Extending Serum Half-life of Albumin by Engineering FcRn Binding

Jan Terje Andersen1,2*, Bjørn Dalhus3,4, Dorthe Viuff5, Birgitte Thue Ravn6, Kristin Støen Gunnarsen1,2, Andrew Plumridge5, Karen Bunting5, Filipa Antunes6, Rebecca Williamson5, Steven Athwal5, Elizabeth Allan5, Leslie Evans5, Magnar Bjørås3, Søren Kjærulff5, Darrell Sleep5, Inger Sandlie1,2ǂ and Jason Cameron5ǂ

1Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway. 2CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Norway, PO Box 4950, N-0424 Oslo, Norway. 3Department for Microbiology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950, Nydalen, N-0424 Oslo, Norway. 4Department of Medical Biochemistry, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4950, Nydalen, N-0424 Oslo, Norway. 5Novozymes Biopharma UK Ltd., Castle Court, 59 Castle Boulevard, NG7 1FD Nottingham, United Kingdom. 6Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark.

Running head: Engineering human albumin with superior serum half-life

ǂContributed equally.
*To whom correspondence should be addressed: Jan Terje Andersen. E-mail: j.t.andersen@ibv.uio.no. Jason Cameron. E-mail: jsoc@novozymes.com

Keywords: FcRn, pH-dependent binding, albumin, serum half-life, K573P

Background: FcRn controls the long serum half-life of albumin.
Results: A single amino acid substitution of albumin considerably improved binding to FcRn, and extended serum half-life in mice and rhesus monkeys.
Conclusion: Serum half-life of albumin may be tailored by engineering the FcRn-albumin interaction.
Significance: This study report on engineered albumin that may be attractive for improving the serum half-life of biopharmaceuticals.

SUMMARY
A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of three weeks due to its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 11-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.

INTRODUCTION
The two most abundant soluble proteins in our body, IgG and albumin, account for more than 80% of the total plasma protein pool, and amount to impressive 12 mg/ml and 40 mg/ml, respectively, in both mouse and man. While albumin acts as a versatile transporter of an array of small molecules, supports colloidal osmotic pressure and buffers the pH of the blood, IgG is the major antibody class that protects against invading pathogens. However, IgG and albumin also share two remarkable features. First, they both have prolonged half-lives of 19 days compared with few days or less for other circulating proteins. Second, they are unique
among the plasma proteins in that there is a direct relationship between their blood concentrations and their fractional catabolic rates. It has now become apparent that their homeostatic regulation is controlled by a cellular receptor, named the neonatal Fc receptor (FcRn), which rescues both from intracellular degradation and thus is responsible for their prolonged half-lives (1,2).

FcRn is a major histocompatibility class I-related molecule that is built up of a unique transmembrane heavy chain (HC), which non-covalently associates with the common β2-microglobulin (β2m)(3,4). The extracellular part of the HC consists of three domains (α1, α2 and α3) where the amino-terminal α1-α2 domains form eight antiparallel β-pleated strands topped by two long α-helices followed by the membrane proximal α3-domain(5,6). The β2m subunit is bound to the HC via both the α1-α2 platform and the α3-domain.

IgG and albumin bind FcRn simultaneously in a non-cooperative and strictly pH dependent manner, with strong binding at pH 6.0 that becomes progressively weaker approaching neutral pH (2,7,8). These pH sensitive interactions are regulated by ionic networks at the interfaces and internally in each protein (5,9-11). FcRn rescues the proteins from degradation in hematopoietic cells and endothelial cells lining the vascular space by binding IgG and albumin within intracellular endosomal compartments, which then results in transport of the ternary complex to the cell membrane for release of ligands back into the circulation as a consequence of exposure to the neutral pH of the blood (1,12,13).

Full length antibodies of the IgG type and IgG Fc fusions are the fastest growing classes of biopharmaceuticals(14). Their remarkably long serum half-life provided by FcRn has surely contributed to their clinical success. Moreover, the central role of FcRn in controlling pharmacokinetics of IgG has inspired the development of novel Fc-engineered IgG molecules with improved FcRn binding that result in extended half-lives and improved therapeutic efficacy (15-18). The lesson learned from such studies, is that the major engineering challenge is to increase binding affinity at pH 6.0, while at the same time retaining low affinity at near-neutral pH, so as to allow efficient FcRn-mediated recycling.

While the molecular interaction between FcRn and IgG has been studied for decades, the characterization of the albumin-FcRn interaction is just starting (7,8,10,11,19). Still, the knowledge of its prolonged half-life has been utilized for some time to improve the in vivo efficacy of therapeutics. The approaches taken, have been to associate or covalently couple a protein of interest by genetic fusion or chemical conjugation to albumin leading to increase in vivo half-life of the fusion compared to the original molecule (20,21). The great advantage of extended serum persistence is a more even serum concentration of the drug, lower dosing frequency, and that the doses given may be decreased without compromising pharmacological efficacy. This may well translate into less toxicity and side effects, as well as improved compliance. Using albumin to increase half-life has been shown to be useful for a wide range of different proteins that includes coagulation factors, antibody fragments, interferon 2b and glucagon-like peptide-1, as reviewed elsewhere (20-23).

Thus, we aimed to develop novel engineered human serum albumin (HSA) variants with improved pH dependent binding to human FcRn (hFcRn) and enhanced serum half-life that can be used as improved carriers for diagnostics and therapeutics.

Here, we report on a panel of engineered single HSA variants with substitutions at position 573 within the C-terminal helix of domain III (DIII). All show considerably improved binding to hFcRn. Surprisingly, replacement of Lys573 with any amino acid resulted in enhanced binding to hFcRn at acidic pH. In particular, K573P, where Lys573 was replaced by a proline, had more than 11-fold improved affinity towards hFcRn, resulting in extended serum half-life in wild-type (WT) mice, mice transgenic (Tg) for hFcRn and cynomolgus monkeys. Importantly, fusion of an antibody derived single-chain variable fragment (scFv) to the K573P variant did not negatively affect the favorable binding. Thus, the K573P variant may be an ideal carrier for half-life extension of both conjugated and genetically fused diagnostics and therapeutics.

EXPERIMENTAL PROCEDURES
Construction and production of recombinant FcRn -The construction and production of recombinant soluble mouse, cynomolgus
monkey and human forms of FcRn have been described previously (22,24,25).

Construction and production of HSA variants - Construction of WT HSA, MSA, CSA and variants were done essentially by following the procedures previously described (10,22). The albumin variants were produced in *Saccharomyces cerevisiae* and monomeric fractions were purified using the AlbuPure™ matrix (ProMetic BioSciences) followed by chromatography as described (10). Construction and production of WT HSA, K500A and K573P with N- or C-terminal fusions of a scFv fragment with specificity for fluorescein isothiocyanate isothiocyanate were done in accordance with previously described procedures (22,26). WT HSA and K573P with N-terminal fusions of a c-Myc tag (EQKLISEEDL) without a linker sequence were constructed essentially as previously described (10), followed by purification using AlbuPure™, diethylaminoethyl weak anion exchange Sepharose Fast Flow (GE Healthcare) and Sephacryl S200 high resolution gel filtration (GE Healthcare) as to reduce the level of a +2058 Da miscleaved leader to below 5% (w/v).

Determination of FcRn binding by SPR - A Biacore 3000 instrument (GE Healthcare) was used with CM5 sensor chips coated with mFcRn, cmFcRn or hFcRn (1000 RU) using amine coupling chemistry as described by the manufacturer. The coupling was performed by injecting 5-10 μg/ml of each protein into 10 mM sodium acetate, pH 5.0 (GE Healthcare). For all experiments, phosphate buffer (67 mM phosphate buffer, 0.15 M NaCl, 0.005% Tween 20) with pH 5.5 or 6.0 or 7.4 was used as running buffer and dilution buffer. Regeneration of the surfaces were achieved using injections of HBS-EP buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.005% surfactant P20) at pH 7.4 (GE Healthcare).Kinetic measurements were performed by injecting serial dilutions of 100-1.4 μM or 10-0.03 μM of albumin variants with a flow rate of 40 μl/min at 25°C. For all sensorgrams, data were zero adjusted, and the reference cell value was subtracted. Binding kinetic constants were calculated using the predefined binding models provided by the BIAevaluation 4.1 software.

ELISA - Ovalbumin conjugated to 4-hydroxy-3-iodo-5-nitrophenylacetic acid (NIP) (1 μg/ml) was coated in Microtiter wells (Nunc) over night at 4°C, and then blocked with 4% skimmed milk (Acumedia) in PBS for 1 h at room temperature. Subsequently, the wells were washed with PBS/0.005% Tween 20 (PBS/T) pH 6.0 before titrated amounts of an anti-NIP human IgG1 antibody (10 nM-0.07 nM) was added for 1 h. After washing as above, GST-tagged hFcRn (0.5 μg/ml) was added alone or in the presence of 1000 nM of WT HSA, WT MSA, K500A or K573P followed by incubated for 1 h and washing as above. Bound receptor was detected using a horseradish peroxidase-conjugated goat anti-GST antibody (GE Healthcare) that was added followed incubation and washing. Visualization was done by adding tetramethylbenzidine substrate (Calbiochem). Quantification of total mouse IgG was done using a mouse IgG quantification kit (Bethyl Laboratories Inc).

Circular dichroism spectroscopy - Circular dichroism spectra were recorded using a Jasco J-810 spectropolarimeter (Jasco International Co., Ltd., Tokyo Japan) calibrated with ammonium d-camphor-10-sulfonate (Icatayama Chemicals). All measurements were performed with a HSA concentration of 2 mg/ml in 10 mM phosphate buffered saline (pH 6.0) without NaCl added, at 23°C using a quartz cuvette (Starna) with a path length of 0.1 cm. Each sample was scanned 7 times at 20 nm/min, and band width of 1 nm at a response time of 1 s, and the wavelength range was set to 190-260 nm. The collected data were averaged and the spectrum of a sample-free control was subtracted. The content of secondary structural elements was calculated after smoothing (means-movement, convolution width 5) from ellipticity data, using the neural network program CDNN version 2.1 and the supplied neural network based on the 33-member basis set(27).

In vivo mouse and cynomolgus monkey studies - NMRI mice (female, age 8-10 weeks, weight between 20-30 g, 18 mice per group, 6 mice per time point) received a 10 mg/kg intravenous injections of WT HSA, K500A and K573P (dose volume 5 ml/kg) in 1xPBS. Blood samples (30 µl) were collected from the tail vessel in time intervals of a) pre-dose, 0.08, 6, 48, 120, 192, 264 h for mouse number 1-6, a) pre-dose, 1, 12, 72, 144, 216, 288 h for mouse number 7-12 and c) pre-dose, 2, 24, 96, 168, 240 and 312 h for mouse number 13-18. Mice Tg for hFcRn (Tg32) on a C57BL/6J genetic background were obtained from The Jackson Laboratory (Bar Harbor, Maine).
Harbor, ME 04609, USA)(28). Tg32 Tg mouse strain, isogenic on a B6 background, harbors a knockout allele of the FcRn HC (Fcgrttm1Dcr) and expresses an hFcRn HC (FCGRT) transgene under control of the hFcRn promoter. The Tg32 mice (male, age 6-10 weeks, weight >15 g, 10 mice per group, 5 mice per time point) received a 10 mg/kg intravenous injections of WT HSA, K500A and K573P (dose volume 5 ml/kg). Blood samples (30 µl) were collected from the tail vessel in time intervals of a) pre-dose, 2, 12, 72, 192, 264 h for mouse number 1-5 and b) pre-dose, 6, 48, 96, 168, 240 and 312 h for mouse number 6-10.

Female cynomolgus monkeys (Macaca fascicularis) (weigh between 2.5-3.5 kg, 2 animals/group) were injected with c-Myc tagged WT HSA and K575P in 1xPBS (dose volume 5 ml/kg). Prior to injections, a pre-dose blood sample was collected while post dosing of blood (0.8 ml) was drawn at 0.25, 2, 8, 24, 48, 72, 96, 120, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 720, 816, 912, 1008, 1104 and 1200 h. Plasma samples were prepared from blood collected onto a 0.13 M sodium citrate as anticoagulant, mixed thoroughly by inversion and centrifuged at 2000xg for 10 min at 4°C. All animal experiments and procedures were reviewed and approved by Institutional Animal Care and Use Committee prior to procedure initiation. All studies were conducted according to the Animal Welfare Act 1986, and conducted in a manner to avoid or minimize distress or pain to animals.

Analysis of pharmacokinetics - All serum samples were stored a -80°C until analysis by AlphaLISA using a HSA kit (PerkinElmer) (mouse) or a c-Myc ELISA (primate). The latter was performed with EIA Maxisorb plates (Nunc) coated overnight with an anti-c-Myc antibody (Abcam) at 1.25 µg/ml in 1xPBS before the plates washed 3 times with 1xPBS containing 0.05% Tween-20 (PBST) (Sigma-Aldrich), pH 7.4. Then, the plates were blocked for 2 h with PBS containing 5% skimmed milk powder 1% Tween-20 and 10% rat serum, pH 7.4. Plasma samples were diluted 1:10 in 1xPBS and mixed with 10% female cynomolgus monkey sodium citrate plasma (SeraLab) in PBST at final dilutions of 1:10, 1:20, 1:40 and 1:80. A standard curve was included on each plate with purified c-Myc HSA diluted in 10% cynomolgus monkey plasma in PBST. Plates were incubated for 1 h before washed as above. Next, 100 µl of an biotinylated anti-HSA antibody (Abcam) at 1.5 µg/ml in PBST were added to the plates followed incubation for 30 min. Plates were washed as above and 100 µl of 1.25 µg/ml HRP-conjugated streptavidin (Sigma-Aldrich) in PBST was added to the plates and incubated for 30 min. Subsequently, the plates were washed as above and the signal developed with 100 µl of 3,3',5,5'-Tetramethylbenzidine-Ultra substrate (Pierce) for 5 min before the reactions were stopped with 0.2 M sulfuric acid. The signals were measured on an EnSpire Multimode plate reader (Perkin Elmer) as 450 nm - 550 nm. The standard curve on each plate was fitted to a 4-parameter nonlinear regression model using an in-house Excel Macro and the plasma HSA concentration calculated at each time point using the dilutions that fell within the linear range of the standard curve.

Group mean serum or plasma concentration profiles were subjected to non-compartmental pharmacokinetic analysis using WinNonLin version 5.3 (mouse) (Pharsight Corporation) or WinNonLin version 6.3 (primate). Nominal time points and doses were used and all data points were equally weighted in the analysis. Mean serum concentrations versus time profiles for each of the HSA variants were fit with a 2-compartment model to generate the curve fit shown in the figures. The following pharmacokinetic parameters were assessed: C_{max}, AUC, V_z, CL, and $T_{1/2}$.

Sequence and structural analysis - The ClustalW software was used for amino acid sequence alignments. The NCBI accession numbers of the albumin sequences used were: (Human), AAT90502 (Elephant), AF375971.1 (Tuatara), NP_001127106 (Orangutan), AAA30988 (pig), XP_001103956 (Rhesus monkey), NP_001075972 (Horse), NP_001009961 (Cat), NP_001081244 (Frog), NP_001117164 (Salmon), AAV28861 (Donkey), AAA51411 (Cow), NP_001103956 (Rhesus monkey), NP_001075972 (Horse), NP_001009961 (Cat), NP_001081244 (Frog), NP_001117164 (Salmon), AAV28861 (Donkey), AAA51411 (Cow), NP_001009961 (Sheep), ACFL9391 (Goat), CA76841 (Dog), BAB58347 (Rabbit), NP_001166576 (Guinea pig), NP_001268578 (Hamster), AAH85359 (Rat) and AAH49971 (Mouse).

Coordinates of the crystal structures of HSA (1bm0) (29) and hFcRn in complex with a HSA variant (HSA13) containing four mutations (4k71) (11) were retrieved from the protein data base. The structures were inspected using PyMOL (Schrodinger Inc, www.pymol.org).
RESULTS

Identification of HSA variants with altered binding - We have previously obtained mechanistic knowledge about the FcRn-albumin interaction where DIII of HSA was identified as crucial for pH dependent binding to the receptor (10,19). DIII is divided into two sub-domains, DIIIa and DIIIb, which consist of α-helices connected by a long flexible linker (Fig. 1A). Both sub-domains are important for FcRn binding, and removal of the whole DIII or only DIIIb eliminates binding (8,10).

Interestingly, inspection of the crystal structures of HSA reveals that the electron density corresponding to the C-terminal part is not clearly defined, probably as a result of conformational flexibility (29,30). This led to the speculation that binding of hFcRn may stabilize this part of HSA. To address the impact of the C-terminal end, three charged amino acid residues (Lys573, Lys574 and Gln580) in the last α-helix of HSA (Fig. 1B) were targeted by mutating each to an alanine. The HSA variants were subsequently expressed in Saccharomyces cerevisiae, and binding to hFcRn was measured using surface plasmon resonance (SPR). Equal amounts of each variant were injected over immobilized receptor at pH 6.0. Compared with WT HSA, the K574A and Q580A variants showed reversible binding to hFcRn at pH 6.0, but with reduced capacity to interact (Fig. 1C). In stark contrast, K573A showed considerably stronger binding than the WT (Fig. 1D). Kinetic calculations revealed that K573A had 2.5-fold improved binding affinity. The importance of the stretch of amino acids corresponding to positions 573-585 was further confirmed by introducing a stop codon at position 573 (HSA K573X), which resulted in a more than 18-fold reduction in binding affinity (Fig. 1E).

Substitution of Lys573 with a proline improves binding considerably - To investigate the evolutionary conservation of amino acids in the C-terminal end of albumin, we aligned the sequences from 20 different species and found that position 573 was found to be one of the most conserved, harboring a proline residue in 18 out of 20 species, while human and orangutan albumins have a lysine (Fig. 2A). This prompted us to investigate how a proline at this position in HSA influences binding to hFcRn. Using SPR, we demonstrated that introduction of the single substitution K573P did not disrupt pH dependent binding, but instead resulted in a considerable improvement in binding to hFcRn without a concomitant increase in binding at neutral pH (Fig. 2B). Kinetic measurements demonstrated a more than 12-fold improvement compared with the WT, due almost exclusively to slower off-rate (kd).

A panel of HSA single point variants with improved FcRn binding - To further investigate the potential of modulating position 573, we designed a library consisting of all 20 naturally occurring amino acids at this specific site. The variants were well expressed in Saccharomyces cerevisiae and purified as monomers (Fig. 3A). Using SPR as above, we screened the panel of 573 variants for binding to hFcRn at pH 6.0 (Fig. 3B-S). Strikingly, all 573 variants showed improved binding to the receptor with distinct differences in binding kinetics, which generated a hierarchy of novel HSA variants with superior binding to hFcRn. While 16 out of 19 variants bound less well than K573P, the largest improvement in binding strength was obtained when K573 was swapped to a hydrophobic tryptophan or a tyrosine, which both showed 2-fold better affinity than K573P, and consequently more than 30-fold stronger binding at acidic pH compared with WT HSA. However, these variants also showed a somewhat improved binding at neutral pH compared with K573P (data not shown).

HSA K573P shows extended half-life in mice and cynomolgus monkeys - Based on the facts that proline is the most common amino acid at position 573 (conserved in 18 of 20 species), and that the K573P variant solely bound strongly to FcRn at acidic pH with no sign of binding at neutral pH, we chose this variant for in vivo studies. Importantly, pre-clinical pharmacokinetic evaluations of HSA and HSA fusion molecules are routinely performed in rodents. However, we recently showed that such half-life evaluations are somewhat limited by the fact that FcRn from these species bind poorly to HSA compared with albumin from the animals themselves (22,24). In line with this, recombinant WT HSA bound with 25-fold weaker affinity than mouse serum albumin (MSA) to mouse FcRn (mFcRn) (Fig. 4A-B). Consequently, HSA injected into mice competes for binding to mFcRn with roughly 40 mg/ml endogenous MSA, resulting in a shorter half-life of HSA than that of endogenous MSA (24).
Although mFcRn binds 25-fold less well to HSA than MSA, introduction of the single point mutation (K573P) greatly affected binding, as the affinity improved almost 15-fold (Fig. 4C). Thus, K573P binds almost as strongly as MSA. Hence, we aimed for pharmacokinetic experiments in WT NMRI mice. WT HSA and K573P were compared with a HSA variant, which contains a point mutation (K500A), located within an extended loop connecting the two DIII sub-domains, that reduces binding to hFcRn by more than 30-fold (10). Calculation of their half-life from serum concentration measurements showed that K573P gave rise to a 1.5-fold enhancement in half-life relative to that of WT HSA (Fig. 5A; Table 1). Notably, and in agreement with poor binding of WT HSA to mFcRn, the half-life of WT HSA was only slightly longer than that of K500A (Fig. 5A, Table 1).

The fact that MSA binds more than 5-fold more strongly to hFcRn than HSA (24) may impact pharmacokinetic evaluations in mice Tg for hFcRn. Nevertheless, K573P binds more than 2-fold stronger than MSA. Thus, we compared the HSA variants in a Tg mouse strain lacking the expression of mFcRn and over-expressing hFcRn under the control of the human promoter (FcRn−/− hFcRn Tg mice) (28). The pharmacokinetics revealed that K573P gave rise to almost 1.5-fold enhancement in serum half-life than WT HSA, and 3-fold longer persistence than the K500A variant (Fig. 5b; Table 1). Notably, a comparison of the two mouse models revealed that the serum half-life of WT and K573P increased 3-fold in hFcRn Tg mice compared to NMRI mice (Table 1).

Next, these encouraging data prompted us to perform a pharmacokinetic study in cynomolgus monkeys to evaluate the capacity of K573P to improve serum half-life. Although HSA shows high amino acid sequence similarities with that of cynomolgus monkey albumin (CSA), three amino acids differ in the C-terminal α-helix, which includes position 573 that is a proline (Fig. 2A). Nevertheless, WT HSA was shown to bind cynomolgus monkey FcRn (cmFcRn) slightly weaker than CSA while K573P bound with almost 11-fold improved affinity compared with CSA, similar to the improvement measured towards hFcRn (Fig. 4D-F).

To quantify the amounts of the HSA variants in blood samples from cynomolgus monkeys, a short c-Myc tag was added to the N-terminal end to distinguish the variants from endogenous CSA (data not shown). The pharmacokinetics demonstrated that introduction of a single point mutation in HSA prolonged the serum half-life from 5.4 to 8.8 days (Fig. 5C, Table 2).

Engineering of HSA does not affect binding to IgG - To investigate whether engineering of HSA for improved pH dependent binding to hFcRn affected IgG binding, we performed an ELISA where hFcRn was added to titrated amounts of human IgG1 in the absent or presence of 100-fold excess amounts of HSA, MSA, K500A or K573P. The results showed that hFcRn bound human IgG1 equally well under all conditions (Fig. 6A). Furthermore, we quantified the total serum levels of mouse IgG in blood of WT NMRI mice and hFcRn Tg mice before and after injections of WT HSA, K500A and K573P, which showed that the levels were similar pre and 24 and 72 hours post injection in both strains (Fig. 6B-C). Notably, hFcRn Tg mice showed very low levels of mouse IgG, which were more than 10-fold lower than that of WT mice. This is explained by the fact that hFcRn does not bind strongly to mouse IgG subclasses (2,24,31). Our data are in agreement with previous findings showing that the ligands bind to separated binding sites on FcRn (8,10,11,24,32).

Fusion of scFv to HSA K573P does not negatively affect binding - We have recently showed that genetic fusion of a peptide or an antibody derived scFv fragment to the N-terminal end of WT HSA has no major impact on binding to hFcRn, while fusion to the C-terminal end slightly affects binding negatively (22). To utilize K573P as a carrier of therapeutics it is important that favorable binding is retained post fusion. To address this, we compared the binding integrity of the WT with that of K573P after fusion of a scFv fragment to the N-terminal or the C-terminal end. The resulting SPR sensorgrams showed that the K573P fusions bound strongly to hFcRn post fusion at pH 6.0 compared with the WT while fusions containing K500A bound poorly (Fig. 7A-B). Importantly, the derived binding kinetics showed that scFv-fusions harboring K573P have KD values 11-12 fold stronger than that of the WT formats, and a slightly shift towards weaker affinity was observed for the C-terminal fusions.

A structural explanation for improved binding - Introduction of K573P on the global structure
was investigated and compared with that of the WT and K500A variants using circular dichroism. The obtained spectra at pH 6.0 were very similar for the HSA variants (data not shown), and calculation of their secondary structure elements revealed that the mutations did not have detectable impact on global folding (Table 3).

Furthermore, to understand why the panel of position-573 variants gave rise to a hierarchy of improved binders, we scrutinized a recently published co-crystal structure of hFcRn in complex with a HSA variant (HSA13) containing four amino acid substitutions (V418M/T420A/E505G/V547A) within DIII (11). The co-crystal structure shows that Lys573 of HSA13 makes contacts with Glu69 and Ser20 of the β2m, where Lys573 forms a salt bridge with Glu69 (Fig. 7C-D). Our SPR binding studies show that a lysine at this position is the least favorable residue, since replacement with any other amino acid results in improved binding, a finding that is not easily explained by inspection of the interaction interface. Potentially, loss of the salt bridge between Lys573 and Glu69 could permit DIIIb to adopt a position promoting formation of the hydrophobic interface with hFcRn. Interestingly, the HSA13-hFcRn crystal structure contains two independent copies, of which one lacks the salt bridge between Lys573 and Glu69. Additionally, it is tempting to speculate that one or more of the mutations introduced in HSA13 may have structurally altered this region of HSA. A candidate in this regard is V547A, in DIIIb, which potentially facilitates reorientation of and/or altered contacts between the last two C-terminal helices (11).

DISCUSSION

In this report we used rational design to engineer a panel of HSA variants with altered hFcRn binding affinities. One candidate, K573P, showed extended serum half-life in normal mice and mice Tg for the human receptor as well as in cynomolgus monkeys. Importantly, the enhanced affinity of the K573P mutation was retained post fusion of a scFv fragment to either the N or C-terminal end. This variant is one of a panel of variants where all have increased binding to hFcRn at acidic pH relative to WT HSA. This work thus paves the way for a new generation of HSA fusion therapeutics utilizing the novel engineered HSA scaffolds as drug carriers. Our results indicate that serum half-life can be tailored using the HSA variants developed, which ultimately may lead to superior efficacy of biopharmaceuticals and greater convenience for patients.

We have previously reported that MSA binds much more strongly to mFcRn than does HSA (22,24). This must be considered when mice are utilized as pre-clinical models to determine the pharmacokinetics of HSA variants and fusions. When small amounts of HSA-fusions are injected into mice, they compete for mFcRn binding with large amounts of endogenous MSA (40 mg/ml). Biopharmaceutical fusion to HSA has resulted in improved pharmacokinetics, likely as the result of increased molecular weight above the renal clearance threshold; however, the serum half-lives did not reach that of endogenous albumin, underscoring the importance of efficient FcRn-mediated recycling and the route of clearance of HSA fusions. The nature of the fused protein may also potentially affect receptor binding, which needs to be addressed for each unique fusion. Thus, prior to in vivo evaluations in rodents, the FcRn binding kinetics should be determined.

Here we demonstrate that single point mutations in HSA have a large effect on the binding kinetics towards FcRn from mouse, cynomolgus monkey and human. Despite the shortcomings of existing mouse models, we provide evidence that such engineering translates into altered half-life, where K573P and K500A showed increased and decreased half-life, respectively. Notably, while WT HSA showed almost a similar half-life as K500A in WT mice, it demonstrated 2-fold longer half-life in the hFcRn Tg mice. This is likely to be due to the fact that this mouse strain heavily over-expresses the receptor, which results in more available FcRn that can engage in binding of injected HSA in the presence of competing MSA. Nevertheless, the K573P variant demonstrated nearly 50% increase in serum persistence, and these encouraging results prompted us to address the half-life of K573P in cynomolgus monkeys. Here it was revealed that the single substitution extended the half-life by 3.4 days (5.4 to 8.8 days). Thus, it is expected that the effect will be at least as great in humans.

We have previously shown that swapping of DIII derived from MSA onto DI-DII of HSA gave rise to a hybrid albumin with considerably improved binding towards mFcRn, while
swapping of DIII of HSA onto DI-DII of MSA reduced binding (22). Further, we swapped the stretch of amino acids corresponding to the C-terminal α-helix of MSA onto HSA (HSA-Cm), which resulted in a 4-fold improved binding compared with WT HSA (22). To our knowledge this was the first HSA variant reported to have improved pH dependent binding towards hFcRn. HSA-Cm harbours 8 amino acid changes compared with the WT HSA, one of which is K573P. By introducing only K573P into HSA, the binding affinity to mFcRn was improved by more than 20-fold, demonstrating the importance of a proline at this position for optimal binding to mFcRn, and it partly explains why WT HSA binds the mouse receptor poorly.

Furthermore, we showed that a lysine at position 573, as found in WT HSA, is the residue that gives the lowest affinity towards hFcRn, as replacement of this charged residue with any other amino acid improves binding at pH 6.0. Some variants also showed low, but detectable binding at pH 7.4. As of now, one cannot easily predict how this will affect half-life of variants with very strong binding at acidic pH. Moreover, the fact that all species have a proline at position 573 except human and orangutan, is an interesting observation. A proline at this position in the context of the endogenous HSA would result in extended half-life beyond 19-20 days. This would not necessarily have been favourable, as albumin serves as a carrier, not only of nutritious, but also toxins and waste products such as heme and bilirubin (33,34), however in a therapeutic context extended half-life is desirable.

Interestingly, K573E, which showed 2.4-fold improved binding to hFcRn, also exists as a very rare mutation in humans, first identified in a homozygote male (35). It is expected that this variant has a longer serum half-life in such individuals. However, no reports exist of pathogenic manifestations.

HSA is increasingly utilized as a versatile carrier for therapeutic and diagnostic agents (20,21,36). This technology allows for genetic fusion to HSA by fusion to the N- or C-terminal end of a protein of interest (Albufuse® technology), or alternatively, by chemical conjugation to a free cysteine residue within DI (Cys34). These strategies have been broadly applied for half-life extension of small protein and chemical drugs, as reviewed (20,21,36). Moreover, great benefits may be achieved by this technology for small proteins such as drugs for diabetes control, coagulation factors, hormones or cytokines.

Importantly, we recently showed that fusion of a peptide or an scFv fragment to either ends of HSA has only a minor negative impact on binding to the receptor, where the most pronounced effect was detected for C-terminal fusions, although still minor (22). This may easily be compensated by introducing mutations, such as K573P, which will result in more than 12-fold better hFcRn binding at acidic pH than the WT counterpart that consequently will result in extended half-life. This may lead to superior pharmacokinetics tailored to disease state and improved patient compliance.

REFERENCES

4. Story, C. M., Mikulksa, J. E., and Simister, N. E. (1994) A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of

ACKNOWLEDGMENTS
We are grateful to Sathiaruby Sivaganesh for excellent technical assistance and all our colleagues at Novozymes Biopharma’s sites in UK and Denmark. This work was supported in part by the Research Council of Norway through its Centres of Excellence funding scheme (project number 179573). J.T.A. was supported by the Norwegian Research Council (Grant no. 179573/40) and South-Eastern Norway Regional Health Authority (Grant no. 39375). K.S.G. was supported by the Norwegian Research Council (Grant no. 179573). M.B. and B.D. were supported by the South-Eastern Norway Regional Health Authority to establish the Regional Technology Platform for Structural Biology and Bioinformatics (Grants no. 2009100, 2011040 and 2012085).

COMPETING FINANCIAL INTERESTS
I.S., J.T.A. B.D., J.C., A.P., L.E. and D.S. are co-inventors of pending patent applications related to the data described in this paper. The remaining authors have no competing financial interest to declare.

AUTHOR CONTRIBUTIONS

ABBREVIATIONS
DIII, domain III; HC, heavy chain; hFcRn, human FcRn; HSA, human serum albumin; FcRn, mFcRn, mouse FcRn; MSA, mouse serum albumin; FcRn, neonatal Fc receptor; scFv, single-chain fragment variable; SPR, surface plasmon resonance; Tg, transgenic; WT, wild type; β2m, β2-microglobulin.

FIGURE LEGENDS
Figure 1. Amino acid substitutions in the last C-terminal end of HSA DIII modulate binding to hFcRn. (A) An illustration of the crystal structure of full-length HSA with the three domains DI (pink), DII (orange) and DIII (cyan/blue) highlighted. The DIII is split into sub-domains DIIIa (cyan) and DIIIb (blue). (B) A close-up of DIIIb and the last α-helix in the C-terminal end with the amino acid residues Lys573, Lys574 and Gln580 indicated. The figures were made using the software PyMOL, using coordinates from PDB entry 1bm0. (C)-(E) Representative SPR sensorgrams showing binding of 1 μM of (c) WT HSA, K574A, Q580A, (d) WT HSA and K573A, and (E) WT HSA and HSA K573X to immobilized hFcRn at pH 6.0. Injections were performed at 25°C, and the flow rate was set to 40 μl/min. The kinetic rate constants were obtained using a simple first-order (1:1) bimolecular interaction model (Langmuir) or a steady state affinity model supplied by the BIAevaluation 4.1 software. The kinetic values represent the average of triplicates.

Figure 2. Considerably improved pH dependent binding to hFcRn of a HSA variant containing K573P. (A) A ClustalW amino acid sequence alignment of the last C-terminal α-helix of albumin derived from 20 species. The amino acid residues at position 573, 574 and 580 are indicated. A lysine or a proline at position 573 is highlighted in blue and red, respectively. (B) A representative SPR sensorgrams showing binding of 1 μM of K573P to immobilized hFcRn at pH 6.0 and pH 7.4. Injections were performed at 25°C, and the flow rate was 40 μl/min. The kinetic rate constants were obtained using a Langmuir binding model supplied by the BIAevaluation 4.1 software. The kinetic values represent the average of triplicates.

Figure 3. A panel of single point HSA variants with improved binding to hFcRn. (A) WT HSA and HSA variants were produced in Saccharomyces cerevisiae and subsequently purified on an albumin affinity matrix before analysis by 4-12% (w/v) SDS-PAGE. (B-S) Representative sensorgrams showing binding of titrated amounts of WT HSA and 573 variants to immobilized hFcRn at pH 5.5. Injections were performed at 25°C, and the flow rate was 40 μl/min. The kinetic rate constants were obtained using a Langmuir binding model supplied by the BIAevaluation 4.1 software. The kinetic values represent the average of triplicates.
Figure 4. HSA K573P shows improved binding to mFcRn. Representative sensorgrams showing binding of titrated amounts of (A) WT MSA (10-0.03 μM), (B) WT HSA (100-1.4 μM) and (C) HSA K573P (10-0.03 μM) to immobilized mFcRn at pH 6.0. Representative sensorgrams showing binding of titrated amounts of (D) WT CSA (10-0.03 μM), (E) WT HSA (10-0.03 μM) and (F) HSA K573P to immobilized cmFcRn at pH 6.0. All injections were performed at 25°C, and the flow rate was 40 μl/min. The kinetic rate constants were obtained using a Langmuir binding model or a steady state affinity model supplied by the BIAevaluation 4.1 software. The kinetic values represent the average of triplicates.

Figure 5. HSA K573P shows extended serum half-life in mice and cynomolgus monkeys. Log-linear changes in serum concentrations of WT HSA, K500A and K573P in (A) WT NMRI mice (18 mice per group, 6 mice per time point) and (B) FcRn−/− hFcRn Tg32 mice (10 mice per group, 5 mice per time point). HSA variants were administered by intravenous infusions at 10 mg/kg, followed by collecting serum samples from the tail vein before the serum HSA concentrations were determined using an AlphaLISA immunoassay. (C) Log-linear changes in serum concentrations of WT HSA and K573P in cynomolgus monkeys (2 monkeys per group). HSA variants were administered by intravenous infusions at 1 mg/kg, followed by collecting serum samples before the HSA concentrations were determined using an anti-c-Myc ELISA. Results are means ± standard errors.

Figure 6. Engineering of HSA does not affect binding to IgG. (A) ELISA showing binding of hFcRn-GST to titrated amounts of human IgG1 (10 nM-0.07 nM) in the absent or presence of 1000 nM of HSA, MSA, K500A or K573P. The ELISA was performed at pH 6.0. The numbers given represent the mean of triplicates. (B) ELISA quantification of the serum concentrations of total mouse IgG in WT mice and hFcRn Tg mice pre and post injections (0 h, 24 h and 72 h) of WT HSA, K500A and K573P. The numbers given represent the mean of triplicates.

Figure 7. Binding of HSA scFv fusions to hFcRn and a structural overview of the C-terminal end of HSA in complex with hFcRn. (A) Representative sensorgrams showing binding of 1 μM of scFv-WT HSA, scFv-K500A and scFv-K573P, and (B) WT HSA-scFv, K500A-scFv and K573P-scFv to immobilized hFcRn at pH 6.0. Injections were performed at 25°C, and the flow rate was 40 μl/min. (C) An overview of the crystal structure complex between recombinant hFcRn and a HSA variant with four point substitutions (PDB entry 4k71). The three HSA domains DI, DII and DIII are shown in pink, orange and cyan/blue, respectively. DIII is split into sub-domains DIIIa (cyan) and DIIIb (blue). The HC of the hFcRn is shown in green while the β2m subunit is shown in gray. The last α-helix of DIIIb is indicated by an arrow. (D) A close-up of the structural area of the complex showing the last α-helix of DIIIb and the interaction of Lys573 with Glu69 and Ser20 of the β2m unit. The neighboring hydrophobic Phe22 is also indicated. The figures were made using the software PyMOL.
Table 1. Pharmacokinetic evaluations of HSA variants in mice

<table>
<thead>
<tr>
<th></th>
<th>Dose (i.v.)</th>
<th>C<sub>max</sub> (μg/ml)</th>
<th>AUC (h x μg x ml)</th>
<th>V<sub>Z</sub> (mg/kg)</th>
<th>CL (ml/h/kg)</th>
<th>T<sub>1/2</sub> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT NMRI mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>10 mg/kg</td>
<td>172</td>
<td>2.816</td>
<td>108.0</td>
<td>3.55</td>
<td>21.0</td>
</tr>
<tr>
<td>K500A</td>
<td>10 mg/kg</td>
<td>139</td>
<td>2.156</td>
<td>128.0</td>
<td>4.64</td>
<td>19.1</td>
</tr>
<tr>
<td>K573P</td>
<td>10 mg/kg</td>
<td>244</td>
<td>2.157</td>
<td>120.0</td>
<td>2.72</td>
<td>30.6</td>
</tr>
<tr>
<td>FcRn<sup>−/−</sup> hFcRn Tg32 mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>10 mg/kg</td>
<td>106</td>
<td>7.527</td>
<td>128.0</td>
<td>1.33</td>
<td>67.0</td>
</tr>
<tr>
<td>K500A</td>
<td>10 mg/kg</td>
<td>156</td>
<td>4.490</td>
<td>128.0</td>
<td>2.23</td>
<td>31.3</td>
</tr>
<tr>
<td>K573P</td>
<td>10 mg/kg</td>
<td>128</td>
<td>12.506</td>
<td>110.0</td>
<td>0.80</td>
<td>95.2</td>
</tr>
<tr>
<td>Rhesus monkeys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>1 mg/kg</td>
<td>12.9</td>
<td>523.3</td>
<td>351.7</td>
<td>1.85</td>
<td>131.7</td>
</tr>
<tr>
<td>K573P</td>
<td>1 mg/kg</td>
<td>11.0</td>
<td>803.2</td>
<td>358.5</td>
<td>1.17</td>
<td>210.7</td>
</tr>
</tbody>
</table>

C_{max}: the maximum concentration reached after administration.
T_{1/2}: the elimination phase half-life.
AUC (Area under the curve): a time integral of the blood uptake.
V_Z: volume of distribution.
CL (clearance): the volume of plasma in the vascular compartment cleared of the drug per unit time by the processes of metabolism and excretion.
i.v.: intravenous injection.
Table 2. Pharmacokinetic evaluations of HSA variants in monkeys

<table>
<thead>
<tr>
<th>Cynomolgus monkeys</th>
<th>HSA</th>
<th>Dose (i.v.)</th>
<th>(C_{\text{max}}) (μg/ml)</th>
<th>AUC (h x μg x ml)</th>
<th>(V_z) (mg/kg)</th>
<th>CL (ml/h/kg)</th>
<th>(T_{1/2}) (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>1 mg/kg</td>
<td>12.9±2.0</td>
<td>542.5±43.9</td>
<td>351.7±34.3</td>
<td>1.85±0.20</td>
<td>131.7±2.2</td>
<td></td>
</tr>
<tr>
<td>K573P</td>
<td>1 mg/kg</td>
<td>11.0±1.0</td>
<td>848.3±25.0</td>
<td>358.5±5.5</td>
<td>1.17±0.04</td>
<td>210.8±3.0</td>
<td></td>
</tr>
</tbody>
</table>

\(C_{\text{max}} \): the maximum concentration reached after administration.
\(T_{1/2} \): the elimination phase half-life.
AUC (Area under the curve): a time integral of the blood uptake.
\(V_z \): volume of distribution.
CL (clearance): the volume of plasma in the vascular compartment cleared of the drug per unit time by the processes of metabolism and excretion.
i.v.: intravenous injection.
Table 3. Secondary structural elements determined by circular dichroism

<table>
<thead>
<tr>
<th>HSA variant</th>
<th>Helix</th>
<th>Antiparallel</th>
<th>Parallel</th>
<th>Beta turn</th>
<th>Random coil</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>61.4</td>
<td>0.1</td>
<td>2.5</td>
<td>12.8</td>
<td>23.4</td>
</tr>
<tr>
<td>K500A</td>
<td>61.7</td>
<td>0.1</td>
<td>2.2</td>
<td>12.5</td>
<td>23.6</td>
</tr>
<tr>
<td>K573P</td>
<td>57.5</td>
<td>0.3</td>
<td>3.5</td>
<td>13.5</td>
<td>25.2</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.

A

C-terminal α-helix of albumin

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Orangutan</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Macaque</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Donkey</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Cow</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Horse</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Elephant</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Sheep</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Goat</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Pig</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Dog</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Rabbit</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Cat</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Hamster</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Rat</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Mouse</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Tuatara</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Frog</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
<tr>
<td>Salmon</td>
<td>CFDEEGFKLVAASQALGL</td>
</tr>
</tbody>
</table>

B

Resonance units (RU) vs. Time (s)

- pH 6.0
- pH 7.4

KD = 61 nM
ka = 9.8 ± 0.0 10^3/s
kd = 0.6 ± 1.0 10^3/s
Figure 3.

A

66.7 kDa

B

KD = 766 nM
ka = 9.0 ± 0.0 10^3 /Ms
kd = 6.9 ± 0.1 10^3 /s

C

KD = 262 nM
ka = 4.2 ± 0.1 10^3 /Ms
kd = 1.1 ± 0.2 10^3 /s

D

KD = 518 nM
ka = 4.1 ± 0.3 10^3 /s

E

KD = 322 nM
ka = 2.9 ± 0.1 10^3 /s

F

KD = 64 nM
ka = 7.8 ± 0.1 10^3 /Ms
kd = 0.5 ± 0.0 10^3 /s

G

KD = 212 nM
ka = 1.6 ± 0.1 10^3 /s

H

KD = 67 nM
ka = 12.0 ± 0.2 10^3 /Ms
kd = 0.8 ± 0.0 10^3 /s

I

KD = 93 nM
ka = 8.6 ± 0.0 10^3 /Ms
kd = 0.8 ± 0.1 10^3 /s

J

KD = 451 nM
ka = 5.1 ± 0.2 10^3 /Ms
kd = 2.3 ± 0.1 10^3 /s

K

KD = 221 nM
ka = 8.6 ± 0.1 10^3 /Ms
kd = 1.9 ± 0.0 10^3 /s

L

KD = 151 nM
ka = 7.3 ± 0.2 10^3 /Ms
kd = 1.1 ± 0.3 10^3 /s

M

KD = 338 nM
ka = 7.7 ± 0.2 10^3 /Ms
kd = 2.6 ± 0.0 10^3 /s

N

KD = 353 nM
ka = 8.5 ± 0.0 10^3 /Ms
kd = 3.0 ± 0.2 10^3 /s

O

KD = 152 nM
ka = 7.5 ± 0.2 10^3 /Ms
kd = 1.2 ± 0.2 10^3 /s

P

KD = 120 nM
ka = 7.9 ± 0.2 10^3 /Ms
kd = 1.1 ± 0.1 10^3 /s

Q

KD = 74 nM
ka = 8.1 ± 0.0 10^3 /Ms
kd = 0.6 ± 0.2 10^3 /s

R

KD = 27 nM
ka = 8.4 ± 0.1 10^3 /Ms
kd = 0.5 ± 0.1 10^3 /s

S

KD = 23 nM
ka = 8.2 ± 0.1 10^3 /Ms
kd = 0.5 ± 0.1 10^3 /s
Figure 5.
Figure 6.
Figure 7.
Extending Serum Half-life of Albumin by Engineering FcRn Binding
Jan Terje Andersen, Bjørn Dalhus, Dorthe Viuff, Birgitte Thue Ravn, Kristin Støen Gunnarsen, Andrew Plumridge, Karen Bunting, Filipa Antunes, Rebecca Williamson, Steven Athwal, Elizabeth Allan, Leslie Evans, Magnar Bjørås, Søren Kjærulff, Darrell Sleep, Inger Sandlie and Jason Cameron

J. Biol. Chem. published online March 20, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.549832

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts