The heme and aquo-cobalamin binder HbpS

The extracellular heme-binding protein HbpS from the soil bacterium *Streptomyces reticuli* is an aquo-cobalamin binder

Dario Ortiz de Orué Lucana¹, Sergey N. Fedosov², Ina Wedderhoff¹, Edith N. Che¹, Andrew E. Torda³

¹From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrucek, Germany
²Department of Engineering, Aarhus University, Aarhus, Denmark
³Centre for Bioinformatics, Hamburg University, Hamburg, Germany

Running title: The heme and aquo-cobalamin binder HbpS

To whom correspondence should be addressed: D. Ortiz de Orué Lucana, Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrucek, Barbarastr. 13, 49067 Osnabrucek, Germany. Tel.: +495419693439; Fax: +495419692804; E-mail: ortiz@biologie.uni-osnabrucek.de

Keywords: Aquo-cobalamin; ligand-binding protein; bioinformatics; metalloprotein; microbiology; spectroscopy

Background: Sequence and structure comparisons suggested that the heme-binding protein HbpS from *Streptomyces reticuli* might bind cobalamin.

Results: HbpS binds aquo-cobalamin and the responsible histidine was identified.

Conclusions: The calculated K_d of 34 µM suggests that HbpS might bind cobalamin in both bacterial cultures and in the *Streptomyces* natural environment the soil.

Significance: The results suggest an evolutionary path between tetrapyrole-binding roles in the HbpS-like protein family.

ABSTRACT

The extracellular protein HbpS from *Streptomyces reticuli* interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV/Vis spectroscopy confirmed binding ($K_d = 34$ µM) to aquo-cobalamin (H$_2$OCbl$^+$), but not to other cobalamins. Competition experiments with the H$_2$OCbl$^+$-coordinating ligand CN$^-$ and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H$_2$OCbl$^+$ and substitutes for water. HbpS-Cobalamin lacks the Asp-x-His-x-Gly motif seen in some cobalamin-binding enzymes.

Preliminary tests showed that a related HbpS protein from a different species also binds H$_2$OCbl$^+$. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences amongst Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins.

Vitamin B$_{12}$ and its derivatives are corrinoid macrocycles (Fig. 1) usually referred to as cobalamins (Cbl) and corrinoids (1,2). Vitamin B$_{12}$ is popularly known as an essential part of the human diet, but these corrinoids are also essential for some bacteria (3,4). They promote growth in some algae as part of a symbiotic relationship with bacteria (5) and it has even been stated that corrinoids in soil act as growth factors in some plants (6). Some bacteria must take cobalamins from the environment, but others such as *Propionibacterium*, *Pseudomonas* and *Streptomyces* and some archaea such as *Halobacterium*, *Methanobacterium* and *Methanosarcina* synthesise cobalamins in considerable amounts. Two synthetic routes (aerobic and anaerobic) have been documented and both are quite complex, involving approximately 30 genes (7,8,9).
Since some bacteria, algae and plants benefit from Cbl in the environment, and since the synthesis occurs in a number of bacteria (10), there is a remarkable traffic of corrinoids in soils, involving diffusion and transport proteins, both intra- and extra-cellular. The relationship between the soil-dwelling streptomycetes and plants and insects has been described as symbiotic (11,12), but it is really part of a larger eco-system. The bacteria form mycelia which penetrate the insoluble remains of fungi, plants and other organisms. Secreted hydrolytic enzymes break larger insoluble molecules into smaller species which can be taken up (13). In addition, there is a traffic in secreted secondary metabolites including antibiotics which modulate competition and transport between species.

There are different forms of Cbl in nature such as 5'-deoxyadenosylcobalamin (coenzyme B_{12}(AdoCbl)), methylcobalamin (MeCbl) and aquocobalamin, (vitamin B_{12}/H_{2}OCbl'). Cyanocobalamin, known as vitamin B_{12} (CN(Cbl)), is the main industrially-produced Cbl. The formal oxidation state of the cobalt ion in AdoCbl, MeCbl H_{2}OCbl' and CN(Cbl) is +3 (14). Fig. 1 shows some other relevant features of cobalamins. Aside from the corrin ring with the central cobalt, there is a nucleotide loop whose 5',6'-dimethylbenzimidazole base coordinates the metal at the lower axial position (a-site). Other active or inactive groups such as methyl, adenosyl, cyanide, hydroxyl, histidine may be coordinated to cobalt at the upper axial position (β-site) (Fig. 1) (1,15). The variety of active groups and the different oxidation states of the cobalt (+1, +2 and +3) allow the cofactor to participate in many different kinds of biochemistry (16). One can also see that the cobalamins are large ligands with many potential hydrophobic and polar interactions which can lead to association constants as high as 10^{15} M^{-1} (15).

There is a wide variety of proteins which interact with cobalamins. Usually, one associates cobalamins with their role as cofactors for mutases, dehydratases, deaminases, ribonucleotide reductases, methyl transferases, methionine synthases and methylmalonyl-CoA-mutases (2). In streptomycetes there are Cbl-dependent enzymes that catalyze a set of modifications to peptides or polyketides or other chemical backbones during the biosynthesis of antibiotics. For instance, the methylation of the antibiotics clorobiocin and fosfomycin is a cobalamin-dependent reaction (17,18). Looking further afield, it has been reported that Cbl interacts with a riboswitch to regulate the expression of the ribonucleotide reductase nrdABS operon in in Streptomyces coelicolor A3(2) (19). Croft et al (5) suggest that cobalamin transport mechanisms have evolved several times, just within algae. There are probably more roles waiting to be found. Obviously, there is a wealth of proteins which bind cobalamins via very different modes.

Some of these binding mechanisms involve contacts with the upper or lower face shown in Fig. 1. In the "base-off" mode, an imidazole group from a histidine residue displaces the 5',6'-dimethyl-benzimidazole ligand from the α-position and the protein sequence usually has an Asp-x-His-x-His-x-Gly motif (16,20,21). In the "base-on" binding mode, the nucleotide base remains coordinated to the cobalt and the sequence motif is absent. This has been seen in both enzymes (22) and transport proteins (23,24). In the Cbl-transporter transcobalamin, the upper axial ligand of H_{2}OCbl' is replaced by a histidine residue of the protein (23,24).

Our previous work has focussed on the extracellular protein HbpS from the soil bacterium Streptomyces reticuli (S. reticuli) and its binding of heme. This multifunctional protein sequesters large quantities of ferrous iron ions which might protect S. reticuli from the effects of peroxide- and iron-based oxidative stress (25). HbpS is also an unusual heme-binding protein in which a threonine residue (Thr-113) apparently binds to the iron-based oxidative stress (25). HbpS is also an unusual heme-binding protein in which a threonine residue (Thr-113) apparently binds to the tetrapyrole macrocycle (26,27). In vitro and in vivo studies have also shown that HbpS can degrade the heme group. This activity may be responsible for HbpS-mediated protection against toxic concentrations of heme (28). Furthermore, HbpS acts as an accessory module of the two-component system SenS-SenR from S. reticuli (29,30). In this system, extracellular HbpS interacts with the membrane-embedded sensor kinase SenS. Under conditions of oxidative stress this leads to the autophosphorylation of SenS that, in turn, phosphorylates the transcriptional response regulator SenR. This activates the transcription of anti-oxidative genes (30,31).

HbpS is a homo-octamer in both the crystal structure (protein data bank acquisition codes 3FPV and 3FPW) and solution with a molecular weight of 8×15.5 kDa. This oligomerization is
The heme and aquo-cobalamin binder HbpS

essential for the interaction with iron ions as well as with the sensor kinase SenS, but not for the interaction with heme (25,27,28,32). Sequence comparisons using the Streptomyces reticuli HbpS protein showed a large number of related proteins from both Gram-positive and Gram-negative bacteria, including species from the genera of Streptomyces, Arthrobacter, Rhodococcus, Nocardia, Leifsonia, Vibrio, Klebsiella, Pseudomonas and Agrobacterium. Some of the hbpS-like genes are situated within operons encoding proteins which either degrade aromatic compounds or are involved in the metabolism of propane-1,2-diol or glycerol (26,30). However, the exact role of these HbpS-like proteins is poorly understood. HbpS and all HbpS-like sequences have also been labelled as DUF336 domains with the vague annotation of "cofactor binding" (25,26).

In this work, we describe sequence comparisons which suggest that HbpS may also interact with cobalamin. Binding studies using different Cbl compounds and UV/Vis spectroscopy showed that HbpS specifically binds aquo-cobalamin. Binding kinetics were characterised spectrophotometrically. Mutant versions of HbpS were used to identify the amino acid in HbpS that coordinates the cobalt ion of aquo-cobalamin. An HbpS-related protein also interacted with cobalamin. Some of the HbpS-like sequences or are involved in the metabolism of propane-1,2-diol or glycerol (26,30). However, the exact role of these HbpS-like proteins is poorly understood. HbpS and all HbpS-like sequences have also been labelled as DUF336 domains with the vague annotation of "cofactor binding" (25,26).

EXPERIMENTAL PROCEDURES

Bacterial strains, plasmids, media and culture conditions. Streptomyces venezuelae ATCC 10712 (S. venezuelae) was cultivated in complete (R2) liquid medium as previously described (33). E. coli strains BL21(DE3)pLysS and DH5α were cultivated in LB medium. The plasmid vector pETM11 as well as the plasmid constructs pETHbpS, pETHbpS-H28A, pETHbpS-H51A, pETHbpS-H156A, pETHbpS-T113A and pETHbpS-T113H (27,28,32) were used.

Isolation and cleavage of DNA, ligation, and agarose gel electrophoresis. Chromosomal DNA of S. venezuelae was isolated after growth in a sucrose-containing R2 medium for 2 days (33). Plasmids were isolated from E. coli using a mini plasmid kit (Qiagen) and cleaved with various restriction enzymes according to the suppliers’ (New England BioLabs; Thermo Scientific) instructions. Ligation was performed with T4 ligase. Gel electrophoresis was carried out in 0.8-2% agarose gels using TBE buffer. Plasmids were used to transform E. coli DH5α by electroporation or E. coli BL21 (DE3)pLys with the CaCl₂ method (34).

Chemicals and enzymes. Chemicals for SDS-and native-PAGE were obtained from ROTH. Cobalamin compounds (AdoCbl, MeCbl, CNCbl and H₂Ocbl), hemin, apomyoglobin and tris(2-carboxyethyl)phosphine (TCEP) were purchased from Sigma Aldrich. Molecular weight markers for DNA and protein, restriction enzymes, T4 Ligase, and DNA polymerase for PCR were obtained from Thermo Scientific or New England BioLabs.

Cloning of a hbpS-like gene from S. venezuelae. The coding region (without the codons encoding for the signal peptide) of the hbpS-homologous gene from S. venezuelae (SVEN_5961), referred to here as hbpSv, was amplified by PCR using the isolated chromosomal DNA as template and the primers PForVen: 5’-GATGCCATGCCCACCAGGCG-AGAAACCGGG-3’ (containing an NcoI restriction site, underlined) and PRevVen: 5’-GATGAAGCTTCTACTTGGCCAGGAGG-3’ (containing a HindIII restriction site). The PCR-product was digested with NcoI and HindIII, ligated with NcoI/HindIII-cleaved pETM11, and subsequently used to transform E. coli DH5α. The correctness of the hbpSv gene and its in-frame fusion with the His-tag codons were confirmed by sequencing the resulting plasmid, pETHbpSv.

Site directed mutagenesis. A single PCR reaction was used to replace the codon encoding Lys-161 with a histidine in the hbpSv gene on the plasmid pETHbpSv. The oligonucleotide PforVSal: 5’-CGTCGTG ACCACCGAAGCTTTCCGG-3’ (containing an NcoI restriction site, underlined) and PRevVSal: 5’-CGTCGTG ACCACCGAAGCTTTCCGG-3’ (containing a HindIII restriction site). The PCR-product was digested with NcoI and HindIII, ligated with NcoI/HindIII-cleaved pETM11, and subsequently used to transform E. coli DH5α. The correctness of the hbpSv gene and its in-frame fusion with the His-tag codons were confirmed by sequencing the resulting plasmid, pETHbpSv.

Site directed mutagenesis. A single PCR reaction was used to replace the codon encoding Lys-161 with a histidine in the hbpSv gene on the plasmid pETHbpSv. The oligonucleotide PforVSal: 5’-CGTCGTG ACCACCGAAGCTTTCCGG-3’ (containing an NcoI restriction site, underlined) and PRevVSal: 5’-CGTCGTG ACCACCGAAGCTTTCCGG-3’ (containing a HindIII restriction site). The PCR-product was digested with NcoI and HindIII, ligated with NcoI/HindIII-cleaved pETM11, and subsequently used to transform E. coli DH5α. The correctness of the hbpSv gene and its in-frame fusion with the His-tag codons were confirmed by sequencing the resulting plasmid, pETHbpSv.
products were used to transform E. coli DH5α. Each of the plasmid constructs were then analyzed with restriction enzymes and sequencing. The resulting correct plasmid was named pETHbpSv-K161H. To overproduce the corresponding proteins, this plasmid, as well as pETHbpSv, pETHbpS, pETHbpS-H28A, pETHbpS-H51A, pETHbpS-H156A, pETHbpS-T113A and pETHbpS-T113H were used to transform E. coli BL21 (DE3)pLysS as reported by Zou et al (32).

Production and purification of holo and apoproteins. Protein was produced and purified as described by Zou et al (32) with slight modifications. The synthesis of the His-tag fusion proteins in the respective E. coli BL21 (DE3) pLysS transformant was induced at OD₆₀₀ of 0.5 by the addition of 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) to the culture medium. Cells were grown for 4 h at 37 °C, harvested, washed with a chilled solution W (100 mM Tris/HCl, 150 mM NaCl, pH 8.0), and disrupted by ultrasonication (Branson sonifier, 5 × 10 s, with 10 s intervals) in the presence of 1 µg/ml DNaseI. Cell debris were centrifuged at 30 000 g at 4 °C. The supernatant containing soluble proteins was subsequently used for protein purification.

To isolate the holoprotein, the supernatant was incubated with 0.5 mg/ml of each cobalamin compound either in dark or at ambient light for 2 h at room temperature and then Ni²⁺-NTA agarose beads were added to the solution. His-tag proteins were eluted by adding 250 mM imidazole in solution W. To analyse the protein eluates by PAGE. Proteins solutions were loaded on to native PAGE and anion exchange chromatography on a DEAE-sepharose column were used to obtain the pure holoprotein. The apoprotein was obtained in a similar way, but without the initial incubation with cobalamin. The homogeneity of the His-tag free proteins was analysed by SDS- and native PAGE as well as by mass spectrometry. Protein concentration was calculated using the Bradford method (35). To analyse the interaction of the apoprotein with the cobalamin, HbpS apoprotein (2-20 µM) was incubated with 10 µM of cobalamin in 20 mM Tris/HCl, pH 7.0 for 2 h at 25 °C.

Cobalamin binding assays. Cbl binding was monitored by absorption spectroscopy in the range of 250-700 nm using dual-beam Specord 205 UV–Vis (Analytik Jena) or Varian Cary 50 (Varian) spectrophotometers. Experiments were performed in triplicate.

Kinetics of cobalamin binding. The binding kinetics were measured at a fixed concentration of H₂OCl⁺ (19 µM) mixed with varying concentrations of HbpS (15-280 µM) in 20 mM Tris, pH 7.5 at room temperature. The optical changes after mixing were monitored by measuring a difference of absorbance at 358 nm and 352 nm. The recorded curves were used to calculate the rate constants of ligand binding and dissociation. The obtained fitting parameters are presented as best estimate ± standard error.

Analysis of Cbl-binding proteins by native PAGE. Proteins solutions were loaded on to native PAA gels (10%). After electrophoresis the gel was immediately scanned, and subsequently incubated with the protein-staining solution PageBlue (Thermo Scientific).

Heme-binding assays. Hemin (Fe³⁺ form of heme) at fixed concentration (5 µM) was incubated with increasing concentrations of the apoprotein (0-15 µM at 0.2 µM increments up to 5 µM, and in 1 µM increments from 5-15 µM) in 20 mM Tris/HCl, pH 7.5 at 30 °C for 2 h. The absence of heme in the apoprotein was confirmed by UV/Vis spectroscopy. Hemin was dissolved in 100 mM NaOH and its concentration determined using ε385=58.4 mM⁻¹cm⁻¹ (36). Fresh dilutions were always made using 10 mM NaOH. Heme binding was monitored spectrophotometrically and experiments were performed in triplicate. Measurements were performed using a reference cuvette containing 5 µM hemin. K₅ was calculated using Eq. 1 based on the difference spectrum at 411 nm as HbpS apoprotein was added to hemin.

\[
\Delta A = \frac{\Delta A_{max}}{2[\text{E}]} \left[(K_d+[\text{L}])+K_r+[\text{E}]\right]-\sqrt{(K_r+[\text{L}])+[\text{E}]^2-4[\text{L}][\text{E}]}
\]

(Eq. 1)

Here ΔA is the observed change in absorbance; \(\Delta A_{max}\) is the maximum of absorbance; [E] is the concentration of HbpS; [L] the concentration of hemin.

Dissociation of heme from HbpS. The rate constants of heme dissociation from heme-binding proteins can be determined using apomyoglobin as a heme scavenger (37,38). Time-dependent heme
RESULTS

HbpS as a putative cobalamin-binding protein

Fig. 2 shows a maximum likelihood tree for 619 close sequence homologues of HbpS. The set only includes sequences related to HbpS with an e-value less than or equal to 10^{-6} and even the most distant protein has more than 35% sequence identity with HbpS. There are no large gaps in the alignments and there is no evidence of saturation, so it is likely that there are no gross errors. At the same time, we know that the set of sequences does not reflect nature. It is just the sequences in the data bank that happen to be most closely related to HbpS. One third of the sequences can be accounted for by genera with 11% of the sequences from Streptomyces and 9% from Thioalkalivibrio. 6% come from each of Acinetobacter and Pseudomonas. Only a few branches have been labelled with their species for orientation in the diagram.

This is clearly a gene or protein tree and not a species tree. The species Streptomyces reticuli may not be a close relative of Rhodococcus, but their HbpS-like proteins are very similar. There are examples of other Streptomyces species on the left of the tree, whose proteins have been labelled as involved in cobalamin-binding and which are closer to Neisseria and Thermococcus potens than to S. reticuli. It is also interesting that closely related HbpS-like proteins span a range of bacteria from Gram-positive Saccharopolyspora and Rhodococcus to Gram-negative types such as Thiomonas and Riemerella.

The real interest does not lie in species phylogeny, but in the functional annotations. Unfortunately, most sequences come from genome sequencing and have no annotation. The few with a clear function have been marked with squares (heme binding), triangles (cobalamin interacting) and circles (involved in glycolate, propanediol or ethanolamine use) according to keyword matching (Fig. 2). Heme-binding proteins might be closely related to those labelled as Cbl-interacting, but proteins involved in glycolate/propanediol or ethanolamine chemistry are also closely related. This is the crux of this part of the work. On available data, one could not reasonably say there is any functional partitioning over the tree. It could be that heme-binders bind cobalamins or vice versa and there is some gradual variation and overlap of function.

This calculation leads to the clear question. Does HbpS, a protein known in the literature as a heme-binder, bind a cobalamin?

HbpS binds aquo-cobalamin

To check for cobalamin binding, the protein extracts containing recombinant HbpS were mixed with an excess of different cobalamins (AdoCbl, CNCbl, MeCbl and H_{2}OCbl\') in the dark at room temperature for 2 h. HbpS was then isolated by Ni\(^{2+}\)-NTA affinity chromatography as described under experimental procedures. The protein eluate obtained after the incubation with H_{2}OCbl\' (aquo-cobalamin) was pink-coloured, indicating the presence of Cbl (not shown). Other protein-ligand combinations gave colourless products, suggesting an absence of Cbl. Aliquots of protein eluates containing His-tagged and imidazole-free HbpS were loaded onto a native PAA gel (Fig. 3A, left) and analysed by UV/Vis spectroscopy (Fig. 3A, right). Of the four cobalamins tested, only H_{2}OCbl\' bound to HbpS, because the latter
patterns as for HbpS at ambient light) showed the same spectral resemblance the one observed upon illumination of the octameric protein-ligand complex (Fig. 3A, left, bottom), presumably saturated with 8 molecules of Cbl. UV/Vis spectroscopy showed a distinctive cobalamin spectrum only for the HbpS pre-incubated with H$_2$OCbl$^+$ (Fig. 3A, right). Interestingly, the absorbance peaks of the HbpS-bound cobalamin were red-shifted compared to those of free H$_2$OCbl$^+$ under the same experimental conditions (black spectrum on Fig. 4B, left). This observation suggests substitution of the original Co$^{3+}$-coordinated water by another ligand, which was confirmed by the results discussed below.

To better characterize interactions with different Cbl derivatives, an additional experiment was conducted. Samples of the same protein extract were incubated with different cobalamins (AdoCbl, MeCbl, CNCbl and H$_2$OCbl$^+$), but now under exposure to ambient laboratory light. The protein fractions were separated from free cobalamins by Ni$^{2+}$-NTA affinity chromatography. This gave pink protein eluates for the samples incubated with AdoCbl, MeCbl and H$_2$OCbl$^+$, but not for CNCbl (not shown). Native PAGE (Fig. 3B, left) and UV/Vis spectroscopy (Fig. 3B, right) confirmed that the coloured protein eluates contained the bound Cbl. The original ligands MeCbl and AdoCbl (incubated in the presence of HbpS at ambient light) showed the same spectral patterns as for H$_2$OCbl$^+$ bound to HbpS (γ = 358 nm, δ = 420 nm, β = 514 nm and α = 539 nm) (Fig. 3A and B, right). Such a result is consistent with the expected photolysis of these cofactors in an oxygenated solution yielding H$_2$OCbl$^+$ (1). All spectra resembled the one observed upon formation of the complex between H$_2$OCbl$^+$ and transcobalamin, in which Co$^{3+}$-coordinated water is substituted by a His-residue of the binding protein (24,44). We can conclude that HbpS interacts exclusively with H$_2$OCbl$^+$, whether it is added directly or formed upon illumination of MeCbl and AdoCbl samples. This explains why HbpS did not bind either MeCbl or AdoCbl in the dark. The Co$^{3+}$ ion of MeCbl and AdoCbl was protected from coordination with the external ligands by the respective β-groups, tightly associated with the metal ion (2,16). The same is true for CNCbl, which has a higher photostability of its carbon-cobalt bond.

It seems rather improbable that H$_2$OCbl$^+$ binds to the His-tag of the recombinant HbpS protein, because this interaction would have hampered protein purification on the Ni$^{2+}$-NTA-column. This was checked experimentally. We removed the His-tag using a TEV-protease and isolated HbpS in its native form (Fig. 4A, left) by adsorption of the His-tag on a Ni$^{2+}$-NTA affinity column followed by gel filtration and anion exchange chromatography. The His-tag-free HbpS solution (in 20 mM Tris/HCl, pH 7.0) retained its pink colour after purification and displayed the UV/Vis spectrum typical of the HbpS-Cbl-complex (Fig. 4A, right).

The interaction of the HbpS apoprotein with H$_2$OCbl$^+$ was also monitored in a binding experiment, in which H$_2$OCbl$^+$ (10 µM; black spectrum on Fig. 4B, left) was mixed with increasing concentrations (2-20 µM) of the apoprotein and UV/Vis spectra of samples were recorded after 2 h of incubation. The presence of the apoprotein caused a shift of the H$_2$OCbl$^+$ absorbance maxima. For example, the main γ peak shifted from 353 nm to 358 nm (Fig. 4B, left), indicating formation of the HbpS-Cbl complex in which water is substituted by a ligand with higher electron-donating properties (1). Moreover, the absorbance at 358 nm increased with increasing concentrations of the protein (Fig. 4B, right).

Identification of the interacting ligand

H$_2$OCbl$^+$ has a tendency to bind electron-donating ligands such as CN$^-$, SO$_3^{2-}$, N$_3^-$, NO$_3^-$, imidazole and other N-heterocycles (1). Coordination of a His residue can be reversed by adding another ligand with higher affinity for the β-site of Cbl, e.g. CN$^-$ or N$_3^-$ (44). To check for a similar interaction (histidine-Cbl) in HbpS, we used a competition experiment with potassium cyanide (KCN). The CN$^-$ ion forms a very strong coordination bond with Cbl (1) and can displace the Cbl-interacting histidine (44). This reaction is expected to give CNCbl that will dissociate from HbpS, unless other binding mechanisms are involved. Two parallel samples of the HbpS apoprotein (each 20 µM) were incubated with H$_2$OCbl$^+$ (80 µM) for 2 h. 1 mM KCN was then added to one sample and incubation was continued for 16 h. Proteins were subsequently subjected to
either native PAGE or gel filtration chromatography.

After native PAGE, a pink protein band (seen as black protein) was observed only in the sample without KCN treatment (Fig. 5, left, top). Protein staining by PageBlue also showed that the untreated sample migrated faster on the native gel than the KCN-treated sample. This suggests that KCN disrupts the interaction of HbpS with Cbl (Fig. 5, left, bottom). The apoprotein was also loaded onto the native gel and migrated in the same way as the HbpS-Cbl sample treated with KCN (Fig. 5, left, bottom, lane C). These observations were corroborated by UV/Vis spectroscopy. Prior to measurements, the samples of HbpS + H₂OCbl⁺ with/without KCN were subjected to gel filtration to remove free low molecular-weight ligands. The absorbance spectra showed no Cbl in the KCN-treated protein fraction (Fig. 5, right). This suggests that an amino acid residue in HbpS (most likely His) coordinates to the cobalt ion of Cbl, if it is not protected by the strongly associated β-ligands (e.g. Ado-, Me- or CN-group). No other HbpS-Cbl interactions (insensitive to the presence of CN⁻) were detected.

Binding kinetics

The spectral shift of the major γ-peak of cobalamin was used to follow HbpS and H₂OCbl⁺ interactions. We used a constant concentration of H₂OCbl⁺ (19 µM), with varying concentrations of HbpS (15 – 280 µM) to maintain the same scale of absorbance at 352 and 358 nm associated with Cbl. With comparable concentrations of the two reactants (HbpS and H₂OCbl⁺) the time equation of the binding reaction A + B ↔ AB can be expressed as follows (45):

\[
y_t = y_0 + \varepsilon \cdot ab \left(1 - \frac{e^{-\Sigma k \cdot t}}{1 + \frac{k_a \cdot ab}{\Sigma k} \left(1 - e^{-\Sigma k \cdot t} \right)} \right)
\]
(Eq. 2)

where

\[
\Sigma k = k_a \left(a_0 + b_0 - 2 \cdot ab \right) + k_c
\]
(Eq. 3)

\[
ab = \frac{1}{2} \left(a_0 + b_0 + K_c - \sqrt{(a_0 + b_0 + K_c)^2 - 4 \cdot a_0 \cdot b_0} \right)
\]
(Eq. 4)

Here \(y_t\) is the measured absorbance at time \(t\); \(y_0\) is the initial absorbance at zero time; \(\varepsilon\) is the molar amplitude of response upon formation of AB (\(\varepsilon\) units of \(\mu\text{M}^{-1}\text{cm}^{-1}\)); \(ab\) is the equilibrium concentration of the complex AB; \(a_0\) and \(b_0\) are the initial concentrations of the two reactants A and B (e.g. Cbl and HbpS); \(k_a\) and \(k_c\) are the rate constants of binding and dissociation; \(K_c\) is the dissociation constant of the complex AB (\(K_d = k_c / k_a\)). The rate constants \((k_a\) and \(k_c\)) and the initial absorbance \(y_0\) were the fitting parameters, given known values for \(a_0\), \(b_0\) and \(\varepsilon\).

Fig. 6A shows the time-dependent kinetics of interaction between H₂OCbl⁺ and HbpS (wild type, WT) fit to Eq. 2. The maximal amplitude of optical changes \(\Delta Y\) at an infinite concentration of HbpS monomers was estimated by extrapolation (0.122 and 0.125 in two different experiments). This \(\Delta Y\) allowed the estimation of \(\varepsilon = \Delta Y / a_0\) (where \(a_0\) is the fixed concentration of H₂OCbl⁺). The value of \(\varepsilon\) was substituted into Eq. 2. The calculated values of \(k_a\) and \(k_c\) decreased at high protein concentrations (Fig. 6B). More or less proportional decrease of both rate constants was apparently caused by high viscosity of the medium (protein concentration up to 4 mg/mL) and/or weak unspecific protein-protein interactions shielding the Cbl binding site. In this case, both attachment and detachment of the ligand are slower. The predicted values of rate constants in a relatively diluted protein solution are \(k_a = 1.67 \pm 0.13 \text{M}^{-1}\text{s}^{-1}\) and \(k_c = (5.62 \pm 0.52) \times 10^5 \text{S}^{-1}\) as judged from an empirical polynomial fitting equation. Their ratio gives \(K_d = 34 \pm 4.2 \mu\text{M}\).

HbpS uses His-156 to interact with the cobalt ion of Cbl

HbpS contains three histidine residues (His-28, His-51 and His-156) per chain. His-28 is important for the stability of the HbpS octamer, but the other two His residues are not (28). His to Ala mutants (27,28) were used to prepare the three corresponding His-tag-free proteins for comparison with the wild type protein. Each protein (20 µM) was incubated with H₂OCbl⁺ (80 µM) and analysed by native PAGE. Only the HbpS-H156A mutant did not migrate as a pink protein band (Fig. 7A, lane H156+), indicating the absence of bound Cbl in this sample. PageBlue staining of the proteins on the same native PAA gel showed that the migration behaviour of this mutant is identical to the wild type (Fig. 7A, lane WT-) and the mutant HbpS-H156A (Fig. 7A, lane H156-) not exposed to H₂OCbl⁺. In parallel, unbound H₂OCbl⁺ was separated from the protein.
solutions by gel filtration, and then identical concentrations of proteins were analysed by UV/Vis spectroscopy. In contrast to the HbpS-H156A sample, the wild type, as well as HbpS-H28A and HbpS-H51A samples, displayed the characteristic protein-Cbl spectrum (Fig. 7B). Clearly His-156 is essential for Cbl binding. Noteworthy, His-156 is exposed on the surface of the HbpS octamer (Fig. 7C).

Binding of aquo-cobalamin to a HbpS-like protein

The C-terminal regions of several HbpS-like proteins display a marked predominance of hydrophobic residues, in particular in positions 10 to 12 (Fig. 8A). Together with His-156 in HbpS, these hydrophobic residues could conceivable contribute to aquo-Cbl binding. Interestingly, many homologues have a lysine at the analogous C-terminal position (Fig. 8A). To see if these proteins lose their Cbl-binding properties, an HbpS-like protein with a C-terminal lysine (residue 161) was cloned from *Streptomyces venezuelae* and is referred to as HbpSv. For comparison, an HbpSv mutant with histidine at the C-terminus (HbpSv-K161H) was also prepared after cloning from *E. coli* transformants. Protein extracts containing either HbpSv-WT or HbpSv-K161H or HbpS-WT were incubated with H$_2$OCbl$^\text{+}$. After Ni$^2+$-NTA chromatography and dialysis, the protein eluates were analysed by UV/Vis spectroscopy. All three proteins clearly showed H$_2$OCbl$^\text{+}$ binding, which was strongest with HbpS-WT and weakest with HbpSv-WT (Fig. 8B). Apparently, a lysine can substitute for a histidine to some extent. This is not surprising, because terminal amino groups can weakly interact with H$_2$OCbl$^\text{+}$, which was used for preparation of affinity materials with bound Cbl (46,47). Replacing Lys-161 by His in HbpSv noticeably increased the binding (Fig. 8B).

Heme affinity of HbpS

This work focuses on cobalamin binding, but HbpS has been regarded as a heme binder and it is impossible to avoid some comparisons. We therefore first analysed heme binding kinetics of HbpS. Titration measurements (Fig. 9A) using a fixed concentration of hemin (5 µM) and an increasing concentration of HbpS protein (0-15 µM at 0.2 µM increments up to 5 µM, and in 1 µM increments from 5-15 µM) led to a calculated K_d of 1.0 ± 0.3 µM for wild type HbpS. The titration curve in Fig. 9A (WT) indicates that the binding of the wild type HbpS to hemin is nearly stoichiometric, thus, the calculated K_d is the maximal level for HbpS-heme binding and should be considered as ≤1 µM. We also used HbpS-T113H mutant for comparison as it was previously shown that Thr-113 is involved in heme binding. Mutagenesis of Thr-113 to alanine abolishes heme binding, but mutation to a histidine yields a protein which has an apparently higher heme-binding activity than the wild type (26). The calculated K_d for this mutant is 1.1 ± 0.3 µM.

We also measured the dissociation rate constant using apomyoglobin as a heme scavenger. The heme transfer from holo-HbpS to apomyoglobin was followed by UV/Vis spectroscopy and the time course was fit to a single exponential (Fig. 9B). For the wild type and HbpS-T113H, we found k_- of $(4.0 ± 0.08) \times 10^3$ s$^{-1}$ and $(5.6 ± 0.08) \times 10^3$ s$^{-1}$, respectively. Using the equilibrium constants K_d given above, one can calculate an associate rate constant $k_+(4.0 ± 0.38) \times 10^3$ M$^{-1}$ s$^{-1}$ for the wild type and $(5.1 ± 0.38) \times 10^3$ M$^{-1}$ s$^{-1}$ for T113H. The differences in binding kinetics between both proteins should not be overinterpreted. HbpS-T113H has the same migration behaviour on a native gel as the HbpS-H28A (Fig. 7A) mutant which has been shown be monomeric in solution (28). We also know that in the crystal structure Thr-113 has zero solvent accessibility. Mutating Thr-113 changes the monomer/octamer equilibrium which must have an effect in accessibility of heme-binding sites and consequently on the binding kinetics.

Given that HbpS-H156A lacks Cbl-binding activity, we checked whether its heme-binding activity is also lost. Our previous report showed that this mutant apparently binds heme as strongly as the wild type protein. In that work, heme binding was measured after 16 h of incubation (26). In this work, binding was measured after 1, 2, 4 and 16 h. The spectrum of free hemin with an absorbance maximum of 385 nm was used as a reference (Fig. 10, both panels; dot-dashed line). The wild type protein shows a comparable heme absorption maximum of 385 nm. HbpS-H156A shows a little heme binding after 2 or 4 h (Fig. 10, right; dotted spectra) as the absorbance maximum of heme in each sample was shifted.
The heme and aquo-cobalamin binder HbpS

from 385 nm to 399 nm. This relatively short shift likely resulted from a non-specific binding to the protein. After 16 h the absorbance maximum was shifted to 411 nm (Fig. 10, right; black spectrum), with a comparable intensity as recorded for the wild type. The observed late heme binding by HbpS-H156A as well as by the wild type is probably due to non-specific binding to the protein which is likely partially denatured. The spectrum may also include signals from hemin dimers which can form in aqueous solutions (48,49). These data indicate that His-156 is involved in heme binding.

We also tested whether the Cbl-binding activity of the Thr-113 mutants is affected. After incubation of the mutant proteins (T113H and T113A) with aquo-cobalamin, followed by native PAGE (Fig. 7A) and UV/Vis spectroscopy (Fig. 7B), almost identical Cbl-binding activity was observed compared to the wild type HbpS. Additionally, a control experiment was conducted in order to calculate Cbl-binding kinetics of HbpS-T113H as described for the wild type protein. Fig. 6C and D show the spectra for HbpS-T113H. The reaction was characterized by a somewhat higher maximal optical response ($\Delta Y = 0.148$) and a higher binding rate constant $k_s = 2.77 \pm 0.61 \text{ M}^{-1}\text{s}^{-1}$. On the other hand, the dissociation constant did not significantly change $k_d = (6.27 \pm 0.23) \times 10^{-3} \text{ s}^{-1}$. This provided a little better affinity for H$_2$OCbl$^{+}$ equal to $K_d = 23 \pm 5 \mu$M.

The data indicate that Thr-113 and His-156 play a role in heme binding, but Thr-113 is not involved in Cbl binding.

DISCUSSION

The *S. reticuli* protein HbpS clearly binds aquo-cobalamin, but not other common cobalamin compounds, including MeCbl, AdoCbl and CNCbl. Although there is no crystal structure, there is strong evidence as to the type of binding between HbpS and aquo-cobalamin. Firstly, the HbpS-cobalamin spectrum resembles that of transcobalamin/aquo-cobalamin and that of the His-Cbl coordination complex (44). Next, the binding is competitively disrupted by CN ions which bind at the β-site of Cbl. Finally, HbpS does not have the Asp-X-His-X-Gly motif typical of base-off interactions (20,21). Taken together, it seems very likely that Cbl binds via the base-on mode which is typical of Cbl-transporting proteins (23,24).

From the site-directed mutagenesis, one knows that His-156 is essential for binding aquo-cobalamin and in the octamer crystal structure, His-156 is relatively accessible (Fig. 7C). There are also several hydrophobic residues in this region which may well be involved in binding the large aromatic system of a cobalamin. It is also interesting to compare kinetics in the protein with those of free His in solution. The binding rate constant of HbpS ($k_s = 1.76 \text{ M}^{-1}\text{s}^{-1}$) is of the same order of magnitude as $k_s = 0.92 \text{ M}^{-1}\text{s}^{-1}$ of free His (44), though ionic strength in the two experiments was somewhat different. The dissociation rates, however, differ much more ($6.0 \times 10^{-5} \text{ s}^{-1}$ for HbpS and $2.2 \times 10^{-4} \text{ s}^{-1}$ for free His). If the rate of collisions is the same in both cases, it means that the cobalamin-protein interaction is stabilised by additional contacts.

H$_2$OCbl$^{+}$ affinity of native HbpS is approximately 7-fold higher than free His and the affinity of the T113H mutant still higher, accompanied by larger spectral changes. At the same time, these K_d values are still orders of magnitude lower than three Cbl-transporting proteins in humans (around 10^{14} M) (50). This means that HbpS is not a remarkably strong cobalamin binder ($K_d = 34 \mu$M), but it guarantees some interaction between Cbl and HbpS in soil (the natural environment of streptomycetes) where the concentration of extracellular Cbl is from 0.2 to 10 μM (51). In bacterial cultures, values of 1-200 μM have been recorded (52). Furthermore, the slow speed of Cbl binding to HbpS will have little impact on the potential process of Cbl internalization, as bacterial populations in soils exist over long periods of time. The importance can be illustrated with an example. The mixture of 10 μM Cbl + 10 μM HbpS will give a concentration of the complex of 1.9 μM (19% of Cbl bound). For 5 μM Cbl + 10 μM HbpS it will be 1.04 μM (21% of Cbl bound). This is not strong binding, but if the complex HbpS-Cbl is cleared with a reasonable speed and HbpS concentration is larger than that of Cbl, nearly all extracellular Cbl will be internalized. Dissociation of Cbl from HbpS within a cell does not present a problem, because Cbl is reduced to 2+ (or/and 1+) form, whereupon the β ligand immediately dissociates. Unfortunately, there is no data for the extracellular concentration of HbpS which one would need to assess the importance of the interactions under real conditions. At the moment, we would simply state
that HbpS is not a strong Cbl-binding protein, but it might have a function in bacteria as a transporter of aquo-cobalamin and aquo-corrinoids.

HbpS-haem binding has a low k_d and a relative high K_d value when compared to other proteins involved in heme transport (Table 1). At the same time, the dissociation rate constant k_- (4×10^{3} s$^{-1}$) is within the range of some heme transporters such as HasA, Shp, Rv0203 and PhuS (Table 1). From this point of view, HbpS is not a tight heme-binder, but it might be involved in the transport of heme. Unfortunately, one does not have dissociation constants for other extracellular heme. Unfortunately, one does not have dissociation constants for other extracellular heme binders from streptomycetes or other soil bacteria which would be necessary to better assess the likelihood of a transporting role. At the same time, the K_d value of heme binding by HbpS is within the range ($\sim 10^6$ M) reported for some heme-sensing proteins such as AppA and PpsR (Table 1). Such a K_d value in heme-sensing proteins might be an indication of a flexible heme-binding pocket that is required during sensing of heme. From structural comparisons (27), one knows that HbpS is similar to the heme-binding domains within DosS and DosT from Mycobacterium tuberculosis. These are two-component membrane-bound kinases which are involved in heme sensing (61,62). Analogously, HbpS acts as an accessory module that regulates the activity of the membrane-bound sensor kinase, SenS in a heme-dependent manner (63). In this context, the heme binding of HbpS is exactly what one would expect.

Since cobalamin binding is an order of magnitude weaker than heme binding, the equilibrium distributions of protein-ligand complexes will be sensitive to the concentrations of the interacting species (ignoring potential synergetic or antagonistic interactions between the two ligands). There will be certainly circumstances where the concentration of cobalamins in the soil is higher than that of heme. One should also note that heme and various cobalamins are not the only pyrrole-based secondary metabolites produced by streptomycetes. There are also tri-pyrroles such as the antibiotics prodigiosin and undecylprodigiosin, bi-pyrroles such as staurosorine and rebeccamycin, and mono-pyrroles such as clorobiocin (64). Binding to these compounds should be measured since some cross-reactivity seems to be inevitable.

Secondary metabolites have been shown to act as signals that interact with sensory proteins in signalling pathways (65). *hbpS* as well as different *hbpS*-like genes are clustered with two-component system genes (30), leading to the assumption that the interaction between an HbpS-like protein with the respective metabolite might trigger a signal cascade. Considering the traffic in pyrrole-based metabolites, HbpS and related proteins could be a part of signalling networks that remain to be explored.

Sequence comparisons (Fig. 2) show that HbpS is on the edge of the family of proteins, sometimes labelled as PduO proteins (66). The N-terminal domain of PduO has an ATP:co(b)I(1)alanin adenosyltransferase activity whereas the C-terminal part consists of the DUF336 domain. HbpS-like proteins are only annotated as DUF336. The exact role of the C-terminal domain of PduO is currently unknown. Interestingly, the C-terminal domain of PduO from *Salmonella typhimurium* contains a histidine residue at the same position of the Cbl-coordinating His-156 in HbpS (Fig. 8A). Searches for structural similarities show that the structure of HbpS (PDB: 3FPV) is easily superimposed on the OrfY protein from *Klebsiella pneumoniae* (PDB: 2A2L) (Fig. 11). OrfY and the C-terminal domain of PduO show 36% amino acid identity. The role of OrfY is currently unknown, but the location on the *Klebsiella* genome is interesting. The orfY gene lies within the *dha* regulon that also includes genes for the enzymes glycerol dehydratase, 1,3-propanediol oxidoreductase, glycerol-dehydrogenase and dihydroxyacetone kinase. These are key enzymes in the anaerobic metabolism of glycerol (67). Glycerol dehydratase as well as the isofunctional enzyme diol dehydratase is an adenosylcobalamin-dependent enzyme. The diol dehydratase gene is located within the * pdu* operon that encodes among others the adenosyltransferase PduO. The metabolism of glycerol and 1,2-diols is a multistep process comprising also the reduction of aquo-cob(I)I(II)alamin to cob(I)alamin. The adenosyltransferase subsequently catalyzes the transfer of ATP to cob(I)alamin resulting in adenosylcobalamin (68). Aquo-cobalamin regularly appears under accidental termination of catalytic cycles and is quite vulnerable to degradation because of its “freely accessible” β-site (1). We can conjecture that the HbpS-like protein OrfY as well...
as the C-terminal part of PduO might be involved in the protective binding and/or transport of this cobalamin species.

The interaction of HbpS with both heme and aquo-cobalamin is now clear. Fig. 2 shows HbpS and a set of closely related proteins, labelled as heme-binders, which also showed cobalamin-binding features. Are all HbpS-like proteins heme and/or cobalamin binders? This question will not be answered quickly. We showed that the related protein HbpSv also bound aquo-cobalamin. From the structures in the databases, one knows that HpbS and OrfY are closely related. The questions are, whether heme and/or cobalamin binding is metabolically important and, perhaps, which proteins have been erroneously annotated. Ultimately, the answers will be of interest for the evolution of protein function. Hopefully, one will be able to map the function onto phylogeny and be able to see an evolutionary path for the change of one type of porphyrin binding to another.
REFERENCES

The heme and aquo-cobalamin binder HbpS

The heme and aquo-cobalamin binder HbpS

\textbf{ACKNOWLEDGEMENTS}
We are very grateful to Prof. Dr. H. Schrempf for continuous support (from the Applied Genetics of the Microorganisms, University of Osnabrueck). This work was supported by Grants OR 224/2-1 and OR 224/4-1 of the Deutsche Forschungsgemeinschaft (DFG). DOOL is supported by the Heisenberg Programme from the DFG.

\textbf{FOOTNOTES}
Abbreviations used are: SDS, sodium dodecyl sulphate; PAA, poly-acrylamide; PAGE, poly-acrylamide gel electrophoresis; TCEP, tris(2-carboxyethyl)phosphine; Cbl, cobalamin; AdoCbl, 5’-deoxyadenosylcobalamin; MeCbl, methylcobalamin; H\textsubscript{2}OCbl+, aquo-cobalamin or Vitamin B\textsubscript{12a}; CNCbl, cyanocobalamin; DMSO, dimethyl sulfoxide; PDB, protein data bank
The heme and aquo-cobalamin binder HbpS

FIGURE LEGENDS

Figure 1. Structure of aquo-cobalamin and “base-on” / “base-off” conformations. (A) Aquo-cobalamin in the “base on” conformation, in which the 5’,6’-dimethyl-benzimidazole base is coordinated to the Co³⁺ ion at the α-site. (B) The “base on” and “base off” conformations. The variable interacting ligands as well as the α- and β-site are indicated.

Figure 2. Unrooted maximum likelihood tree for proteins related to HbpS. ▲ sequences annotated as heme-binding, ▼ sequences labelled as cobalamin-interacting and ▶ proteins annotated as involved in glycolate, propanediol or ethanolamine use.

Figure 3. HbpS interactions with H₂OCbl⁺ on native gel electrophoresis and UV/Vis spectroscopy in the dark (A) and after exposure to ambient light (B). Gels (containing 10 µg of each protein) are shown immediately after running (top) and after PageBlue staining (bottom). Labels show the different cobalamin compounds and the absorbance maxima of the HbpS-H₂OCbl⁺ complexes (γ = 358 nm, δ = 420 nm, β = 514 nm and α = 539 nm).

Figure 4. Comparison of Cbl binding between His-tagged and His-tag-free HbpS proteins and titration experiments. (A) Isolated His-tagged HbpS with bound H₂OCbl⁺ (HistagHbpS-H₂OCbl⁺) were treated with a TEV-protease. After subsequent chromatography, His-tag-free HbpS with bound H₂OCbl⁺ was obtained (HbpS-H₂OCbl⁺). 10 µg of each protein was analysed either SDS-PAGE (left) or UV/Vis spectroscopy (right). The molecular weight (in kDa) of protein markers (lane M) is indicated (left). (B) Binding of H₂OCbl⁺ by the HbpS apoprotein was monitored. Aquo-cobalamin (10 µM) was incubated with increasing concentrations (2-20 µM, with 2 µM increments) of the HbpS apoprotein for 2 h at 25 °C. UV/Vis spectra of H₂OCbl⁺ alone (black spectrum) and bound to 14 µM HbpS (dot-dashed spectrum) are shown (left). The difference absorbance at 358 nm (Δ358) was plotted against HbpS concentrations (right).

Figure 5. Disruption of HbpS with H₂OCbl⁺ interactions by potassium cyanide. Two parallel samples of the HbpS apoprotein (20 µM) were incubated with H₂OCbl⁺ (80 mM) for 2 h at 25 °C. KCN (1 mM) was added to one sample and incubation was continued overnight. The mixtures (containing 10 µg of each protein) were either loaded onto a native PAA gel (left) or analysed by UV/Vis spectroscopy after gel filtration (right). The native gel was scanned after electrophoresis (left, top), and subsequently stained with PageBlue (left, bottom). Treatment of samples with (KCN⁻) or without (KCN⁻) potassium cyanide is indicated. The apoprotein HbpS without a previous incubation with H₂OCbl⁺ was used as a control (left, lane c).

Figure 6. Kinetics of interaction between HbpS (wild type and mutant T113H) and H₂OCbl⁺. (A) Binding reaction of HbpS-WT. The reactants H₂OCbl⁺ (a₀ = 19.0 µM) and HbpS (monomer concentrations of b₀ = 15 – 244 µM) were mixed and absorbance changes (A₃58 – A₃52) were traced over time. Curves were approximated by Eq. 2 to calculate k⁺ and k⁻ (ε = 0.00658 µM⁻¹cm⁻¹). (B) Rate constants versus protein concentration. The values of k⁺ and k⁻ from panel A (and the data of a parallel experiment, not shown) were plotted versus the concentration of HbpS-WT (monomers). The charts were approximated by the empirical functions k⁺ = 1.67·10⁻⁶ – 6.32·10⁻¹²·x² and k⁻ = 5.62·10⁻⁵ – 5.78·10⁻¹⁰·x². The first parameter of each function predicts the rate constant at a low protein concentration: k⁺ = 1.67 ± 0.14 M⁻¹s⁻¹ and k⁻ = (5.62 ± 0.52)·10⁻⁵ s⁻¹. (C) Binding reaction of HbpS-T113H. The reactants H₂OCbl⁺ (a₀ = 19.0 µM) and HbpS (b₀ = 17 – 276 µM) were mixed and the time course of absorbance (A₃58 – A₃52) was recorded. Curves were approximated by Eq. 2 to calculate k⁺ and k⁻ (ε = 0.00779 µM⁻¹cm⁻¹). (D) Rate constants versus protein concentration. The values of k⁺ and k⁻ from panel C were plotted versus the concentration of HbpS-T113H mutant (monomers). The charts were approximated by the empirical functions k⁺ = 2.77·10⁻⁶ – 1.72·10⁻¹¹·x² and k⁻ = 6.27·10⁻⁵ – 3.34·10⁻⁰·x². The first parameter of each function predicts the rate constant at a low protein concentration: k⁺ = 2.77 ± 0.61 M⁻¹s⁻¹ and k⁻ = (6.27 ± 0.23)·10⁻⁵ s⁻¹.0
Figure 7. HbpS uses His-156 to bind H$_2$OCbl$^+$. Twenty µM of either HbpS wild type apoprotein or its mutant versions were incubated with 80 µM H$_2$OCbl$^+$ (WT+, H28A+, H51A+, H156A+, T113A+ and T113H+). As a control, four samples were incubated in buffer lacking H$_2$OCbl$^+$ (WT-, H156-, T113A- and T113H-). The mixtures (containing 10 µg of each protein) were either loaded onto a native PAA gel (A) or analyzed by UV/Vis spectroscopy after gel filtration (B). The native gel was scanned after electrophoresis (A, top), and subsequently stained with PageBlue (A, bottom). (C) The exposed His-156 (in blue) on the surface of the HbpS octamer (PDB: 3FPV) is shown.

Figure 8. Alignment of C-terminal amino acids of HbpS-like proteins and cobalamin binding by HbpSv. (A) HbpS-like proteins from Streptomyces hygroscopicus (S_hyg; GI: 451797635), Streptomyces venezuelae (S_ven; GI: 408681679), Nocardia asteroides (N_ast; GI: 517878279), Arthrobacter aurescens TC1 (A_aur; GI: 119961831), Kitasatospora setae (K_set; GI: 357389326), Salmonella typhimurium (S_typ; GI: 5069458), Achromobacter xylosoxidans (A_xyl; GI: 566051808), Pseudomonas resinovorans (P_res; GI: 512376536) and Yersinia enterocolitica (Y_ent; GI: 595644304) were compared to HbpS from S. reticuli (S_ret; GI:5834772). The Salmonella typhimurium sequence is the C-terminal part of the PduO (PduOC) protein. In contrast to PduOC all listed HbpS-like proteins show >35% amino acid identity to HbpS. PduOC was included as many of the HbpS-like proteins are annotated as PduO-like proteins. Hydrophobic amino acids are marked with a grey background. His-156 in HbpS as well as His and Lys at the corresponding position in the other proteins are marked with black background and written in white. Sequences were aligned with Clustal Omega. (B) Protein extracts containing either HbpSv wild type (HbpSv-WT) or HbpSv with substituted Lys-161 by His (HbpSv-K161H) or HbpS wild type (HbpS-WT) were incubated with H$_2$OCbl$^+$. HbpS and HbpSv proteins were then isolated, and subsequently analysed by UV/Vis spectroscopy.

Figure 9. Titration assays and heme transfer to apomyoglobin. (A) Increasing concentrations (0-15 µM at 0.2 µM increments up to 5 µM, and in 1 µM increments from 5-15 µM) of either the wild type or the T113H mutant protein were incubated with a fixed concentration of hemin (5 µM) at 30 °C for 2 h in 20 mM Tris/HCl, pH 7.5, and subjected to UV/Vis spectroscopy. Measurements were performed using a reference cuvette containing 5 µM hemin. The plot shows the difference absorbance (ΔAbsorbance) at 411 nm versus protein concentration. The inset shows ΔAbsorbance values in the wild type sample before a saturation was achieved (dotted ellipse) in an enlarged scale. K_d was calculated using the Eq. 1 listed in the Experimental procedures section. (B) The time course of heme transfer from holo-HbpS (4 µM) to apomyoglobin (4 µM) was measured for 20 minutes at 5 seconds intervals. The inset shows the heme transfer in the wild type sample during the first 6 minutes (dotted ellipse) in an enlarged scale. The dissociation rate (k_-) was calculated by fitting the change in absorbance at 408 nm to a single exponential decay. k_- was calculated using the GraphPad Prism software.

Figure 10. Heme binding by HbpS-H156A. Twenty µM HbpS proteins (either wild type or H156A mutant) were incubated with 10 µM hemin for either 1 or 2 or 4 or 16 h in 20 mM Tris/HCl pH 7.5 at 30 °C. In parallel, a control sample containing only 10 µM of hemin was prepared. Heme binding was analysed by UV/Vis spectroscopy using a reference cuvette containing the control sample. Spectra in the region between 380 to 440 nm are shown. Spectra recorded after 1, 2 or 4 h of incubation are shown as dotted lines and the spectrum after 16 h as a solid line. The spectrum of free hemin (2 µM) is shown as a dot-dashed line.

Figure 11. Structural alignment of one chain of HbpS from Streptomyces reticuli (blue; PDB: 3FPV) superimposed to 2.5 Å over 125 residues to OrfY from Klebsiella pneumoniae (red; PDB: 2A2L) calculated with SALAMI (69).
TABLE 1. Kinetic and equilibrium parameters of heme binding to some hemeproteins.

<table>
<thead>
<tr>
<th>Protein</th>
<th>k_+ (M$^{-1}$ s$^{-1}$)</th>
<th>k_- (s$^{-1}$)</th>
<th>K_d (M)</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myoglobin</td>
<td>7 x 107</td>
<td>8.4 x 107</td>
<td>1.3 x 1014</td>
<td>O$_2$ transport</td>
<td>(53)</td>
</tr>
<tr>
<td>HasA</td>
<td>1.6 x 107</td>
<td>3 x 104</td>
<td>2 x 10$^{-11}$</td>
<td>heme acquisition in P. aeruginosa</td>
<td>(54, 55)</td>
</tr>
<tr>
<td>Shp</td>
<td>1.6 x 106</td>
<td>3 x 104</td>
<td>2 x 10$^{-10}$</td>
<td>heme transfer in S. pyogenes</td>
<td>(56)</td>
</tr>
<tr>
<td>Rv0203</td>
<td>1.3 x 108</td>
<td>8.2 x 102</td>
<td>6 x 10$^{-10}$</td>
<td>heme uptake in M. tuberculosis</td>
<td>(57)</td>
</tr>
<tr>
<td>PhuS</td>
<td>1.8 x 105</td>
<td>3.6 x 102</td>
<td>2 x 10$^{-7}$</td>
<td>heme acquisition in P. aeruginosa</td>
<td>(38)</td>
</tr>
<tr>
<td>Rbt5</td>
<td>ND</td>
<td>ND</td>
<td>5.4 x 106</td>
<td>heme transport in C. albicans</td>
<td>(58)</td>
</tr>
<tr>
<td>AppA</td>
<td>ND</td>
<td>ND</td>
<td>1.3 x 106</td>
<td>heme sensing in R. sphaeroides</td>
<td>(59)</td>
</tr>
<tr>
<td>PpsR</td>
<td>ND</td>
<td>ND</td>
<td>1.9 x 106</td>
<td>heme sensing in R. sphaeroides</td>
<td>(60)</td>
</tr>
<tr>
<td>HbpS</td>
<td>4 x 103</td>
<td>4 x 103</td>
<td>\leq1 x 106</td>
<td>sensor protein from S. reticuli</td>
<td>this work</td>
</tr>
<tr>
<td>HbpS-T113H</td>
<td>5 x 103</td>
<td>5.6 x 103</td>
<td>1.1 x 106</td>
<td>mutant version of HbpS</td>
<td>this work</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
The heme and aquo-cobalamin binder HbpS

Figure 3
Figure 4

A

B
Figure 5
Figure 6

A

\[
\begin{align*}
A_{500} - A_{652} & \quad \text{HbpS-WT} \\
& \quad +244 \, \mu\text{M} \\
& \quad +122 \, \mu\text{M} \\
& \quad +61.0 \, \mu\text{M} \\
& \quad +30.5 \, \mu\text{M} \\
& \quad +15.2 \, \mu\text{M}
\end{align*}
\]

B

\[
\begin{align*}
& \quad k_- \\
& \quad k_+
\end{align*}
\]

C

\[
\begin{align*}
A_{500} - A_{652} & \quad \text{HbpS-T113H} \\
& \quad +276 \, \mu\text{M} \\
& \quad +138 \, \mu\text{M} \\
& \quad +69.0 \, \mu\text{M} \\
& \quad +34.5 \, \mu\text{M} \\
& \quad +17.2 \, \mu\text{M}
\end{align*}
\]

D

\[
\begin{align*}
& \quad k_- \\
& \quad k_+
\end{align*}
\]
Figure 7

A

B

C

The heme and aquo-cobalamin binder HbpS
Figure 8

A

\begin{align*}
S_{ret} & : APVAGIGVAGAPSGDLDE--QAPAGAVLQG \\
S_{hyg} & : APVAGIGVAGAPSGDLDE--KRKAGAAALG \\
S_{ven} & : APIAGIGVAGAPSGDLDE--KFAQAGVAILQ \\
N_{cyr} & : APIAGIGVAGAPSGDLDE--KFAQAGVAAIALG \\
A_{aur} & : AGIGVAGAPDGAL--DEAC--KTCQALAAAAR \\
K_{set} & : APIAAVAGAPSGADQE--QAPAGVAILQ \\
S_{typ} & : GGLGISGGSV-EQ-DMDI--KQTAIAANVCTQ \\
A_{xyl} & : GAIGVAGAPGGL-DQAC--KVTLEEMVALQF \\
P_{res} & : GAIGVAGAPGGL-DQAC--KVTLEEMVALQF \\
Y_{cnt} & : GAIGVAGAPGGL-DQAC--KVTLEEMVALQF
\end{align*}

B

Absorbance

\begin{align*}
\text{Wavelength (nm)}
\end{align*}
Figure 9

A

B
Figure 10
Figure 11
The extracellular heme-binding protein HbpS from the soil bacterium Streptomyces reticuli is an aquo-cobalamin binder
Dario Ortiz de Orue Lucana, Sergey N. Fedosov, Ina Wedderhoff, Edith N. Che and Andrew E. Torda

J. Biol. Chem. published online October 23, 2014

Access the most updated version of this article at doi: 10.1074/jbc.M114.585489

Alerts:

• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2014/10/23/jbc.M114.585489.full.html#ref-list-1