The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga *Galdieria sulphuraria* Co-assemble into Dynamic Filaments

Yaodong Chen\(^1,2\), Katie Porter\(^3\), Masaki Osawa\(^2\), Anne Marie Augustus\(^2\), Sara L. Milam\(^2\), Chandra Joshi\(^2\), Katherine W. Osteryoung\(^1\) and Harold P. Erickson\(^2\)

1. College of Life Science, Northwest University, Xi’an, ShaanXi, China, 710069. 2. Dept of Cell Biology, Duke University School of Medicine, Durham, NC 27710-3709 USA. 3. Dept. of Plant Biology, Michigan State University, East Lansing MI 48824-1312 USA.

Current addresses: CJ: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY

RUNNING TITLE: Assembly of chloroplast FtsZA and FtsZB

Correspondence to Harold Erickson h.erickson@cellbio.duke.edu

Keywords: chloroplast, cytoskeleton, protein expression, tubulin, GTPase

Abstract:

FtsZ is a homolog of eukaryotic tubulin and is present in almost all bacteria and many archaea, where it is the major cytoskeletal protein in the Z ring, required for cell division. Unlike some other cell organelles of prokaryotic origin, chloroplasts have retained FtsZ as an essential component of the division machinery. However, chloroplast FtsZs have been challenging to study because they are difficult to express and purify. To this end, we have used a FATT-tag expression system to produce as soluble proteins the two chloroplast FtsZs from *Galdieria sulphuraria*, a thermophilic red alga. GsFtsZA and GsFtsZB assembled individually in the presence of GTP, forming large bundles of protofilaments. GsFtsZA also assembled in the presence of GDP, the first member of the FtsZ/tubulin superfamily to do so. Mixtures of GsFtsZA and GsFtsZB assembled protofilament bundles and hydrolyzed GTP at a rate approximately equal to the sum of their individual rates, suggesting a random co-assembly. GsFtsZA assembly by itself in limiting GTP gave polymers that remained stable for a prolonged time. However, when GsFtsZB was added, the co-polymers disassembled with enhanced kinetics, suggesting that the GsFtsZB regulates and enhances disassembly dynamics. GsFtsZA-mts (where mts is a membrane-targeting amphipathic helix) formed Z ring-like helices when expressed in *E. coli*. Co-expression of GsFtsZB (without an mts) gave co-assembly of both into similar helices. In summary, we provide biochemical evidence that GsFtsZA assembles as the primary scaffold of the chloroplast Z ring, and that GsFtsZB co-assembly enhances polymer disassembly and dynamics.
where it is the major cytoskeletal protein in the Z ring. The Z ring constricts to divide the cell in two. Bacterial FtsZ has been extensively studied in vitro (1). FtsZ from *Escherichia coli* (EcFtsZ) assembles into protofilaments (pfs) that are one subunit thick and 30-50 subunits long. Like tubulin, EcFtsZ binds GTP, which is essential for assembly. Following assembly the GTP is hydrolyzed to GDP, and the FtsZ-GDP makes the subunit interface unstable, promoting disassembly. Cycles of assembly, hydrolysis and disassembly make FtsZ filaments highly dynamic both in vivo and in vitro (2,3).

Chloroplasts arose in eukaryotes as endosymbionts of a cyanobacterium, similar to the origin of mitochondria from γ-proteobacteria. Unlike mitochondria, which in higher eukaryotes have lost FtsZ as a division protein, most chloroplasts have retained FtsZ as an essential part of a more complex division machine (4-7). Remarkably, the ancestral *ftsZ* gene was duplicated early in chloroplast evolution and most extant photosynthetic eukaryotes express two FtsZ proteins, both encoded in the nuclear genome (4). This is in contrast to bacteria, which mostly express a single FtsZ protein. For *Arabidopsis thaliana* these are named AtFtsZ1 and AtFtsZ2. Both colocalize to the chloroplast division site and both are essential for chloroplast division (8-13). AtFtsZ2 has a C-terminal peptide that is recognizably conserved from the bacterial FtsZs. In bacteria this peptide binds FtsA and/or other membrane proteins and thereby tethers FtsZ to the membrane. In *Arabidopsis* this peptide likewise mediates membrane tethering to the inner chloroplast membrane by binding the membrane protein ARC6 (14,15). This peptide is missing from AtFtsZ1, which presumably associates with the membrane only by co-assembly with AtFtsZ2 (16,17). This characterization of FtsZ1 and FtsZ2 is seen for chloroplasts across the green plant and green algal lineage (4).

Red algae diverged from the green lineage early in the evolution of photosynthetic eukaryotes (18). Red algae chloroplasts also have two FtsZs, designated FtsZA and FtsZB. Remarkably, phylogenetic analysis suggests that the gene duplication in red algae occurred after the separation of the green and red lineages (4). In red algae it is FtsZA that has the C-terminal peptide, and FtsZB has lost it. Miyagishima et al (4) concluded that FtsZ2 in green plants and algae, and FtsZA in red algae, descended from the original single FtsZ from the cyanobacterium, and that FtsZ1 and FtsZB arose by separate gene duplications. There is a similar duplication of FtsZ's in the mitochondria that have kept FtsZ, one with and one without the C-terminal peptide (4,19). As in Arabidopsis, the FtsZ with the C-terminal peptide may interact with a membrane protein to tether the Z ring, while the one without may play a regulatory role. Whatever this role is, it is important enough to have caused gene duplication independently in the green and red chloroplast lineages, and in mitochondria.

In vitro biochemistry of chloroplast FtsZ has been studied mostly for AtFtsZ1 and AtFtsZ2. Smith et al (20) reported assembly of long cylinders, about 16 nm in diameter, by both AtFtsZ1 and AtFtsZ2. These are very different from the pfs of bacterial FtsZ, and are difficult to reconcile with the established structural biology of FtsZ. Olson et al (17) reported assembly of AtFtsZ1 and AtFTsZ2 separately, but only in 5 mM Ca. Electron microscopy (EM) showed filaments similar to the pf bundles assembled by EcFtsZ in Ca (21). When mixed 1:1, AtFtsZ1 plus AtFtsZ2 assembled into large bundles of pfs, and this assembly did not require Ca (17). El-Kafafi et al (22) studied assembly of FtsZ from tobacco. In 8 mM Ca, FtsZ1 assembled into straight polymers 8-9 nm wide, which may be pf pairs. FtsZ2 assembled oligomers detected by crosslinking, but gave no polymers recognizable in EM. Lohse et al (23) reported assembly of *Medicago truncatula* FtsZ1 into long pf bundles and curved structures in the absence of Ca.
It should be noted that the chloroplast FtsZs have been difficult to express and purify. Arabidopsis FtsZ and tobacco FtsZ expressed in E. coli were insoluble, and were purified by urea denaturation and renaturation (17,22), though M. truncatula FtsZ1 could be expressed in soluble form (23). Smith et al (20) used a yeast expression system that apparently gave soluble AtFtsZs, but as noted above the polymers they reported were very different from the pfs of bacterial FtsZ. We have confirmed that chloroplast FtsZ from several species were insoluble when expressed in E. coli. We therefore adapted a recently described fusion system, termed the FATT tag (24), and this has given expression of several chloroplast FtsZ's as soluble proteins.

We examined the biochemical properties of chloroplast FtsZs from the thermophilic red alga Galdieria sulphuraria, designated here GsFtsZA and GsFtsZB, the first study of the red algal proteins. We provide biochemical evidence that GsFtsZA assembles well as the primary scaffold and GsFtsZB co-assembly enhances polymer disassembly and dynamics.

RESULTS

Expression of soluble GsFtsZ using the FATT tag vector—GsFtsZA and GsFtsZB were insoluble when expressed in our routine pET11-E. coli system. Sangawa et al (24) described a fusion tag that enhanced solubility of a wide range of proteins. Their “FATT tag” is a ~130 aa peptide that is intrinsically disordered and highly acidic. Electrostatic repulsion may keep proteins apart while they are folding. A similar fusion tag developed independently also gave improved solubility for expressed proteins (25). We modified the FATT tag vector to give pHFATTC, as shown in Fig. 1, and tested expression of GsFtsZs. The fusions of the FATT tag to GsFtsZA and B produced proteins that were mostly soluble, and the GsFtsZA and B remained soluble after cleaving the FATT tag with 3C protease.

Chloroplast FtsZs from Arabidopsis were also rendered soluble by the FATT tag. Proteins were concentrated and buffer was changed to HMK buffer (50 mM HEPES, pH 7.5, 5 mM MgAc, 100 mM KAc) for assembly and GTPase assays.

GsFtsZA assembles in either GTP or GDP; GsFtsZB assembles only in GTP—Purified GsFtsZA and GsFtsZB showed good assembly when assayed by negative stain EM. GsFtsZA assembled into large straight pf bundles in the presence of GTP. Remarkably, it assembled very similar bundles with GDP (Fig. 2A and B). GsFtsZB assembled similar large straight bundles with GTP (Fig. 2C) but did not assemble with GDP.

We used light-scattering to follow the time course of assembly. GsFtsZA in GTP assembled at protein concentrations down to at least 2.5 µM (Fig. 2D). Assembly in GDP was slower and had a longer lag than assembly in GTP. GsFtsZB assembled in GTP at concentrations of 4 µM and higher (Fig. 2E). The assembly of GsFtsZB at 4 µM had a lag time more than 300 s, which was reduced at higher FtsZ concentrations. At 6 µM GsFtsZB the lag time was 20 s and plateau was reached in 200 s (Fig. 2E). We imaged GsFtsZA polymers by EM at 1 min and found that they were overall thinner than at later times, and showed more short filaments (data not shown). However, EM is only a qualitative assay for the extent of polymer formation and bundling.

We next investigated what concentration of GDP was required for assembly of GsFtsZA. Fig. 3A shows that assembly of 10 µM GsFtsZA was minimal in 50 µM GDP, and increased up to 500-1,000 µM, where it plateaued. This suggests that the binding of GDP to GsFtsZA is very weak. Assembly kinetics were similar at all GDP concentrations, requiring about 100 s to reach a plateau. We used a centrifugation assay to confirm the light scattering results (Fig. 3C). Less than 10% of GsFtsZA pelleted in 50 µM GDP, while more than 60% pelleted in 500 µM GDP. For
comparison, more than 80% of GsFtsZA pelleted after assembly in 50 μM GTP.

Initial assembly of GsFtsZA in GTP was identical in 50 μM or 500 μM GTP (Fig. 3B), suggesting a much stronger binding of GTP. This assembly showed two phases, a rapid rise in the first 20 s followed by a slow increase. We note that light scattering is strongly affected by the size and shape of the polymers, so the second phase may reflect a slow increase in bundle size. Finally, we followed the assembly of 10 μM GsFtsZA in 50 μM GTP over a period of 3 hrs (Fig. 3D). The light scattering continued the slow rise noted in Fig. 3B until about 60 min, started to decrease after 100 minutes, and took more than 200 minutes to reach bottom. EM confirmed that pf bundles mostly disappeared by 200 min (data not shown).

GsFtsZB only assembled in GTP. Fig. 3E shows assembly of GsFtsZB, measured by light-scattering, at different concentrations of GTP. Assembly of 10 μM GsFtsZB with 50 or 200 μM GTP reached a plateau after 150 s. The plateau was maintained for the full 1,200 s time course in 200 μM GTP, but steadily decreased after 200 s in 50 μM GTP. This suggests that GsFtsZB filaments disassemble after GTP is depleted by hydrolysis. EM confirmed that pfs were gone after 30 min in 50 μM GDP (data not shown).

GTPase activity of GsFtsZA and GsFtsZB—We measured the GTPase activities of the GsFtsZA and GsFtsZB proteins using a continuous GTPase assay, which regenerates GTP to maintain a constant level of GTP. Fig. 4A shows the GTPase activity as a function of concentration of GsFtsZA or GsFtsZB. We define the hydrolysis rate as the slope of the line above the critical concentration (Cc). The GTPase activity of GsFtsZA had a Cc of 0.6 μM, and a hydrolysis rate of 0.7 GTP per min per FtsZ. GsFtsZB had a much higher Cc of 3.6 μM, and a slower GTP hydrolysis rate of 0.4 GTP per min per FtsZ. The two points near the 3.6 μM Cc of GsFtsZB are somewhat above the line. This suggests a small hydrolysis below the Cc rather than a sharp cutoff. This has been seen in previous studies, especially where inhibitors have led to a high Cc (26,27). It is also consistent with a theoretical model for allosteric-based cooperativity (28).

To determine how the proteins interact in co-assembly, we measured the GTPase activities of different ratios of GsFtsZA and GsFtsZB. Since GsFtsZB had a low GTPase activity, almost zero when the concentration is below the 3.6 μM Cc, we based the analysis on the concentration of GsFtsZA and treated the GsFtsZB as a regulator (Fig. 4B). The GTP hydrolysis rate increased as GsFtsZB was added to GsFtsZA, even when the GsFtsZB concentration was below 3.6 μM (Table 1). There are two important observations. First, as the concentration of GsFtsZB was increased, the Cc remained at the low value of ~0.6 μM for GsFtsZA alone, and decreased at the highest GsFtsZB. There was no evidence of a second Cc near the 3.6 μM of GsFtsZB alone. Second, the hydrolysis rate above this Cc was approximately equal to that predicted for the sum of rates of GsFtsZA + GsFtsZB (Table 1). For example, at the 1:1 ratio (GsFtsZA:GsFtsZB), the measured rate of the mixture was 1.04, and the sum is 1.10. At the 1:2 ratio, the measured rate was 1.48, and the sum is 1.51. Note that for this calculation the full concentration of GsFtsZB was assumed to be active, not just that above its Cc. These two observations suggest that GsFtsZB co-assembles with GsFtsZA, and is probably randomly incorporated into pfs.

Co-assembly of GsFtsZA and GsFtsZB enhances assembly dynamics—We also assayed the co-assembly properties of GsFtsZA and GsFtsZB using the light-scattering technique. Fig. 5 shows light-scattering assays of assembly of GsFtsZA, GsFtsZB and their mixture in 50 μM GTP. At this limited GTP concentration GsFtsZB assembled in 100 s, then slowly disassembled over 1000 s as the GTP is hydrolyzed, as shown also in Fig. 3E. GsFtsZA assembled but did not disassemble in this time frame. The mixtures
showed a rapid assembly similar to assembly of the individual proteins, and then an enhanced disassembly. The half times of disassembly were about 700 s for GsFtsZB alone, and 300 s for the 1:2 mixture. Fig. 5B shows the effect of varying the ratio of GsFtsZA:GsFtsZB. Increasingly rapid disassembly is seen with increasing GsFtsZB. Fig. 5C-E shows EM confirming the loss of polymers.

Assembly of Z rings in E. coli—We showed previously that EcFtsZ with a membrane-targeting amphipathic helix (mts) on the C terminus formed Z rings and spirals when expressed in E. coli (29). We prepared a similar construct, GsFtsZA-mVenus-mts, with expression from plasmid pJSB2. After overnight growth, the small stationary phase cells showed abundant spiral structures and rings (Fig. 6A), consistent with Z-ring assembly. Expression of GsFtsZB-mCerulean-mts from a pET11 expression plasmid produced diffuse fluorescence and small puncta that might be attached to the membrane (Fig. 6B). No filamentous structures were found. This is consistent with Yoshida et al (16), who found that AtFtsZ1-mts alone could not form a ring in Pichia pastoris.

We also attempted to co-express the two proteins: GsFtsZA-mVenus-mts and GsFtsZB-mCerulean (without the mts). This proved more difficult. Many cells were found expressing one protein or the other. However, we did find a small number of cells that had an approximately balanced expression of both proteins. In these cells the Venus and Cerulean labels were co-localized in spirals (Fig. 6C-E), consistent with their co-assembly into Z-ring structures.

DISCUSSION

Assembly of GsFtsZA in GDP is surprising. This is the first member of the FtsZ/tubulin superfamily that assembles straight pfs in GDP. Huecas et al (30) studied the effect of nucleotide in Methanococcus janaschii FtsZ, and found that apo FtsZ assembled approximately the same as the GTP-bound, and that addition of GDP caused rapid disassembly. Staphylococcus aureus FtsZ (SaFtsZ) typically crystallizes in the form of assembled pfs (31,32), with GDP in the nucleotide pocket. The protein was purified without any nucleotide, so this implies that the GDP remained tightly bound during purification and crystallization. The SaFtsZ-GDP pfs presumably assembled only at the high protein concentration used for crystallization, which suggests a weak inter-subunit bond. GsFtsZA appears to bind GDP weakly, since light scattering increased dramatically from 200-300 µM GDP, with only a small increase from 500-1,000 µM. GTP binding was much stronger, producing equal light scattering signals in 50 and 500 µM GTP. At high GDP concentration, the GsFtsZA-GDP assembled to a light scattering plateau similar to that in GTP. The significance of assembly in GDP is not clear. Guanine nucleotide concentrations in G. sulphuraria chloroplasts are unknown. However, bacteria maintain a high GTP and low GDP concentration. Assembly per se in GDP may not be physiologically relevant. The assembly in GDP observed in vitro may relate to stability of GsFtsZA polymers after they have hydrolyzed the GTP.

When bacterial FtsZ is assembled in a limited amount of GTP, it typically disassembles when the GTP is hydrolyzed. GsFtsZA pfs assembled in 50 µM GTP remained stable for over an hour. The mechanism for this stability is not clear, and needs further investigation. In contrast, a 1:1 or 1:2 mixture of GsFtsZA:GsFtsZB disassembled much more rapidly (Fig. 5). The mixed polymers have greatly enhanced assembly dynamics. Consistent with this observation, FRAP measurement of AtFtsZ assembled in Schizosaccharomyces pombe showed slow and very limited subunit turnover for AtFtsZ2 alone, and much more rapid and extensive exchange when co-assembled with AtFtsZ1 (33). The enhanced exchange of the mixed polymer was less for co-assembly in Pichia pastoris (16), but still significant.
How are the A and B subunits arranged? Alpha and beta tubulin subunits form a very high affinity dimer, and this dimer is the unit building block of microtubules. The bacterial tubulin homologs BtubA and BtubB appear to pre-assemble into an A-B dimer, and this dimer assembles to give polymers with an equal stoichiometry and apparently alternating A and B subunits along the filaments (34). In contrast, AtFtsZ2 and AtFtsZ1 co-assembly gave a polymer stoichiometry equal to that of the starting mix when assayed by pelleting (17). This experiment cannot be done for GsFtsZA and GsFtsZB because they assemble polymers on their own, and this would not be distinguished from co-assembly in a pellet. However the additivity of GTPase for the assembly mixtures, and the variably enhanced disassembly of GsFtsZA when mixed with different amounts of GsFtsB (Fig. 5A,B), strongly suggest that the co-assembly reflects the ratio in the mixture, not a 1:1 stoichiometry. This suggests further that the A and B subunits are distributed randomly.

The Cc is equal to the apparent K_D = 1/K_A for association of a subunit onto the end of a pf. The higher Cc for GsFtsZB homopolymers relative to GsFtsZA means that the B-B interface is lower affinity than A-A. This was also suggested for AtFtsZ1 and AtFtsZ2; GTPase-deficient mutants of AtFtsZ2 formed static filaments in S. pombe whereas the equivalent mutant AtFtsZ1 filaments retained their subunit-exchange dynamics, suggesting that Z1-Z1 subunit interfaces are lower affinity than Z2-Z2 interfaces (16). The fact that the higher Cc for GsFtsZB disappears when mixed with GsFtsZA further suggests that the A-B and B-A interfaces are higher affinity than B-B, and may be higher than A-A (the Cc seemed to decrease somewhat for the co-assembly, Fig. 4B).

Why have chloroplasts evolved two FtsZs? One possibility is large size. Bacteria are rarely larger in diameter than ~1 µm, whereas chloroplasts are typically ~5 µm (35). The Z ring assembled from a single FtsZ may be able to function only up to ~1 µm diameter (36). The second FtsZ may somehow give flexibility to initiate assembly and constriction at a much larger diameter. On the other hand, mitochondria are about the same diameter as bacteria (37), suggesting that organelle size may not be the evolutionary driving force for FtsZ duplication. Another possibility is that evolution of the second FtsZ may be related to the loss of peptidoglycan in most chloroplasts. Supporting this, chloroplasts of Cyanophora paradoxa retain a peptidoglycan layer, and only a single FtsZ has been found in this species (38). Regardless, it seems clear that duplication of chloroplast FtsZs provides a new mechanism for regulating protofilament dynamics.

EXPERIMENTAL PROCEDURES

Plasmid construction and protein purification—We found that expression of chloroplast FtsZ’s from pET vectors gave little if any soluble protein. We constructed a modified version of the FATT tag expression vector (24) in pET11. We had the FATT cDNA synthesized by GenScript with codons optimized for E. coli. We added an N-terminal His tag; we replaced the “target tag, FXa site" with a 3C protease site and a 5 aa linker (this helped the 3C cutting of GsFtsZB constructs); and we added restriction sites NdeI-BamHI for cloning any protein fused to the C terminus of the FATT tag. This construct was inserted at the NcoI site of the pET11 expression vector (GE Healthcare). The new vector, named pHFATTC, is illustrated in Fig. 1.

cDNAs for chloroplast FtsZ’s, optimized for E. coli expression, were synthesized by GenScript. We used the protein sequences from the strain M-8 of Takahara and Kuroiwa (39) (BAA82099 for GsFtsZA and BAA82091 for GsFtsZB. These have some differences from the 2013 genome sequences of strain 074W (40) (XP_005707174.1 and XP_005707298.1), but only 1-4 differences in the globular domains. For the present study we selected the globular domains
of GsFtsZA (aa 121-PCIIK...ATGFP-425) and GsFtsZB (aa 91-QCKIKV...ATGSF-403). These were amplified and inserted into the pHFATTC vector at the NdeI/BamHI restriction sites.

Proteins were expressed in BL21 at 37°C for 4 hours. Bacteria were collected by centrifugation, resuspended in 50 mM Tris, pH 7.4, 300 mM KCl, frozen, thawed and ruptured by sonication. Following centrifugation at 32,000 rpm for 20 min (Beckman 40.1 rotor), the supernatant containing FATT-GsFtsZA or FATT-GsFtsZB was loaded onto a Talon column (GE Healthcare). After washing and elution with 100 mM imidazole, the samples were concentrated and exchanged into LK50 buffer (50 mM Tris, pH 7.9, 50 mM KCl, 1 mM EDTA, 10% Glycerol) using the Amicon Ultra-15 Centrifugal Filter (Merck Millipore). 3C protease (prepared in-house from a His-GST-3C expression vector) was added to 10 µg/ml and incubated at room temperature for 2-4 hours to cleave the FATT tag. The FATT-tag was removed and the protein further purified on a Resource Q column (GE healthcare), eluted with a linear gradient of 50−500 mM KCl in LK50 buffer, as described previously for *E. coli* FtsZ (3,26). Purified proteins were stored at -80°C.

Protein concentrations of GsFtsZA, which has a single Trp, were determined by absorption at 280 nm with molar extinction coefficient of 7490 M⁻¹ cm⁻¹. A BCA assay of the same sample showed that GsFtsZA generated 71% as much color as BSA, similar to EcFtsZ (41). The concentration of GsFtsZB, which lacks Trp, was determined by BCA using BSA as a standard and this 71% correction factor.

For assembly and GTPase assays, buffer was changed to HMK buffer (50 mM HEPES, pH 7.5, 5 mM MgAc, 100 mM KAc) using the Amicon Ultra-15 Centrifugal Filter.

GTPase measurement—GTPase activity was measured using a regenerative coupled GTPase assay (26,42,43). In this assay, all free GDP in solution is rapidly regenerated into GTP, in a reaction that consumes one NADH per GDP. The GTP hydrolysis rate was measured by the decrease in absorption of NADH, in a Shimadzu UV-2401PC spectrophotometer, using the extinction coefficient 6220 M⁻¹ cm⁻¹ at 340 nm. Our assay mixture included 1 mM phosphoenolpyruvate, 0.8 mM NADH, 20 units/ml pyruvate kinase and lactate dehydrogenase (Sigma-Aldrich), and 0.2 mM GTP. Hydrolysis was plotted as a function of FtsZ concentration, and the slope of the line above the Cc was taken as the hydrolysis rate. Each assay was repeated two or three times, with consistent results.

Electron Microscopy—Negative stain EM was used to visualize FtsZ filaments, as described (44). FtsZ was incubated with GTP or GDP for several minutes and ~10 µl was applied to a UV treated carbon-coated copper grid and quickly withdrawn. Grids were immediately stained with 2% uranyl acetate, and specimens were imaged with a Philips 420 electron microscope.

In vitro assembly assay—We initially hoped to assay assembly of GsFtsZ by a fluorescence assay (Trp fluorescence, FRET or BODIPY quenching (3,45,46)), which give a signal directly proportional to the amount of FtsZ polymer for. However the large pf bundles of GsFtsZ produced substantial light scattering, which compromised the interpretation of fluorescence. We therefore used the light scattering signal itself as an assay of assembly. We note that light scattering is not proportional to polymer mass, but is strongly influenced by the size and shape of the polymers, which will change as assembly moves from nucleation to large pf bundles. We have therefore used the light scattering as a qualitative measure of assembly, and avoided quantitative interpretations. Light scattering kinetics data were obtained with a Shimadzu RF-5301 PC spectrofluorometer, using 350 nm and a 3 nm window for both excitation and emission. The measurement started immediately after adding GTP or GDP.

Assembly was also assayed by sedimentation. FtsZ was assembled at room
temperature for 10 min with GTP or GDP and centrifuged at 85,000 rpm for 30 min at room temperature in a Beckman TLA100 rotor. The pellet was resuspended in the same volume of buffer, and the protein in the pellet and supernatant was assayed by SDS-PAGE.

GsFtsZ assembly in E. coli—A membrane-targeted GsFtsZA was constructed by fusing mVenus-mts to the C terminus of GsFtsZA, and inserting this into the pJSB2 vector (which has Chloramphenicol resistance and Arabinose induction) (29) forming pJSB-GsFtsZA-mVenus-mts. There was a GlyThr linker between the globular domain of GsFtsZA and mVenus. This was transformed into BW27783 cells for expression of GsFtsZA alone. A similar fluorescent construct of GsFtsZB, with no mts, was made by fusing mCerulean-mts to its C terminus and inserting into the pET11b vector forming pET11b-GsFtsZB-mCerulean (Ampicillin resistance and IPTG induction). This was transformed into BL21(DE3) cells. For the co-expression experiments the BL21 (DE3) cells were first transformed with pJSB-GsFtsZA-mVenus-mts, and then with pET-GsFtsZB-mCerulean (a new construct lacking the mts), and maintained with dual chloramphenicol-ampicillin selection. For visualization, cells were grown overnight at 37°C in LB, induced with 0.5% arabinose and 0.25 mM IPTG. These cells were in stationary phase. Attempts to visualize Z rings in log phase cells gave nice rings and spirals for GsFtsZA-mVenus-mts, but we were unable to obtain balanced co-expression in log phase cells.

Acknowledgements—The work was supported by NSF grant 1121943 (KWO and HPE) and NIH grant GM66014 (HPE).

Conflict Of Interest—The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions—HPE, KWO AND YC conceived the project; YC did most of the experimental work and interpretation; AMA and SLM constructed the pHFATTC expression vector and conducted preliminary experiments on several chloroplast FtsZs; KP, MO and CJ contributed experimental work and interpretation; YC and HPE wrote the manuscript with contributions from all authors. All authors reviewed the results and approved the final version of the manuscript.

The abbreviations used are: pf: protofilament; EM: electron microscopy; Cc: critical concentration; mts: membrane targeting sequence; AtFtsZ: A. thaliana FtsZ; GsFtsZ: G. sulphuraria FtsZ; SaFtsZ: S. aureus FtsZ.
References

Table 1. The GTPase activity of GsFtsZA and GsFtsZB in 500 µM GTP. The GTPase activity of GsFtsZA and GsFtsZB mixtures was calculated based on the slope of the hydrolysis vs GsFtsZA concentration. The values given are the average and standard deviation of three repeats for the GsFtsZA or GsFtsZB alone and two repeats for the mixtures.

<table>
<thead>
<tr>
<th></th>
<th>GTPase (per GsFtsZA per min)</th>
<th>Critical Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GsFtsZA</td>
<td>0.69±0.12</td>
<td>0.6±0.1</td>
</tr>
<tr>
<td>GsFtsZB (per GsFtsZB per min)</td>
<td>0.41±0.10</td>
<td>3.6±0.3</td>
</tr>
<tr>
<td>GsFtsZA: GsFtsZB 1:0.5</td>
<td>0.95±0.13</td>
<td>0.8±0.2</td>
</tr>
<tr>
<td>GsFtsZA: GsFtsZB 1:1</td>
<td>1.04±0.15</td>
<td>0.5±0.1</td>
</tr>
<tr>
<td>GsFtsZA: GsFtsZB 1:2</td>
<td>1.48±0.15</td>
<td>0.2±0.1</td>
</tr>
</tbody>
</table>
Figure captions

FIGURE 1. Sequence of the FATT-tag segment of our redesigned vector pHFATTC. The vector expresses an N-terminal His tag, the FATT domain, a 3C protease site and a linker, ahead of the NdeI...BamHI sites (HM...GS) that are used to insert the target protein sequence.

FIGURE 2. Negative stain EM showed that 10 μM GsFtsZA assembled into large straight pf bundles in the presence of either 500 μM GTP (A) or 500 μM GDP (B). GsFtsZB (10 μM) assembled similar bundles in the presence of 500 μM GTP (C). Assembly kinetics of GsFtsZA (D) and GsFtsZB (E) at the indicated concentrations were assayed by light-scattering in 500 μM GTP (black) or GDP (red).
FIGURE 3. (A) Assembly of 10 µM GsFtsZA assembly in 50-1000 µM GDP. Assembly was strongly dependent on GDP concentration. (B) Assembly of 10 µM GsFtsZA was identical in 50 and 500 µM GTP. (C) SDS-PAGE of the supernatant (S) and pellet (P) of 10 µM GsFtsZA assembled in 50-500 µM GDP and 50 mM GTP, after centrifugation at 85,000 rpm for 30 minutes. (D) Assembly of 10 µM GsFtsZA in 50 µM GTP followed for 3 hours. The GsFtsZA protein bundles started to disassemble only after 2 hrs. (E) Assembly of 10 µM GsFtsZB in 50 and 200 µM GTP (note that the scale in D is min and that in E is s).
FIGURE 4. (A) The GTPase activity of GsFtsZA and GsFtsZB assayed separately at 25° C. GTP was 500 µM. (B) The GTPase activity of GsFtsZA mixed with increasing ratios of GsFtsZB. The x axis gives the concentration of GsFtsZA, and the ratio of A:B is indicated above the fitted lines. Each assay was done by stepwise increase in FtsZ concentration, which gave a single measurement at each step, precluding error bars. However, the accuracy of the assay is demonstrated by the excellent fit of the ensemble of points to the straight lines.
FIGURE 5. (A) The assembly-disassembly kinetics of 5 μM GsFtsZA, 10 μM GsFtsZB and their mixture in 50 μM GTP. (B) The assembly-disassembly kinetics 5 μM GsFtsZA with increasing GsFtsZB in 50 μM GTP. (C)-(E) EM of 5 μM GsFtsZA plus 10 μM GsFtsZB at different time after adding 50 μM GTP. The polymers are mostly gone at 10 minutes.
FIGURE 6. (A) GsFtsZA-mVenus-mts expressed in *E. coli* from plasmid pJSB2 formed helices and ring structures. (B) GsFtsZB-mCerulean-mts expressed from plasmid pET11 was diffuse and assembled into small spots or patches. (C-E) Coexpression of GsFtsZA-mVenus-mts (C, red) and GsFtsZB-mCerulean without mts (D, green) gave a small fraction of cells with balanced expression of both GsFtsZA and GsFtsZB. These cells showed co-localization of both proteins to spiral structures (E, orange).