL-1474) were obtained from ATCC. NPC2-null human dermal fibroblasts were described elsewhere (36,37).

Stable overexpression of NPC2 gene in NPC2-deficient synovial fibroblasts (SF) isolated from patients with rheumatoid arthritis (RA-83) was achieved using the respective OmicsLink ORF cDNA lentiviral expression clone from GeneCopoeia. The human NPC2 pseudovirus containing lentiviral expression construct was produced by the Cincinnati Children’s Hospital.
Research Core Facility. RA-83 cells (30) were transduced with the above construct using Magnetofection Protocol from OZ Biosciences. Stable transducers were selected by culturing cells in the medium supplemented with 3.0 - 3.5 μg puromycin. The human RA-83 cell line stably overexpressing NPC2 gene was termed RA-83/NPC2.

DNA Microarray Assay - Total RNA was isolated from the normal and NPC2-null confluent cells that were cultured under the normal conditions (36,37) by using Qiagen RNasea kit following the manufacturer instructions. Samples were hybridized to the human U133A microarray (Affimetrix) by the Alvin Siteman Cancer Center’s Multiplexed Gene Analysis Core at the Washington University in St. Louis. Signal intensity ratios of > 2-fold (up-regulated) or < 2-fold (down-regulated) in at least two trials were considered regulated. Expression of the genes that were undetectable in the wild type cells and were only present in NPC2-null fibroblasts was termed “induced”.

Real-Time RT-PCR - Total RNA from unelicited normal and NPC2-deficient human skin fibroblasts was quantitatively converted into the single stranded cDNA by using High Capacity cDNA Archive Kit (Applied Biosystems). The particular genes were detected using the respective TaqMan Gene Expression Assays (Applied Biosystems) on the 7300 Real-Time RT-PCR system from the same manufacturer by relative quantitation employing β-glucuronidase (GUSB) as the reference gene.

Western Blot Analysis - It was performed as previously described (30). Briefly, human fibroblasts were cultured under normal conditions as previously described (36,37) and both the cytosolic and nuclear protein fractions were isolated from the ~ 90% confluent cells using nuclear/cytosol fractionation kit from BioVision according to the manufacturer instructions. cPLA2 and phospho-cPLA2 were respectively probed with the D49A7 rabbit monoclonal antibody (Cat# 5249) and rabbit polyclonal antibody (Ser505, Cat# 2831) from Cell Signaling. COX-2 was detected using rabbit polyclonal antibody from Cell Signaling (Cat# 4842). mPGES-1 was probed with the rabbit polyclonal antigen from Cayman (Cat# 160140). β-Tubulin was detected using mouse monoclonal antibody from Santa Cruz (Cat# sc-55529) and served as a loading control. That was followed by the incubation with the Alexa Fluor 680 goat anti-mouse (Molecular Probes) and IRDye800CW goat anti-rabbit (Rockland) affinity purified IgG. Protein bands were identified on the same membrane by simultaneous, dual-color scanning using the LI-COR Odyssey near-infrared imaging system.

LC/MS/MS Analysis of AA Metabolites - It was carried out as previously described in details (38). Briefly, an Agilent 1200 SL liquid chromatography series (Agilent Corporation, Palo Alto, CA) with an Agilent Eclipse Plus C18 2.1 x 150 mm, 1.8 μm column were used for the eicosanoid separation. The mobile phase A was water with 0.1% acetic acid while the mobile phase B was composed by acetonitrile/methanol (80/15, v/v) and 0.1% acetic acid. Gradient elution was performed at a flow rate of 250 μL/min. The injection volume was 10 μL and the samples were kept at 4 °C in the auto sampler. Analytes were detected by negative MRM mode using a 4000 QTrap tandem mass spectrometer (Applied Biosystems) equipped with an electrospray ionization source (Turbro V). Calibration curves were generated by 10 µL injections of seven standards containing each analyte, internal standard I (d4-PGE2, d11-14,15-DiHETE, d8-5-HETE, and d11-11(12)-EpETE), and internal standard II (1-cyclohexyl-dodecanoic acid urea, CUDA) for quantification purpose.

Confocal Immunofluorescence Microscopy – Cells grown under normal conditions on cover slips in 24-well cell tissue culture plate were fixed, permeabilized and stained with rabbit polyclonal cPLA2 (Cat# sc-438) antibodies from Santa Cruz as previously described (39,40). That was followed by the incubation with the Alexa Fluor 568 goat anti-rabbit antibody (Molecular Probes). Image acquisition was performed on Leica TCS SP5 inverted confocal system. PGE2 Detection by Enzyme Immunoassay (EIA) – PGE2 detection in the conditioned medium of SF from RA patient was performed using the PGE2 EIA kit - Monoclonal from Cayman Chemical following the manufacturer instructions.

RESULTS

NPC2-Deficiency Confers a Robust and Selective Activation of the PGE2 Biosynthetic Program – We have recently shown that NPC2-deficiency in human fibroblasts resulted in the sustained activation of RTK/GFR → ERK1/2 signaling (30). Given that this signaling pathway provides a driving force for activation of the cPLA2 → COX -1/2 → mPGES-1 → PGE2 biosynthetic axis (Fig.1) (32-34), we hypothesized that the latter should be significantly stimulated in those cells. In order to confirm our hypothesis, we first probed by DNA microarray
analysis the expression of the genes that regulate prostaglandin biosynthesis and signaling (Fig. 1 & Table 1). These data demonstrated either induced or significantly upregulated expression of the respective genes. We are using term “induced” to define expression of the genes that were undetectable in the wild type cells and were only present in NPC2-null fibroblasts. In order to confirm differential expression of specific genes in human fibroblasts, we performed analysis of the respective mRNA transcripts by real-time RT-PCR (Fig. 2). As in this Figure, the data showed a coordinate upregulation of the genes that regulate PGE2 production, including PLA2G4A (~ 60-fold), PTGS2 (~ 150-fold), and PTGES (~ 1.3-fold), as well as that of PGE2 signaling membrane receptor, PTGER4 (~ 3-fold).

Next, we examined protein expression levels of cPLA2, COX-2, and mPGES-1 by Western blotting of the cytoplasmic and nuclear fractions, recognizing that membrane-associated and soluble proteins are present in the respective fractions (Fig. 3). Under unstimulated culture conditions, cPLA2 and mPGES-1 expression was induced strongly in NPC2-null cells but was undetectable in normal fibroblasts. More importantly, cPLA2 in NPC2-null cells was present in its activated form as shown by its phosphorylation on Ser505 (Fig. 3). COX-2, on the other hand, displayed a different expression pattern. In NPC2-null cells, COX-2 was present in both the cytoplasmic and nuclear fractions, whereas in normal fibroblasts COX-2 was undetectable in the cytoplasmic fraction and displayed similar expression levels to NPC2-null cells in the nuclear fraction (Fig. 3).

Altogether, the above data provide strong evidence for constitutive activation of the PGE2 biosynthetic program in NPC2-null fibroblasts. In order to verify this conclusion, we performed lipidomics profiling of AA metabolites secreted from NPC2-null and normal human fibroblasts by LC/MS/MS. The analysis revealed distinct and detectable levels of prostaglandins, leukotrienes, thromboxanes, as well as mono- and dihydroxy-fatty acids, and epoxy-fatty acids (Fig. 4A) with PGE2 being a dominant prostaglandin AA metabolite (Fig. 4B). The specific AA metabolites were either slightly upregulated (PGD2 & PGF2α) or mostly downregulated (Fig. 5). The very modest, in contrast to PGE2, upregulation of PGD2 and PGF2α production in the setting of the significant upregulation of their respective enzymes, PTGDS and AKR1C3 (Table 1), points toward preferential cPLA2 → COX-2 → mPGES-1 metabolic coupling in NPC2-null cells (Figs. 1&5).

Robust and Selective Upregulation of PGE2 Biosynthesis in NPC2-null Cells Is Not Controlled by cPLA2 Translocation – It has been previously established that cPLA2 activity is tightly regulated at both the molecular and subcellular levels. The former is more general and includes cPLA2 phosphorylation by ERK1/2 (41) in most of the cell types while the latter is more cell type specific and includes translocation of the phosphorylated cPLA2 from the cytosol to the perinuclear region (42,43) and/or nucleus (44) in the immune and endothelial cells. In order to address a potential cellular mechanism which controls a strong and selective upregulation of PGE2 production in NPC2-null human fibroblasts, we examined the intracellular localization of cPLA2 in those cells by confocal fluorescence microscopy (Fig. 6). In unelicited normal skin fibroblasts cPLA2 was virtually undetectable (Fig. 6A) whereas in NPC2-null cells cPLA2 displayed a reticular/punctate cytoplasmic staining pattern (Fig. 6B), which was reported earlier for both unstimulated and stimulated fibroblasts (45,46). These fluorescence microscopy data correlated well with those of Western blot analysis (Fig. 3) that demonstrated no detectable cPLA2 protein expression in normal fibroblasts along with the exclusive cPLA2 presence in the cytoplasmic fraction of NPC2-null fibroblasts. These findings are consistent with NPC2 regulating cPLA2 activation in human skin fibroblasts at the predominantly molecular level.

cPLA2 Regulates Inflammatory Program in NPC2-Null Cells – We have previously shown that NPC2-deficiency in human fibroblasts confers persistent expression and secretion of pro-inflammatory cytokines, such as IL-1β and IL-6 that was consistent with sustained RTK/GFR→ ERK1/2 and NF-κB activation in those cells (30). In order to further delineate the respective molecular regulatory steps downstream from RTK/GFR → ERK1/2 activation and taking into account the constitutive nature of cPLA2 activation as evidenced by its sustained phosphorylation (Fig. 3), we probed the role of cPLA2 in the induction of IL-1β and IL-6 gene expression by suppressing cPLA2 activity using the cell permeable, potent, and specific
cPLA2 inhibitor CB-525143 (1,2,4-trisubstituted pyrrolidine derivative) (Fig.7). As shown in this Figure, this inhibitor in a dose-dependent manner was able to suppress efficiently both IL-1β and IL-6 mRNA expression thereby identifying cPLA2 as an important regulator of the inflammatory program in NPC2-null cells.

NPC2 Overexpression in SF from Patient with RA Suppresses IL-1β - Stimulated PGE2 Production – One of the main maladaptive features of SF in RA is their ability to robustly produce PGE2 upon stimulation with the inflammatory cytokines, such as IL-1β (47-49). Recently, our group has identified SF from RA patients (SF RA) as being NPC2-deficient, which was indicated by their significantly reduced (ranging from ~ 2.5 to 5.0-fold) NPC2 mRNA expression as compared to normal human skin fibroblasts (control) (30). Therefore, we reasoned that the upregulated PGE2 production by SF in RA could be linked to their NPC2-deficiency. In order to test this hypothesis, as well as to independently verify NPC2 involvement in the negative regulation of PGE2 biosynthesis, we engineered SF RA cell line, RA-83 NPC2, where NPC2 mRNA expression was stably upregulated by ~ 1.6-fold as compared to control (Fig.8A). Yet in comparison to the parental RA-83 cells, the IL-1β-stimulated PGE2 production in RA-83 NPC2 cells was reduced by ~ 1.6-fold (Fig.8B). Altogether, the above data point strongly toward important NPC2 involvement in the negative regulation of PGE2 biosynthesis.

DISCUSSION

The current report provides several important insights into the regulation of inflammation and innate immunity. First, using NPC2-null human skin fibroblasts we identified NPC2 protein as a novel regulator of AA metabolism which specifically targets the cPLA2 → COX -2 → mPGES -1 → PGE2 biosynthetic pathway (Fig.1). It appears that NPC2 exerts its function at multiple levels including regulation of cPLA2, COX1/2, and mPGES-1 gene expression as well as the enzyme post-translational modification through phosphorylation as it was seen for cPLA2. In addition, it is quite plausible that mPGES-1 may represent a selective target for NPC2 regulation because in the setting of NPC2 deficiency, which leads to a significant upregulation of AKR1C3, mPGES-1, and PTGDS that metabolize PGH2 to yield respectively production was significantly upregulated as demonstrated by our lipidomics analysis. Yet the same analysis has revealed the LOX- and CYP450-dependent, as well as non-enzymatic oxidative pathways within the AA metabolic cascade (Fig.1) were efficiently suppressed in NPC2-null cells as evidenced by a significant reduction in the production of their respective products. Such pattern of eicosanoid production in the setting of NPC2-deficiency is unique and, to our best knowledge, has not been previously reported in the literature.

Second, we delineated further a mechanism of NPC2-dependent regulation of the cPLA2-dependent PGE2 biosynthetic pathway in fibroblasts by demonstrating that for cPLA2 this mechanism does not include a subcellular component because cPLA2 activation was not accompanied by its translocation from cytosol to the perinuclear region and/or nucleus as shown earlier for the immune and endothelial cells (42-44). cPLA2 is now considered to be a central enzyme in mediating AA release for eicosanoid production, including PGE2 (50,51). The most likely mechanism for constitutive cPLA2 activation and subsequent PGE2 production could include, in addition to its Ser505 phosphorylation, the release of active cPLA2 monomers from inactive intracellular clusters (45,46). Indeed, it has been previously reported that in fibroblasts, cPLA2 is present in small clusters that were identified as punctuate structures by immunofluorescence and immunogold electron microscopy (45). These cPLA2 clusters were randomly distributed throughout the cytosol and localized in the vicinity of major intracellular membranes, except for the Golgi apparatus. More importantly, upon cell stimulation with EGF or calcium ionophore A23187 that are known to activate cPLA2 and stimulate AA metabolism, the cPLA2 punctate localization pattern did not change (45) but the release of activated cPLA2 monomeric forms from inactive clusters and their binding to the nearing intracellular membranes were observed (46). The latter was accompanied by an induction of cPLA2 hydrolytic activity indicating that the release of active cPLA2 monomers from the existent inactive cPLA2 clusters could be an important mechanism which controls cPLA2 activity in fibroblasts and, quite possibly, in other non-immune cells (46). Given that very similar punctate cPLA2 structures were observed in NPC2-null fibroblasts by immunofluorescence in the current study and that cPLA2 phosphorylation by ERK1/2 was proposed to be a pre-requisite for cPLA2 release from the inactive clusters (46), one may suggest that RTK/GFR → ERK1/2 → cPLA2 phosphorylation axis.
could be a primary regulatory target for NPC2 within the AA metabolic pathway.

Third, we demonstrated that constitutive cPLA2 activation is responsible for the increased basal production of pro-inflammatory cytokines in NPC2 null cells. Given that constitutive induction of cPLA2 gene expression and cPLA2 activation through phosphorylation is regulated by sustained RTK/GFR → ERK1/2 signaling (32-34), and that the latter was observed earlier by us in NPC2-null fibroblasts (30), the molecular mechanism of the NPC2-dependent negative regulation of fibroblast activation (30) could be further detailed to include cPLA2 activation step downstream from sustained ERK1/2 signaling.

Fourth, the fact that NPC2-deficiency results in co-stimulated induction of PGE2 (current study) and IL-6 (30) production and secretion could bear very important consequences for the regulation of the innate and adaptive immunity. Indeed, it has been recently reported (18) that the immunosuppressive tumor microenvironment of human cervical carcinoma could be linked to the ability of cancer cells to block dendritic cell differentiation and to skew monocyte-to-macrophage differentiation toward tolerogenic M2 phenotype. As the result, M2 macrophages had a significantly impaired ability to stimulate T cell proliferation and Th1 cell activation, thereby providing, along with the dendritic cell deficiency, a permissive environment for tumor growth. Characteristically, IL-6 and PGE2 had distinct functions in the above process: IL-6 was blocking dendritic cell differentiation and PGE2 was driving M2 macrophage polarization (18).

Finally, using RA-83/NPC2 cells with the stable overexpression of NPC2 gene, we independently confirmed its important involvement in the negative regulation of PGE2 biosynthesis in fibroblasts as well as demonstrated, at least in vitro, a potential for the SF RA maladaptive phenotype correction by overcoming their NPC2 deficiency. The latter could provide a basis for the development of a novel therapeutic intervention in RA.

In summary, all of these data point toward NPC2 as an important regulator of the phospholipid/AA metabolism, immunity, and inflammation.

REFERENCES

 Reyes, V. E., and Powell, D. W. (2006) Subepithelial myofibroblasts are novel nonprofessional APCs in the
 human colonic mucosa. *J. Immunol.* 177, 5968-5979

 intestinal lamina propria. *Annu. Rev. Physiol* 73, 213-237

 independent increases in COX-2 and PGE2 in human colonic myofibroblasts stimulated by thrombin. *Am. J.
 Physiol Cell Physiol* 284, C1185-C1192

 associated Ca2+ influx on TNF-alpha-induced COX-2-dependent prostaglandin E2 production in human
 colonic myofibroblasts. *Am. J. Physiol Gastrointest. Liver Physiol* 301, G356-G367

 cyclooxygenase-2-dependent prostaglandin E2 production by stromal cells in the murine small intestine
 lamina propria: directing the tone of the intestinal immune response. *J. Immunol.* 166, 4465-4472

 C. (2011) Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype
 that promotes expansion of cancer-stem like cells. *PLoS. One.* 6, e24605

15. Smith, R. J. (1977) Modulation of phagocytosis by and lysosomal enzyme secretion from guinea-pig
 647-657

 macrophages through cAMP/PKA signaling pathway. *J. Biol. Chem.* 286, 2111-2120

17. Nemeth, K., Leelahavanichkul, A., Yuen, P. S., Mayer, B., Parmelee, A., Doi, K., Robey, P. G.,
 marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages
 to increase their interleukin-10 production. *Nat. Med.* 15, 42-49

 J., van, H. T., and van der Burg, S. H. (2011) M2 macrophages induced by prostaglandin E2 and IL-6 from
 cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. *J. Immunol.* 187, 1157-
 1165

19. Okamura, N., Kiuchi, S., Tamba, M., Kashima, T., Hiramoto, S., Baba, T., Dacheux, F., €Dacheux, J. L.,
 Sugita, Y., and Jin, Y. Z. (1999) A porcine homolog of the major secretory protein of human epididymis,
 HE1, specifically binds cholesterol. *Biochim. Biophys. Acta* 1438, 377-387

FOOTNOTES

We thank Daniel Ory (Washington University in St. Louis) for providing us with NPC2-null human fibroblasts. We also thank Mary Gail Engle and James Begley (Imaging Facility, University of Kentucky) for their expert assistance with the confocal fluorescence microscopy. This work was supported by an American Heart Association Grant SDG 023017N (to A.F.) and RO1AR049010 (to L.J.C.) from the National Institutes of Health. Partial support for analytical chemistry was provided by NIEHS RO1 ES ES002710 and NIEHS Superfund Research Program grant P42 ES004699, and NIH U24DK097154 (to B.D.H.). B.D.H. is a George and Judy Marcus senior fellow of the American Asthma Foundation.

The abbreviations used are: RTK, receptor tyrosine kinase; GFR, growth factor receptor; ERK, extracellular signal-regulated kinase; ePLA2 – cytosolic phospholipase A2; COX-1/2 – cyclooxygenase-1/2 also known as PTGS1/2 - prostaglandin-endoperoxide synthase 1/2; LOX- lipoxygenase; CYP450 – cytochrome P450; IL-1, interleukin 1; IL-6, interleukin 6; LC/MS/MS, liquid chromatography/tandem mass spectrometry; PGD2, prostaglandin D2; PGF2α, prostaglandin F2α; 5-HETE, 5-Hydroxyeicosatetraenoic acid; 9-HETE, 9-Hydroxyeicosatetraenoic acid; 11-HETE, 11-Hydroxyeicosatetraenoic acid; 15-HETE, 15-Hydroxyeicosatetraenoic acid; 9,10-DiHOME, (±)9,10-dihydroxy-12Z-octadecenoic acid; 14,15-DiHETE, (±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid; 9,10-EpOME, (±)9(10)-epoxy-12Z-octadecenoic acid; 14,15-EpETE, (±)14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid.

FIGURE LEGENDS

Fig. 1. Eicosanoid biosynthetic pathway and its activation by RTK/GFR→ERK1/2 signaling. Four major branches of the AA metabolic pathway are shown. COX-1/2 – cyclooxygenase -1/2-dependent branch. COX-1/2 is also known as prostaglandin-endoperoxide synthase (PTGS) 1/2; LOX- lipoxygenase-dependent branch; CYP450 – cytochrome P450-dependent branch; Non-enzymatic – free radical only-dependent branch. The plain symbols depict proteins and biosynthetic pathways. The boxed symbols identify AA and its metabolites that were measured in the current study by LC/MS/MS.

Fig. 2. Activation of a genetic program that controls eicosanoid metabolic pathway and signaling in unelicited NPC2-fibroblasts: real-time RT-PCR analysis. Total RNA was isolated from unelicited normal and NPC2-deficient human skin fibroblasts and quantitatively converted into the single stranded cDNA by using High Capacity cDNA Archive Kit (Applied Biosystems). The particular genes were detected using the respective *Taq*Man Gene Expression Assays (Applied Biosystems) by relative quantitation employing β-glucuronidase (GUSB) as the reference gene. Data were normalized to their respective controls and shown as mean ± SE. (*) depicts P ≤ 0.05 as compared to control (n=3-6).

Fig. 3. Activation of eicosanoid metabolic program in NPC2-null fibroblasts. Protein expression was detected by Western blotting in the cytoplasmic and nuclear protein fractions isolated from unelicited wild type (WT) and NPC2-null fibroblasts. The respective proteins were labeled with the specific sets of primary/fluorescently-tagged secondary antibodies and were identified on the same membrane by simultaneous dual-color scanning using the...
high-resolution LI-COR Odyssey near-infrared imaging system. The phospho-cPLA2 detection was performed after stripping and re-probing a membrane which was originally stained with the cPLA2 antibodies. Quantitative analysis of COX-2 in nuclear protein fractions from control and NPC2-null cells revealed no statistically significant difference in the relative protein expression levels with the respective mean ± SE being 1.22±0.26 (P=0.4, n=3).

Fig.4. Quantitative analysis of selected arachidonic acid metabolites by LC/MS/MS. Lipids were extracted from the conditioned media of near confluent (~90%), unelicited normal and NPC2-null cells and analyzed by liquid chromatography (LC). (A) – complete LC chromatogram; (B) – prostaglandin LC chromatogram.

Fig.5. Strong and selective upregulation of PGE2 production in NPC2-null fibroblasts as measured by LC/MS/MS. Lipid analytes isolated from the conditioned media of near confluent (~90%), unelicited normal and NPC2-null cells were detected by tandem mass spectrometry. Data shown are mean ± SE. (*) depicts P≤ 0.05 as compared to control (n=4). Arrow points toward strongly and selectively upregulated PGE2 lipid analyte.

Fig.6. Intracellular localization of cPLA2 in unelicited normal (A) and NPC2-null (B) skin fibroblasts as probed by confocal fluorescence microscopy. Cells grown under normal conditions on cover slips in 24-well cell tissue culture plate were fixed, permeabilized and stained with rabbit polyclonal cPLA2 (Cat# sc-438) antibodies from Santa Cruz. That was followed by the incubation with the Alexa Fluor 568 goat anti-rabbit antibody (Molecular Probes). Image acquisition was performed on Leica TCS SP5 inverted confocal system. The images were taken under the same conditions and their intensity and contrast were similarly adjusted upwards using Adobe Photoshop CS4 Extended software. Arrows point toward individual cells in the confocal section.

Fig.7. cPLA2 activity contributes to the inflammatory cytokine expression in NPC2-null fibroblasts. Cells were treated for 4 h with the indicated concentrations of cPLA2 inhibitor in the DMEM supplemented with 0.1% BSA. IL-1B and IL-6 mRNA levels were probed by real-time RT-PCR. Data were normalized to their respective untreated controls and shown as mean ± SE. (*) depicts P≤ 0.05 as compared to control and (**) depicts P≤ 0.05 as compared to the lowest inhibitor concentration (n=3).

Fig.8. NPC2 overexpression in SF RA suppresses IL-1β – stimulated PGE2 production. (A) – NPC2 mRNA level in RA-83/NPC2 cells that stably overexpress NPC2 gene as compared to normal human skin fibroblasts (control). (B) – IL-1β – stimulated PGE2 production in SF RA cells as probed by PGE2 EIA. Data shown are mean ± SE. (*) depicts P≤ 0.05 as compared to control (n=3).
Table 1. NPC2-deficiency confers activation of a genetic program that controls eicosanoid metabolic pathway and signaling: DNA microarray analysis.

<table>
<thead>
<tr>
<th>Probe set</th>
<th>Gene name</th>
<th>Symbol</th>
<th>Gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eicosanoid metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210145_at</td>
<td>Phospholipase A2, group IVA (cytosolic, calcium-dependent)</td>
<td>PLA2G4A</td>
<td>Induced</td>
</tr>
<tr>
<td>205128_x_at</td>
<td>Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>PTGS1 (COX-1)</td>
<td>↑ 5.3</td>
</tr>
<tr>
<td>204748_at</td>
<td>Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)</td>
<td>PTGS2 (COX-2)</td>
<td>Induced</td>
</tr>
<tr>
<td>210367_s_at</td>
<td>Prostaglandin E synthase</td>
<td>PTGES (mPGES-1)</td>
<td>↑ 2.9</td>
</tr>
<tr>
<td>211748_x_at</td>
<td>Prostaglandin D2 synthase 21kDa (brain)</td>
<td>PTGDS</td>
<td>Induced</td>
</tr>
<tr>
<td>209160_at</td>
<td>Aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II)</td>
<td>AKR1C3</td>
<td>↑ 10.5</td>
</tr>
<tr>
<td>Eicosanoid receptors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206631_at</td>
<td>Prostaglandin E receptor 2 (subtype EP2), 53kDa</td>
<td>PTGER2 (EP2)</td>
<td>↑ 4.7</td>
</tr>
<tr>
<td>204897_at</td>
<td>Prostaglandin E receptor 4 (subtype EP4)</td>
<td>PTGER4 (EP4)</td>
<td>↑ 3.5</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.
Figure 3.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>NPC2-null</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cytoplasmic</td>
<td>Cytoplasmic</td>
</tr>
<tr>
<td></td>
<td>Nuclear</td>
<td>Nuclear</td>
</tr>
<tr>
<td>cPLA2</td>
<td>![cPLA2 Image]</td>
<td>![cPLA2 Image]</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>![β-Tubulin Image]</td>
<td>![β-Tubulin Image]</td>
</tr>
<tr>
<td>phospho-cPLA2</td>
<td>![phospho-cPLA2 Image]</td>
<td>![phospho-cPLA2 Image]</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>![β-Tubulin Image]</td>
<td>![β-Tubulin Image]</td>
</tr>
<tr>
<td>mPGES-1</td>
<td>![mPGES-1 Image]</td>
<td>![mPGES-1 Image]</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>![β-Tubulin Image]</td>
<td>![β-Tubulin Image]</td>
</tr>
<tr>
<td>COX-2</td>
<td>![COX-2 Image]</td>
<td>![COX-2 Image]</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>![β-Tubulin Image]</td>
<td>![β-Tubulin Image]</td>
</tr>
</tbody>
</table>
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Niemann-Pick Type C2 deficiency in human fibroblasts confers robust and selective activation of prostaglandin E2 biosynthesis
Andrey Frolov, Hua Dong, Min Jiang, Lihua Yang, Erik C. Cook, Rahul Matnani, Bruce D. Hammock and Leslie J. Crofford

J. Biol. Chem. published online June 27, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M112.445916

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts