Factor VIII C1-domain spikes 2092-2093 and 2158-2159 comprise regions that modulate cofactor function and cellular uptake

Esther Bloem*1, Maartje van den Biggelaar*1, Aleksandra Wroblewska1, Jan Voorberg1, Johan H. Faber2, Marianne Kjalke2, Henning R. Stennicke2, Koen Mertens3,5 and Alexander B. Meijer1,3

* these authors contributed equally to this paper

1Department of Plasma Proteins, Sanquin Research, Amsterdam, The Netherlands
2Biopharmaceutical Research Unit, Novo Nordisk A/S, Måløv, Denmark
3Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands

Address correspondence to: Alexander B. Meijer, Ph.D., Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands (Phone: +31-20-5123151; Fax: +31-20-5123310; e-mail: s.meijer@sanquin.nl)

*Running title: functional role for C1-domain spike 2158-2159

Keywords: Factor VIII, Mass spectrometry (MS), LRP binding, Endocytosis, Phospholipid binding, Enzyme kinetics

Background: Antibody KM33 blocks factor VIII (FVIII) endocytosis and phospholipid binding.

Results: Hydrogen-deuterium-exchange mass spectrometry reveals that KM33 binds C1-domain spikes 2092-2093 and 2158-2159. Glycosylated FVIII-R2159N shows reduced endocytosis and decreased binding to phospholipid membranes with low phosphatidylserine content.

Conclusions: Spikes 2092-2093 and 2158-2159 modulate FVIII endocytosis and phospholipid binding.

Significance: Novel insight is obtained about the role of the C1-domain for FVIII biology.

SUMMARY

The C1-domain of factor VIII (FVIII) has been implicated in binding to multiple constituents, including phospholipids, von Willebrand factor (VWF), and Low density lipoprotein Receptor-related Protein (LRP). We have previously described a human monoclonal antibody, called KM33, which blocks these interactions, as well as cellular uptake by LRP-expressing cells. To unambiguously identify the apparent “hot-spot” on FVIII to which this antibody binds, we have employed hydrogen-deuterium exchange (HDX) mass spectrometry. The results showed that KM33 protects the FVIII regions 2091-2104 and 2157-2162 from HDX. These comprise the two C1-domain spikes 2092-2093 and 2158-2159. Spike 2092-2093 has recently been demonstrated to contribute to assembly with lipid membranes with low phosphatidyl serine (PS) content. Therefore, spike 2158-2159 might serve a similar role. This was assessed by replacement of Arg2159 for Asn, which introduces a motif for N-linked glycosylation. Binding studies revealed that the purified, glycosylated R2159N variant had lost its interaction with antibody KM33, but retained substantial binding to VWF and LRP. Cellular uptake of the R2159N variant was reduced, both by LRP-expressing U87-MG cells and by human monocyte-derived dendritic cells. FVIII activity was virtually normal on membranes containing 15% PS, but reduced at low PS content. These findings suggest that the C1-domain spikes 2092-2093 and 2158-2159 together modulate FVIII-membrane assembly by a subtle, PS-dependent mechanism. These findings contribute evidence in favour of an increasingly important role of the C1-domain in FVIII biology.

Activated coagulation factor VIII (FVIIIa) is a cofactor that assembles with activated factor IX (FIXa) on lipid membranes that expose phosphatidylserine (PS) in the outer leaflet (1). This complex effectively generates activated factor X (FXa), ultimately leading to blood clot formation at sites of vascular injury. Current treatment of haemophilia A patients, which lack functional factor VIII (FVIII), involves intravenous infusion with either recombinant or plasma-derived FVIII (2). This treatment is, however, limited by the particularly effective...
clearance of FVIII from the circulation. Moreover, about 20% of the patients develop antibodies against FVIII (3). The molecular determinants that drive the assembly of FVIII with membranes, including those of cells involved in clearance and immune response, remain incompletely understood.

FVIII is a multi-domain protein that comprises a heavy chain (domains A1-A2-B) that is non-covalently linked to a light chain (domains A3-C1-C2) (1). The recently solved crystal structures of B-domain deleted FVIII have revealed that the three A-domains are organized as a compact trimer, in which the A1- and A3-domains form the base that carries the A2-domain on top. The trimer is supported by the two C-domains which are aligned in parallel (4,5). As such, the structure of FVIII is highly homologous to that of coagulation factor V (FV), the cofactor of activated factor X in the prothrombinase complex (6-8). Both in FVIII and FV, the two C-domains each display two characteristic β-hairpin loops, generally referred to as fatty feet or spikes (9,10). Initially, FVIII interaction with membranes has been mainly attributed to the C2-domain (10-13). However, the tandem orientation of the two C-domains in the crystal structures suggests that also the C1-domain could mediate membrane binding. Indeed, mutagenesis studies provided direct evidence that the C1-domain contributes to phospholipid binding as well, and that this particularly involves the spike containing residues Lys2092-Phe2093 (14,15).

Besides lipid binding, the C1-domain residues 2092-2093 also contribute to the uptake of FVIII by cells that express Low density lipoprotein Receptor-related Protein (LRP), and by monocyte-derived dendritic cells (16,17). Moreover, the same spike contributes to FVIII immunogenicity in a murine model of haemophilia A (17). The same membrane-binding spike also contributes to the interaction of FVIII with the antibody KM33 (14,17). This anti-C1-domain antibody has been derived from the immune repertoire of a patient with severe haemophilia A (18), and is of particular interest because it inhibits besides FVIII activity also the interaction with von Willebrand factor (VWF) and LRP, cellular uptake, and immunogenicity (16,17,19). Apparently, the epitope of this antibody provides a “hot-spot” for multiple macromolecular interactions and biological processes involving FVIII. While the affinity of the KM33 antibody for FVIII is greatly dependent on the C1-domain spike 2092-2093 (14), it seems unlikely that this putative hot-spot would be limited to merely these two amino acids.

In the present study, we have employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the binding epitope of antibody KM33. This technology exploits the characteristic that HD exchange in a protein can be followed by mass spectrometry upon replacement of H2O by D2O in the aqueous solvent (20). Sites on FVIII that contribute to antibody binding should display reduced HD exchange in the FVIII-antibody complex. This approach revealed that the epitope of antibody KM33 comprises, besides the spike 2092-2093, the second C1-domain spike of residues 2158-2159 as well. We therefore explored the role of this spike by introducing a glycan in position 2159. The purified R2159N substitution variant was analysed for a variety of FVIII interactions with particular focus on those interactions that are known to be inhibited by the KM33 antibody. The presence of the glycan in position 2159 proved predominantly apparent in assembly in the presence of membranes with low PS content.

EXPERIMENTAL PROCEDURES

Materials – DMEM-F12 was from Lonza (Walkersville, MD, USA). Fetal calf serum (FCS) was from HyClone (Thermo Fisher Scientific, Rockford, IL, USA). Chicken egg L-α-Phosphatidylcholine (PC), L-α-Phosphatidylethanolamine (transphosphatidyliated) (PE) and porcine brain L-α-Phosphatidylserine (PS) were from Avanti Polar Lipids Inc. (Alabaster, AL, USA). Tris (2-carboxyethyl)-phosphine hydrochloride (TCEP) was from Calbiochem, EMD Millipore Chemicals, USA. The FXa substrate S-2765, containing the thrombin inhibitor I-2581, was from Calbiochem, EMD Millipore Chemicals, USA. The FXa substrate S-2765, containing the thrombin inhibitor I-2581, was from Chromogenix (Milano, Italy). All other chemicals were from Merck (Darmstadt, Germany).

Proteins – Monoclonal antibodies CLB-EL14 (EL14), CLB-KM33 (KM33), CLB-Cag12, CLB-Cag9 and CLB-Cag117 have been described before (14,21,22). ESH4 was obtained from American Diagnostica (Greenwich, CT, USA). The construct of FVIII lacking the B-domain residues 746-1639 (referred to as “wild-type” or FVIII-WT...
throughout this paper) in the pcDNA3.1(+) vector has been described previously (22). The substitution R2159N was introduced by Quick Change mutagenesis™ using forward primer 5'-CCAACTCATTAGCATTAAATGCACTCT TCCGATGGAG-3' and reverse primer 5'-CTCCATGCAAGTGCTATTAATGCTAT AATGAGTTG-3'. The coding regions of the constructs were verified by sequence analysis. Sequence reactions were performed with BigDye Terminator Sequencing kit (Applied Biosystems, Foster City, CA, USA). HEK293 cell-lines stably expressing B-domain deleted FVIII and the R2159N variant were produced as described (23) and grown in DMEM-F12 medium supplemented with 10% FCS. Recombinant FVIII-WT and the R2159N variant were purified and analyzed as described using CLB-VK34 IgG1 coupled to CNBr-Sepharose 4B as an affinity matrix (16,24). Recombinant VWF was prepared as described previously (25). LRP cluster II was expressed in Baby Hamster Kidney (BHK) cells and purified as described (26). Human FX, FIXa and thrombin were purified and active-site titrated as described (27-29). Bovine Serum Albumin (BSA) was from Merck (Darmstadt, Germany).

HDX-mass spectrometry – HDX-MS was performed as described before with minor adjustments (30). For these studies, recombinant factor VIII (FVIII) Turoctocog alfa (previously named N8) was produced in Chinese hamster ovary (CHO) cells as previously described (31). The molecule consists of a heavy chain of 88 kDa including a 21 amino acid residue truncated B-domain and a light chain of 79 kDa, it contains four N-glycosylation sites of which two are complex bi-antennary glycans and two are high mannose structures (31). FVIII and KM33 were dialyzed to a buffer comprising 20 mM Imidazole (pH 7.3), 10 mM CaCl₂, 150 mM NaCl and the proteins were kept at 2°C until the start of the experiment. HDX was initiated by incubating 3 μM FVIII in the absence or presence of 4.5 μM KM33 in the same buffer in 98% D₂O instead of H₂O. At 4 time intervals, i.e. 10, 100, 1000, and 10,000 sec, HDX was quenched by the addition of an equal volume of ice-cold quenching buffer containing 1.35 M TCEP, resulting in a final pH of 2.6. Samples were analysed using the Waters SYNAPT G2 HDMS in combination with the nanoACQUITY UPLC with HDX Technology. The analytical column was an ACQUITY UPLC BEH C18 1.7 μm (1.0 x 100 mm), with a 9 min gradient of 8–40% CH₃CN. The trap column was an ACQUITY VanGuard Pre-column, BEH C18 1.7 μm (2.1 x 5 mm). Online pepsin digestion was performed using a 2.1 x 30 mm immobilized pepsin column (Applied Biosystems Inc., USA). MSE data were collected for all analyses. Undeuterated analyses were processed using ProteinLynx Global Server (PLGS) 2.5 with IdentityE informatics generating a peptic peptide map of FVIII based on retention time, mobility drift time, intensity, fragment ions, and mass accuracy. DynamX was used to measure the deuterium uptake of each peptide as a function of deuterium exposure time. The deuterium uptake curves were plotted in a function of time for comparative analysis of FVIII in the absence and presence of KM33 antibody.

Tandem Mass Tag-labeling – Tandem Mass Tag (TMT)-labeling and mass spectrometry analysis were performed as described in Bloem et al. (24) with the exception that proteins were labeled for 15 minutes and that the reaction was terminated by the addition of a 500-fold molar excess of hydroxylamine. FVIII-WT was modified with TMT-126, whereas FVIII-R2159N was modified with TMT-127. The identity of the peptides including TMT-labeled lysine residues and the TMT-127/TMT-126 ratio thereof were assessed employing Peaks Studio 6.0 build software. The protein database uniprot-organism_9606_AND_keyword_kw-0181.fasta (www.uniprot.org) was used for peptide identification. Search criteria allowed a peptide parent mass error tolerance of 30 ppm, a fragment mass error tolerance of 0.8 Da, and modifications including cysteine carbamidomethylation (57.02 Da), methionine oxidation (15.99 Da) and lysine-TMT labeling (225.16 Da).

Surface plasmon resonance analysis – Surface Plasmon Resonance (SPR) analysis was performed using a BIAcore 3000 biosensor (Biacore AB, Uppsala, Sweden) essentially as described (32). For assessment of FVIII-VWF interaction, recombinant VWF (9 fmol/mm²) was immobilized onto a CM5 sensor chip using the amine coupling method according to the manufacturer’s instructions. FVIII-WT or FVIII-R2159N were passed over the chip at varying concentrations (0.4-240 nM) for 240 seconds in a buffer containing 150 mM NaCl, 5 mM CaCl₂, 0.005% (v/v) Tween 20 and 20 mM Hepes (pH 7.4) at 25 °C with a flow rate of 20 μL/min. The
Sensor chip surface was regenerated three times after each experiment using the same buffer containing 1 M NaCl. Binding to VWF was corrected for binding in absence of VWF. Binding data during the association phase were fitted in a one-phase exponential association model, and response at equilibrium (R eq) was plotted as a function of the FVIII concentration. For FVIII-LRP or antibody binding studies, FVIII-WT and FVIII-R2159N were bound at a density of 9 fmol/mm^2 to the immobilized anti-C2-domain antibody EL14 IgG4 (39 fmol/mm^2). Antibodies KM33, CLB-CAg 9, CLB-CAg12 and ESH4 (100 nM) were passed over immobilized FVIII-WT or FVIII-R2159N at a flow rate of 20 μL/min in a buffer containing 20 mM Hepes (pH 7.4), 150 mM NaCl, 5 mM CaCl_2 and 0.005% (v/v) Tween 20 at 25 °C. Receptor binding was assessed by passing LRP cluster II at varying concentrations (0.2-200 nM) over the immobilized FVIII. Association was fitted in a one-phase exponential model, and R eq was plotted against the LRP Cluster II concentration as described (32).

RESULTS

FVIII regions that contribute to antibody KM33 binding. HDX-MS was employed to identify the epitope of KM33 on FVIII. After digestion of FVIII by pepsin, a total of 482 peptides were identified. These covered 95% of the FVIII primary sequence with 88% sequence coverage of the C1-domain. HDX of FVIII in the presence and absence of KM33 was first allowed for 10 seconds. Of these peptides, 98% displayed an exchange pattern that was unaffected by the binding of KM33, suggesting that amino acid residues within these regions do not contribute to KM33 binding. In contrast, a limited number of peptides did show protection from HDX in the presence of KM33. As an example, Fig. 1A shows the isotope distribution of the peptides 2076-2090, 2076-2094 and 2149-2162. These displayed the typical shift in m/z value after 10 seconds of incubation of FVIII with D_2O in the absence of KM33. For the latter two however, this was markedly less pronounced in the presence of the antibody. HDX was subsequently followed at prolonged time intervals, i.e. 100, 1,000, and 10,000 seconds. Fig. 1B shows the time-dependent deuterium incorporation for the peptides 2076-2090, 2076-2094 and 2149-2162. In contrast to the first peptide, the other two did display time-dependent protection from HDX. In total, the FVIII region that displayed prolonged protection from deuterium incorporation in the presence of antibody KM33 included 10 peptic peptides that clustered on two distinct regions in the C1-domain. One cluster comprised the partially overlapping peptides 2075-2095, 2076-2094, 2077-2095, 2078-2095, 2081-2096 and 2090-2105, whereas the other comprised peptides of varying PS content. These contained PS/PE/PC in a molar ratio of 15/20/65 (15% PS) or 5/20/85 (5% PS), and were prepared by sonication in 40 mM Tris-HCl (pH 7.8), 150 mM NaCl. FX was incubated with FIXa and FVIII-WT or FVIII-R2159N (0.3 nM) in the presence of thrombin (1 nM) and phospholipids in a buffer containing 40 mM Tris-HCl (pH 7.8), 150 mM NaCl, 1.5 mM CaCl_2 and 0.2% (w/v) BSA at 25 °C in a final volume of 40 μL. After varying time points (1-3 min) the reaction was terminated by adding 50 μL of the same buffer containing 16 mM EDTA, and finally 10 μL of 1.8 mM S-2765 was added to quantify FXa (14,24).
The cluster comprising residues 2075-2105 could be further confined because two partially overlapping peptides did not show any change in deuterium incorporation level in the presence of KM33. These were peptide 2076-2090 (see Figs. 1A,B) and 2102-2113 (not shown). Taking into account that deuterium atoms attached in the first two residues may be lost during protein processing and peptide separation (33), the latter peptide allows exclusion of residues 2105-2113. Together this delineates the residues that are protected by KM33 to amino acid residues 2091-2104.

Similarly, the cluster spanning residues 2148-2162 could be confined to residues 2157-2162, because the overlapping peptide 2149-2156 did not display any change in deuterium incorporation (not shown). In conclusion, the residues protected by HD exchange comprise amino acids 2091-2104 and 2157-2162, which are located in two loops at the bottom of the FVIII C1-domain (see Fig. 1C).

Glycosylation at FVIII position 2159 completely abolishes the interaction with KM33. The regions 2091-2104 and 2157-2162 comprise residues that are located on opposite sides of the cylindrically shaped C1-domain (Fig. 2A). Therefore, it seems unlikely that all individual residues in these regions contribute to KM33 binding. Within the regions 2091-2104, the C1-domain spike 2092-2093 provides a major contribution to KM33 binding (14). Within the region 2157-2162, the residues 2158-2159 constitute a second spike of the C1-domain. As both spikes are at the same side of the C1-domain, this opens the possibility that KM33 requires both spikes for effective FVIII binding (Fig. 2A). This was addressed by replacing Arg2159 for Asn. This substitution introduces an N-linked glycosylation motif. FVIII-R2159N was expressed in human 293 cells, and SDS-PAGE analysis of the purified variant revealed a reduced mobility of the FVIII light chain, corresponding with an increased apparent molecular weight of approximately 3 kDa (Fig. 2B). SPR analysis revealed that glycosylation at position 2159 had fully eliminated binding to antibody KM33, while the association with control antibodies CLB-CAg 9 (anti-A2-domain), CLB-CAg12 (anti-A3-domain), ESH4 (anti-C2-domain) remained unaffected (Fig. 1C). This suggests that KM33 has a discontinuous epitope that comprises not only C1-domain spike 2092-2093, but also spike 2158-2159.

Glycosylation at FVIII position 2159 retains VWF interaction. We previously observed that FVIII binding to VWF is effectively inhibited by antibody KM33 (19). Within its epitope, Arg2159 has previously been implicated in VWF interaction (15). We therefore analysed the interaction of FVIII-R2159N by SPR. As shown in Fig. 3, the R2159N variant did bind to VWF, although the extent of association was approx. 50% reduced. Normal FVIII and FVIII-R2159N both failed to display satisfactory fits into a single exponential association model. Consequently, its remains difficult to conclude whether or not the apparent equilibrium dissociation constant (K_D) is affected by glycosylation at position 2159 (see Fig. 3, inset). It seems evident, however, that the R2159N variant has retained substantial VWF binding.

Glycosylation at FVIII position 2159 reduces LRP binding. We have previously established that the C1-domain residues 2092-2093 contribute to the LRP-dependent endocytosis of FVIII (16). We now employed SPR analysis to assess the interaction between R2159N and LRP ligand binding cluster II, which mediates the binding of LRP to FVIII (34,35). To this end, LRP cluster II was passed over immobilized FVIII-WT and R2159N (Fig. 4A,B). The results reveal that cluster II binding of the R2159N variant is reduced. The apparent K_D was estimated from a plot of R_eq against the LRP cluster II concentration (inset Fig 3B), and was 41 ± 3 nM (mean ± SD) for FVIII-WT, and 6-fold higher (263 ± 21 nM) for FVIII-R2159N. Apparently, the introduction of a glycan in one of the KM33-binding loops in the C1-domain reduces the affinity for LRP.

Glycosylation at FVIII position 2159 reduces cellular uptake. We previously observed that antibody KM33 effectively inhibits FVIII uptake by LRP-expressing U87-MG cells (16) and by dendritic cells (36). We therefore investigated whether the elimination of KM33 binding by glycosylation at position 2159 would affect cellular uptake. FVIII-WT and the R2159N variant were incubated with U87-MG cells for 30 minutes, and uptake was estimated by flow cytometry. In comparison with FVIII-WT, uptake of FVIII-R2159N was reduced by approximately 35% (Fig. 5A). A similar effect was observed for dendritic cells, which displayed a more pronounced reduction of
FVIII-R2159N uptake (Fig. 5B). These data suggest that C1-domain spike 2158-2159 contributes to cellular uptake of FVIII.

FVIII-R2159N retains FVIII cofactor activity. Antibody KM33 has been established as being a strong inhibitor of FVIII biological activity (18). Inserting a glycan in part of its epitope therefore might interfere with FVIII function. This was tested using purified proteins and phospholipid vesicles of varying PS content. On membranes containing 15% PS, FVIII-R2159N proved virtually normal, with only a slight reduction of V_{max} and similar K_m (Fig. 6A). In agreement with these data, FIXa titration curves reflected that FVIII-R2159N displays a normal affinity for FIXa in assembling the FX activating complex (Fig. 6C). On membranes containing 5% PS, however, K_m proved 3-fold increased and V_{max} 5-fold reduced (Fig. 6B). Moreover, the apparent affinity for FIXa on these membranes was 4-fold reduced (Fig. 6D). These data suggest that the presence of the glycan in the C1-domain spike 2158-2159 does not affect FVIII activity _per se_, but makes FVIII more dependent on the PS content of the membrane whereon it assembles with FIXa to activate FX.

Glycosylation at position 2159 increases PS-dependence of FVIII cofactor activity. The lipid-dependence of FVIII-R2159N was further investigated at limiting phospholipid concentrations. Lipid titration experiment using vesicles containing 15% PS demonstrated that half-maximal FX activation occurred at approximately 1 µM phospholipids, whereas 3 µM was required for FVIII-R2159N (Fig. 7A). These apparent K_D values cannot be taken to represent “true” K_D values for FVIII-lipid interaction because of the low FVIII concentration (0.3 nM) in these experiments, and the presence of FIXa and FX which compete for binding to the same surface. Nevertheless, these data reflect that assembly of the FX activating complex at limiting lipid concentrations is slightly hindered by the presence of the glycan at position 2159. This became much more prominent on membranes containing 5% PS (Fig. 7B). Apparently, the glycan in the C1-domain spike 2158-2159 interferes with assembly of the FX activating complex on membranes with low PS content, while leaving complex assembly at higher PS content virtually unaffected.

Glycosylation at position 2159 does not hinder the C1-domain spike 2092-2093. The observed PS-dependence of FVIII-R2159N (Fig. 7B) is similar to that of FVIII with substitutions in membrane-binding spike 2092-2093 (14). The close proximity of the glycan to this spike (see Fig. 2) opens the possibility that the glycan effectively shields C1-domain residues Lys2092-Phe2093, and thereby causes the typical PS-dependence associated with this spike. This was addressed by TMT-labeling of surface-exposed lysine residues, and mass spectrometry analysis of peptides containing Lys2092. FVIII-WT was labeled with TMT-126 and FVIII-R2159N with TMT-127. A ratio 127/126 lower than 1 would be indicative for a lower labeling efficiency of Lys2092 in FVIII-R2159N, and thus for reduced exposure of spike 2092-2093. After chymotrypsin digestion, the FVIII peptide 2080-IHGIKTQGARQKF$^{\text{TMT}}$-2093 was identified with a Δppm of -4.5 (Fig. 8A,B). Fragmentation of these ions by higher energy collision dissociation generates a reporter ion from the TMT-label which allows quantitative comparison. By this approach, the 127/126 ratio of Lys2092 in peptide 2080-2093 was found to be 0.95 (Fig. 8C). Thus, glycosylation at position 2159 does not reduce the labeling efficiency of Lys2092.

DISCUSSION

In the present study, we have used HDX-MS to map the epitope of the anti-C1-domain antibody KM33. This was of particular interest because this antibody is known to interfere with multiple FVIII functional interactions, including VWF binding, LRP interaction, cellular uptake, and FVIII cofactor activity in the activation of FX by FIXa (14,16,17,19). The epitope was found to be discontinuous, comprising two loops in the C1-domain (Fig. 1). We obtained evidence that the core of this epitope is composed of the two spikes at the bottom of these loops, which contain residues 2092-2093 and 2158-2159, respectively (Fig. 2). Previously, we found spike Lys2092-Phe2093 to be involved in binding to LRP, in cellular uptake, and in FVIII activity on membranes of low PS content (14,16,17). We now observed that spike Ile2158-Arg2159 serves a similar role. These findings are based on the functional properties of the FVIII-R2159N variant, which carries a glycan in position 2159 (Fig. 2). Interestingly, the presence of this glycan interferes in the same interactions as the
antibody KM33 does. This particularly applies to interaction with VWF (Fig. 3), LRP cluster II (Fig. 4), and cellular uptake by U87-MG cells and dendritic cells (Fig. 5). However, the effect of the glycan is less pronounced than that of the antibody bound to the same part of the C1-domain. This is not surprising in view of the size difference between the antibody and a glycan of approximately 3 kDa (Fig. 2). Nevertheless, our findings suggest that the bottom of the C1-domain contributes to a number of FVIII functional interactions.

It is remarkable that while the KM33 antibody is a strong inhibitor of FVIII activity, the introduction of the glycan in position 2159 did not inhibit FVIII activity per se (Figs. 6A,C and 7A). The glycan, however, did increase the PS-dependence of this variant, as has previously been found for FVIII variants with amino acid substitutions in the other spike in the C1-domain, in positions 2092-2093 (14,15). Apparently, both spikes serve similar functions in the assembly of FVIII with PS-containing lipid membranes. At low PS content, membrane assembly was significantly impaired (Figs. 6B,D and 7B), suggesting that membrane binding cannot be fully mediated by the C2-domain alone under these conditions of limiting PS exposure. This supports the view that both C-domains support membrane interaction in a cooperative manner (15), and is also compatible with the finding that a FVIII deletion mutant lacking the C2-domain still displays substantial FVIII cofactor activity (37).

One question is whether the phenotype of FVIII-R2159N is due to steric effects due to the glycan, or specifically to the lack of Arg in position 2159. In this regard it is interesting that Gilbert et al. described that a R2159A substitution variant displayed nearly normal FX activation kinetics, but without the typical sensitivity for low PS (15). One explanation for this apparent discrepancy might be that the glycan shields the 2092-2093 spike, and thereby causes the typical PS-dependence associated with this spike. However, our TMT-labeling studies (Fig. 8) indicate that, despite the glycosylation at position 2159, Lys2092 is fully accessible for labeling. Apparently, the glycan increases PS-sensitivity by a mechanism that is similar to, but distinct from that of spike 2092-2093. The most likely interpretation of these findings is that binding to PS-containing membranes involves both spikes 2092-2092 and 2158-2159. In this regard it is of interest that human FV has been found to be partially glycosylated at Asn2181, which is in one of the two membrane-binding spikes of the C2-domain (38,39). The glycosylated FV variant displays lower affinity for PS-containing membranes, and reduced FV activity. This provides additional evidence that both in FV and FVIII the two C-domains together support membrane interaction, and that each C-domain contributes therein by two membrane-binding spikes. In the presence of sufficient PS, however, individual spikes may be dispensable for full cofactor function.

As for VWF interaction, our SPR studies revealed that FVIII-R2159N had retained substantial VWF binding (Fig. 3). The haemophilia A database reports various Arg2159 substitutions that are associated with reduced levels of FVIII and with mild haemophilia A, thus being compatible with reduced VWF interaction (40). In this regard, it is interesting that the R2159A substitution variant described by Gilbert et al. displayed an apparent lack of VWF binding (15). This may seem at variance with the residual binding of FVIII-R2159N in our SPR studies. The reason for this discrepancy remains unclear, but might be related to methodological differences between SPR and competition studies with normal FVIII as reported (15).

With regard to FVIII cellular uptake, it remains unclear whether or not the glycosylated spike 2158-2159 reduces assembly with the endocytic receptor LRP on the cell membrane. While the R2159N variant displays reduced binding to LRP cluster II in our SPR studies, it remains questionable whether this is really due to a difference in affinity (Fig. 3). The interaction of FVIII with LRP is thought to involve a pattern of specific Lys residues distributed over the A3-C1 region of FVIII (41). It therefore seems possible that our binding data reflect some steric hindrance by the glycan at position 2159 in LRP assembly (Fig. 4) and cellular uptake (Fig. 5). If so, this should involve another interactive site than that located in spike 2092-2093 (16,17), because that would be incompatible with our observation that Lys2092 is normally accessible in the glycosylated variant (Fig. 8). The precise mechanism of FVIII uptake by LRP-expressing cells and dendritic cells remains to be identified. Possibly, assembly on the cell membrane involves a mechanism similar to that on membranes of low PS content (Fig. 7),
for instance as an initial step preceding the assembly with LRP or other endocytic receptors.

It would be interesting to have more information on the structure and, more importantly, the orientation of the glycan at position 2159. A typical 3 kDa bi-antennary glycan could protrude towards the membrane surface, but may also fold aside toward the C2-domain. As such, it may disturb the parallel orientation of the two C-domains as seen in the apparently rigid crystal structure (4,5), and thereby affect the cooperative membrane binding by the spikes of the two C-domains. Structural studies using protein dynamics will be needed to unravel this subtle PS-dependent process in more detail.

References

chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J. Biol. Chem. 274, 23734-23739

FOOTNOTES
1To whom correspondence should be addressed: Alexander B. Meijer, Ph.D., Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands (Phone: +31-20-5123151; Fax: +31-20-5123310; e-mail: s.meijer@sanquin.nl)
2The abbreviations used are: FVIII, factor VIII; VWF, von Willebrand factor; LRP, Low density lipoprotein Receptor-related protein; HDX-MS, hydrogen-deuterium exchange mass spectrometry; TMT, Tandem Mass Tag; FVIIIa, activated FVIII; FIXa, activated factor IX; FXa, activated FX; FV, factor V; \(K_d \), dissociation constant; SPR, surface plasmon resonance.
FIGURE LEGENDS

Figure 1: FVIII peptides 2076-2094 and 2149-2162, but not 2076-2090, exhibit reduced HD exchange in the presence of antibody KM33. (A) Mass over charge ratio of the FVIII peptic peptides covering the residues 2076-2094 and 2149-2162 that were dissolved in H₂O in the absence of KM33 (black spectra, top panel), in D₂O (cyan spectra, middle panel) or in D₂O in presence of KM33 (red spectra, bottom panel). (B) Relative level of deuterium incorporation (Da) of the FVIII peptides 2076-2090, 2076-2094 and 2149-2162 as a function of the incubation time in D₂O in presence (red lines and circles) or absence (cyan lines and squares) of KM33. (C) The obtained peptic peptides mapped onto the crystal structure of FVIII (PDB accession code 2R7E). Grey areas are uncovered by the peptide map. The deuterium incorporation level upon KM33 binding was identified to be unchanged for cyan areas and reduced for red areas. The insert zooms in on the FVIII C1-domain.

Figure 2: Glycosylation in C1-domain spike 2158-2159 abolishes the interaction with KM33. (A) The peptides 2076-2094 (turquoise) and 2149-2162 (blue) are located at opposite sites of the C1-domain of FVIII (from PDB entry 2R7E). The C1-domain spikes 2092-2093 and 2158-2159 are shown in yellow and red, respectively. (B) FVIII-WT and the R2159N variant separated by 7.5% SDS-PAGE under reducing conditions. Protein was visualized by silver staining. The light chain of FVIII appears on the gel as a doublet of approx. 80 kDa. (C) SPR analysis of antibody binding to FVIII-R2159N and FVIII-WT. Antibodies included CLB-CAg9 (anti-A2-domain), CLB-CAg12 (anti-A3-domain), ESH4 (anti-C2-domain) and KM33. SPR analysis was performed as described in Materials and Methods.

Figure 3: Effect of glycosylation at FVIII position 2159 on VWF binding. (A) FVIII-WT or (B) FVIII-R2159N were passed over immobilized VWF on a CM5 sensor chip as described in Materials and Methods. (Inset) Binding response at equilibrium (Rₑₜ) was plotted as a function of the FVIII-WT (closed circles) and FVIII-R2159N (open circles) concentration.

Figure 4: Effect of glycosylation at FVIII position 2159 on LRP binding. (A) FVIII-WT or (B) FVIII-R2159N were immobilized via the anti-C2-domain antibody EL14 on a CM5 sensor chip, and LRP cluster II was passed over as described in Materials and Methods. (Inset) Binding response at equilibrium (Rₑₜ) was plotted as a function of the FVIII-WT (closed circles) and FVIII-R2159N (open circles) concentration.

Figure 5: Effect of glycosylation at FVIII position 2159 on cellular uptake. FVIII-WT and FVIII-R2159N were incubated with (A) U87-MG cells and (B) dendritic cells for 30 minutes at 37 °C, and cellular uptake was analyzed as described in Materials and Methods. FVIII-WT is represented by closed circles and FVIII-R2159N by open circles. Data are shown as mean ± SD from three experiments.
Figure 6: Effect of glycosylation at FVIII position 2159 on FX activation. (A, B) FX (25-450 nM) was incubated with FVIII (0.3 nM), thrombin (1 nM), FIXa (16 nM) and phospholipid vesicles (25 µM) containing 15% PS (A) or 5% PS (B) as described in Materials and Methods. Closed circles refer to FVIII-WT and open circles to FVIII-R2159N. Calculated values for K_m and V_{max} were derived assuming standard Michaelis-Menten kinetics. (C, D) FX (200 nM) was activated by FIXa (1-32 nM) in the presence of FVIII (0.3 nM), thrombin (1 nM) and phospholipid vesicles (25 µM) comprising 15% PS (C) or 5% PS (D). Closed circles refer to FVIII-WT and open circles to FVIII-R2159N. Apparent K_D and B_{max} were obtained by fitting the data to a hyperbola. Data represent mean ± SD from at least three experiments.

Figure 7: Lipid-dependence of FX activation in the presence of normal FVIII and FVIII-R2159N. FVIII-WT (0.3 nM, closed circles) or FVIII-R2159N (0.3 nM, open circles) was pre-incubated with thrombin (1 nM), FIXa (16 nM) and phospholipid vesicles (0-20 µM) comprising 15% PS (A) or 5% PS (B). After 1 min the reaction was started by the addition of FX (200 nM final concentration), and FXa formation was monitored as described in Materials and Methods. Data represent mean ± SD from at least three experiments.

Figure 8: Surface-exposure of Lys2092 in normal FVIII and FVIII-R2159N. FVIII-WT and FVIII-R2159N were labeled with TMT-tags and analyzed by mass spectrometry as described in Materials and Methods. (A) The collision-induced dissociation fragmentation spectrum of the peptide 2080-IHGIKTQGARQK$_{TMT}$F-2093. Y-ions are displayed in red and recovered b-ions in blue. Values of m/z, z, -10log(P) and Δppm are indicated. (B) The peptide sequence, including the assigned y- and b-ions. (C) Higher energy collision-induced dissociation fragmentation spectrum of the peptide 2080-IHGIKTQGARQK$_{TMT}$F-2093. The peaks at m/z 126.13 and 127.13 represent the labeling efficiency of Lys2092 in FVIII-WT and FVIII-R2159N, respectively.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

A. Mass spectrum with labeled peaks and ions.

B. Peptide sequence: \(\text{IIH\text{HGITQGARQkF}} \)

- \(b_2 = \text{II} \)
- \(b_3 = \text{IIH} \)
- \(b_4 = \text{IIHG} \)
- \(b_5 = \text{IIHGI} \)
- \(b_6 = \text{IIHGIK} \)
- \(b_7 = \text{IIHGIKT} \)
- \(b_8 = \text{IIHGIKTQ} \)
- \(b_9 = \text{IIHGIKTQG} \)
- \(b_{10} = \text{IIHGIKTQGAR} \)

- \(y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9, y_{10} \)

C. Ratio graph: 127/126 ratio = 0.95
Factor VIII C1-domain spikes 2092-2093 and 2158-2159 comprise regions that modulate cofactor function and cellular uptake

Esther Bloem, Maartje van den Biggelaar, Aleksandra Wroblewska, Jan Voorberg, Johan H. Faber, Marianne Kjalke, Henning R. Stennicke, Koen Mertens and Alexander B. Meijer

J. Biol. Chem. published online September 5, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.473116

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2013/09/05/jbc.M113.473116.full.html#ref-list-1