Adaptor Protein p62 Promotes Skin Tumor Growth and Metastasis and is Induced by UVA Radiation

Ashley Sample1,2, Baozhong Zhao1, Lei Qiang1,3*, and Yu-Ying He1,2*

1Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
2Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
3School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China

RUNNING TITLE: p62 in tumor growth, metastasis, and UVA response

*Corresponding author: Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL 60637. Tel.: 773-795-4696; Fax: 773-702-8398; Email: yyhe@medicine.bsd.uchicago.edu

KEYWORDS: p62, COX-2, UVA, ultraviolet radiation, tumor growth, metastasis, skin cancer, SCC

ABSTRACT

Skin cancer is the most common cancer and exposure to ultraviolet (UV) radiation, namely UVA and UVB is the major risk factor for skin cancer development. UVA is significantly less effective in causing direct DNA damage than UVB, but UVA has been shown to increase skin cancer risk. The mechanism by which UVA contributes to skin cancer remains unclear. Here, using RNA-Seq, we show that UVA induces autophagy and lysosomal gene expression, including the autophagy receptor and substrate p62. We found that UVA activates the transcription factor EB (TFEB), a known regulator of autophagy and lysosomal gene expression, including the autophagy receptor and substrate p62. Next, we identified a novel relationship between p62 and cyclooxygenase-2 (COX-2), a prostaglandin synthase critical for skin cancer development. COX-2 expression was up-regulated by UVA-induced p62, suggesting that p62 plays a role in UVA-induced skin cancer. Moreover, we found that p62 stabilizes COX-2 protein through the p62 ubiquitin-associated domain and that p62 regulates prostaglandin E2 (PGE2) production in vitro. In a syngeneic squamous cell carcinoma mouse model, p62 knockdown inhibited tumor growth and metastasis. Furthermore, p62-deficient tumors exhibited reduced immune cell infiltration and increased cell differentiation. As PGE2 is known to promote pro-tumorigenic immune cell infiltration, increase proliferation, and inhibit keratinocyte differentiation in vivo, this work suggests that UVA-induced p62 acts through COX-2 to promote skin tumor growth and progression. These findings expand our understanding of UVA-induced skin tumorigenesis and tumor progression and suggest that targeting p62 can help prevent or treat UVA-associated skin cancer.
Introduction

Skin cancer is the most common cancer, with 3.5 million Americans diagnosed each year. Unlike many cancers, the incidence of skin cancer is rising worldwide. Exposure to ultraviolet (UV) radiation, namely UVA (315-400 nm) and UVB (285-315 nm), is the major risk factor for the development of skin cancer. Of these, UVA accounts for approximately 95% of UV in sunlight, and tanning beds emit UVA in doses 12-fold higher than the sun\(^1\). However, UVA is significantly less effective in causing direct DNA damage than UVB, which led many to believe it was non-tumorigenic. It has since been shown that UVA can induce skin carcinogenesis \textit{in vivo}\(^2\)–\(^4\) and indoor tanning, even intermittently, significantly increases skin cancer risk\(^5\),\(^6\). However, the mechanism of UVA’s contribution to skin cancer remains unclear.

Macroautophagy (hereafter Autophagy) is a cellular self-eating process that targets unwanted or damaged organelles and proteins to lysosomes for degradation through autophagosomes\(^7\),\(^8\). The protein p62, a multidomain protein also known as Sequestosome 1 (SQSTM1), acts as an autophagy adaptor and substrate for the selective inclusion of cargo. During autophagy, p62 binds to LC3 in the autophagosomal membrane through the LC3-interacting region (LIR), as well as to polyubiquitinated proteins and protein aggregates bound for degradation through the ubiquitin-associated (UBA) domain\(^9\),\(^10\). In addition to its role as an autophagy adaptor, p62 forms interactions with a number of proteins to activate pro-tumorigenic signaling pathways. p62 is found to be up-regulated in several human cancers, including lung cancer, breast cancer, melanoma, and skin squamous cell carcinoma\(^11\)–\(^15\). Recent studies have demonstrated that p62 promotes tumor formation and progression\(^16\),\(^17\) through regulating NF-KB\(^18\),\(^19\) and NRF2\(^20\)–\(^22\). Furthermore, p62 expression was induced by Ras activation during tumorigenesis\(^19\). Recently we have found that p62 binds to the oncogenic transcription factor Twist1 and promotes Twist1 stabilization\(^15\). This interaction promotes the epithelial-mesenchymal transition (EMT), and hence skin tumor growth and metastasis\(^15\). Identifying the underlying molecular and cellular mechanisms of p62 regulation and function may elucidate mechanisms key to skin tumorigenesis and tumor progression.

One p62 regulator is a member of the microphthalmia-associated transcription factor (MITF) family, transcription factor EB (TFEB), a master regulator of autophagy and lysosomal gene expression\(^23\)–\(^25\). TFEB binds to the Coordinated Lysosomal Expression and Regulation (CLEAR) binding site found in the promoter of many autophagy and lysosomal genes to activate gene transcription and ultimately the degradation of autophagy substrates\(^23\),\(^25\),\(^26\). TFEB activation is regulated primarily through phosphorylation. Under nutrient-rich conditions, TFEB is primarily cytosolic, phosphorylated, and inactive\(^27\). Upon nutrient deprivation, TFEB rapidly translocates to the nucleus to induce transcription of autophagy and lysosomal genes\(^27\). However, the role of TFEB in UVA response is unknown.

Another crucial oncogene in skin cancer is cyclooxygenase 2 (COX-2). COX-2 is an inducible prostaglandin synthase that catalyzes the rate-limiting step of prostaglandin E2 (PGE\(_2\)) synthesis. COX-2
expression is induced by a number of stimuli, including UVA\(^{28}\), and is negatively regulated by the ubiquitin-proteasome system\(^{29}\). COX-2 acts through PGE\(_2\) signaling to promote proliferation\(^{30}\), invasion\(^{31}\), and inflammation\(^{32,33}\). Overexpression of COX-2 occurs in many cancers, including skin cancer\(^{34,35}\), and is correlated with poor prognosis\(^{34}\). Transgenic mice with overexpression of COX-2 are highly susceptible to spontaneous skin tumor formation\(^{36}\), and knockdown of COX-2 reduces susceptibility to experimentally-induced tumorigenesis\(^{36}\). Furthermore, inhibition of COX-2 prevents UV-induced skin tumorigenesis in humans\(^{37,38}\), even in patients at high risk of non-melanoma skin cancers (NMSCs)\(^{39}\).

Here, we show that TFEB is a UVA-responsive factor responsible for the activation of autophagy-lysosomal genes, including p62, in keratinocytes following UVA exposure. p62 bound to cyclooxygenase-2 (COX-2) and stabilized COX-2 through p62’s UBA domain. p62-mediated COX-2 stabilization promotes increased PGE\(_2\) production, and may be responsible for increased tumor growth and metastasis in vivo. Elucidating this link between p62 and COX-2 has therefore uncovered a novel oncogenic pathway that may be a key to the development and metastasis of skin cancer.

Results

RNA-Seq analysis of UVA radiation response identifies autophagy-lysosome pathway

To identify genes regulated by UVA radiation, RNA-Seq was performed on sham- or UVA-irradiated normal human epidermal keratinocytes (NHEK). A comparison of sham- with UVA-irradiated NHEKs identified more than 4,000 differentially expressed genes (Figure 1A and 1B). Pathway analysis shows that one of the upregulated pathways following UVA exposure is the lysosome/autophagy pathway (Figure 1C). UVA was found to induce the expression of a number of autophagy-related genes, including TFEB, p62, LC3, ULK1, ULK2, LAMP1 and LAMP2 (Figure 1D). These data indicate that UVA activates transcription of the autophagy-lysosomal pathway, including the expression of p62.

p62 regulation is independent of autophagy in UVA response

As p62 is up-regulated in skin cancer and regulates skin tumor growth and metastasis\(^{15}\), we elected to focus on p62 induction by UVA. UVA irradiation increased the protein levels of p62 in a time- (Figure 2A) and dose-dependent (Figure 2B) manner. In addition, UVA also increased p62 protein levels in mouse epidermis in vivo (Figure 2C) and skin cancer cells (Figure 2D). To determine the mechanism by which UVA regulates p62 expression, we assessed the role of autophagy, as p62 is a selective autophagy substrate and thus inhibition of autophagy leads to an increase in p62 protein levels\(^{9,10}\). We next assessed whether p62 upregulation depended on the inhibition of autophagic flux. Treatment with the lysosome inhibitor bafilomycin A1, which inhibits autophagic flux, increased basal and UVA-induced p62 protein levels (Figure 2E). In addition, knockdown of the essential autophagy genes Atg7 (Figure 2F) or Atg5 (Figure 2G) increased both basal and UVA-induced p62 up-regulation. These
data indicate that suppression of autophagy did not impair UVA-induced p62 up-regulation.

TFEB is a UVA-responsive transcription factor regulating p62 expression

To determine the mechanism by which UVA regulates p62 expression, we assessed the role of the transcription factor TFEB (Figure 1C), as TFEB expression was induced by UVA in our RNA-Seq analysis (Figure 1C). TFEB controls expression of a number of autophagy-lysosomal genes, including p62, through the coordinated lysosomal expression and regulation (CLEAR) element within the promoter.25 TFEB activation is negatively regulated by phosphorylation, with dephosphorylation triggering the nuclear translocation of TFEB and activation of CLEAR network/TFEB target genes. Following UVA exposure, TFEB protein exhibited a shift in molecular weight suggestive of dephosphorylation (Figure 3A). Furthermore, there was also an increase in TFEB nuclear localization after UVA irradiation (Figure 3B), supporting an increase in UVA-induced TFEB activation. TFEB knockdown prevented UVA-induced p62 up-regulation at the protein level (Figure 4A). Knockdown of TFEB also prevented UVA-induced expression of p62 as well as LC3 (Figure 4B-D). Inhibition of RNA synthesis by actinomycin D (Figure 4E) blocked UVA-induced up-regulation of p62 mRNA, indicating that p62 is transcriptionally upregulated by UVA. Furthermore, UVA induced p62 up-regulation in PAM212 skin cancer cells (Figure 4F). Chromatin immunoprecipitation (ChIP) analysis of the p62 promoter indicated that UVA increased the binding of TFEB to the p62 promoter (Figure 4G).

These findings demonstrate that TFEB activation is required for UVA-induced p62 expression.

p62 regulates COX-2 expression

Next, we determined the function of p62 induction in UVA response. Using a candidate gene approach, we found that cyclooxygenase-2 (COX-2) was upregulated in response to UVA, in parallel with p62 induction in NHEK cells (Figure 5A) and PAM212 skin cancer cells (Figure 5B). This was accompanied by a moderate increase in COX-2 transcription following UVA (Figure 5C and 5D). As previous reports have shown that COX-2 induction is required for the development of skin cancer,36 we next asked whether p62 regulates COX-2 in skin cancer cells. Knockdown of p62 led to a decrease in COX-2 protein levels in PAM212 cells (Figure 5E). Basal COX-2 transcription was also reduced in p62-deficient cells (Figure 5F). These data indicate that p62 regulates COX-2 protein and transcription.

p62 binds to COX-2 and regulates COX-2 stability

As increased COX-2 protein levels and activity are required for skin cancer development,36–38 we further examined the regulation of COX-2 protein levels by p62. We have shown that p62 stabilizes Twist1 via the direct interaction of p62’s ubiquitin-associated (UBA) domain with polyubiquitinated Twist1.15 Therefore, we asked whether p62 similarly regulated COX-2 protein stability through p62’s UBA domain. Expression of p62 in HeLa cells, which lack endogenous p62, COX-2, and Twist1 expression, was sufficient to increase the protein stability of exogenously
expressed COX-2 (Figure 6A and 6B). This increase in COX-2 protein stability was lost in cells transfected with a mutant p62 construct that lacks the UBA domain (Figure 6C and 6D), suggesting that the regulation of COX-2 by p62 is dependent on p62’s UBA domain. It appears that the UBA domain loss also decreased basal COX-2 protein level (Figure 6D). Co-immunoprecipitation (CoIP) of endogenous p62 and COX-2 in skin cancer cells shows that p62 interacts with COX-2 (Figure 6E). Western blotting of p62 CoIP results showed the binding of p62 with COX-2 (Figure 6E). We were not able to detect the binding of p62-dUBA with COX-2 (data not shown). It could be due to the loss of binding due to UBA deletion, or due to the low basal COX-2 protein levels (Figure 6D). In addition, p62 also regulates COX-2 transcription through the UBA domain (Figure 6F). These results suggest that p62 regulates COX-2 transcription and protein stability.

p62 regulates PGE2 production

COX-2 activity leads to production of PGE2, which promotes tumorigenesis through autocrine and paracrine signaling. To determine whether p62 regulates PGE2 production as a result of COX-2 regulation, we examined PGE2 levels in skin cancer cells following p62 knockdown. We found that p62 knockdown decreased PGE2 production (Figure 7A), and this deficit was reversed by re-expression of COX-2 (Figure 7A). Similarly, expression of both HA-p62 and COX-2 in HeLa cells increased PGE2 levels beyond the PGE2 levels in cells expressing COX-2 alone (Figure 7B). Co-expression of COX-2 with mutant p62 lacking the UBA domain reduced PGE2 levels to that of cells lacking COX-2 (Figure 7B). Therefore, p62 regulates PGE2 production by stabilizing COX-2 through p62’s UBA domain.

p62 does not regulate proliferation or migration in vitro

Considering the known role of PGE2 production in proliferation and migration, we assessed whether p62 knockdown impacted these functions in skin cancer cells. In both CCK8 (Figure 7C) and MTS (data not shown) assays, p62 knockdown in skin cancer cells had no effect on proliferation. Similarly, p62 knockdown had no effect on migration in Transwell migration assays (Figure 7D), even when PGE2 was used as a chemoattractant (data not shown). While this data suggests that p62-mediated effects on PGE2 production do not affect the cancer cell proliferation and migration, PGE2 is a known paracrine signaling mediator and may affect neighboring cells in the tumor microenvironment.

p62 is required for tumor growth and metastasis in vivo

To test the requirement for p62 in skin tumor growth and progression, we utilized a syngeneic mouse model of skin cancer. In this model, we injected control and p62-knockdown PAM212 skin cancer cells into BALB/c mice. Measurement of tumor growth over 10 weeks showed that p62 knockdown inhibited tumor growth (Figure 8A) and metastasis to the lung (Figure 8B). These data indicate that p62 is required for tumor growth and metastasis. Histological analysis of tumor samples suggested that p62-knockdown tumors exhibit decreased immune cell infiltration and increased cell differentiation (Figure 8C,
arrows). Therefore, we next performed IHC using immune and differentiation markers. Staining for myeloperoxidase (MPO), a marker of myeloid cells, showed that p62-knockdown tumors exhibited lower levels of MPO-positive cells (Figure 8D). Staining for differentiation marker K10 also showed that p62-knockdown tumors had an increase in K10-positive differentiated cells as compared with controls (Figure 8E). These findings support an oncogenic role of p62 in tumor growth and progression.

Discussion

UVA radiation is known to cause skin cancer. However, the signaling pathways underlying UVA response are unknown. Here we show that UVA radiation activates the transcription of an autophagy and lysosomal gene program including p62 through the transcription factor TFEB. p62 regulates COX-2 by two mechanisms: (1) promoting COX-2 expression, and (2) stabilizing COX-2 protein by binding to COX-2. Knockdown of p62 inhibits skin tumor growth and metastasis, in association with a decrease in immune cell infiltration in the tumors. Our findings suggest that targeting p62 may be an effective method to prevent tumor growth and metastasis after UVA.

We found that UVA irradiation up-regulates p62 at the transcription levels, independent of autophagy, since (1) UVA increased the level of p62 mRNA, (2) inhibiting RNA synthesis abolished the UVA-induced p62 mRNA increase, and (3) UVA induced the up-regulation of p62 in lysosome-inhibited cells and cells with a genetic autophagy deficiency. Previous studies have shown that in keratinocytes, UVA induces autophagy, and this work suggests that p62 functions independently of autophagy in UVA response.

In examining the potential functions of p62 in UVA response, we have identified a novel relationship between p62 and COX-2. First, p62 regulates COX-2 mRNA levels. It is possible that the UBA domain stabilizes a transcription activating protein involved in COX-2 transcription, or degrades a repressor. Second, p62 regulates COX-2 protein stability. As we previously reported with Twist1, p62 binds and stabilizes COX-2 through p62’s UBA domain. COX-2 is primarily degraded at the proteasome via ER-associated degradation (ERAD). The interaction between COX-2 and the UBA domain of p62 may prevent this degradation of COX-2 at the proteasome, as we have demonstrated that p62 can prevent Twist1 degradation at the proteasome. This emerging pattern of positive regulation of protein stability by p62 suggests a mechanism by which p62 differentiates between polyubiquitinated proteins bound for degradation in autophagy and those to be stabilized. Further work will determine how p62 differentiates between these two sets of proteins and whether other oncogenic proteins are similarly stabilized by p62.

COX-2 stabilization by p62 also increases the production of PGE2. PGE2 is the key effector of COX-2 activity and acts to promote proliferation, invasion, and pro-tumorigenic immune infiltration, while inhibiting cancer cell differentiation. Similar to COX-2 knockdown, our studies show that knockdown of p62 led to decreased tumor growth, metastasis, and immune infiltration, as well as increased cancer cell differentiation. Further study of the p62-COX-2 signaling axis could
determine whether this pathway is critical for skin tumor progression, and could provide a novel target for the prevention and treatment of skin cancers.

In addition to p62, our RNA-Seq analysis in primary human keratinocytes identified multiple genes in the autophagy-lysosome pathways. While we have shown that p62 is required for the transcription and protein stability of COX-2, and for skin tumor growth and metastasis in vivo, other UVA-regulated genes may also have important roles in UVA-associated skin cancers. In particular, the function of the autophagy-lysosomal genes is unknown and needs to be investigated in vitro and in vivo. In addition to p62, UVA-induced TFEB nuclear translocation also mediates LC3 up-regulation at the mRNA levels. The roles of TFEB and LC3 in skin cancer are unknown and deserve to be investigated in the future. Recent studies have shown that TFEB is up-regulated in pancreatic cancers and is required for pancreatic cancer growth. The MiT/TFE family of transcription factors, including TFEB, mediates cancer cell metabolic reprogramming to maintain amino acid pools. LC3 has been shown to be up-regulated in several cancers including esophageal, gastric and colorectal cancers. However, future studies are required to investigate the mechanism and function of LC3 up-regulation in these cancers and skin cancers.

EXPERIMENTAL PROCEDURES

Cell Lines and Drug Treatments

Normal human epidermal keratinocytes (NHEKs) were grown in KGM-Gold BulletKit medium (Lonza) according to the manufacturer’s protocol. NHEKs were cultured for less than 4 passages. PAM212 (squamous cell carcinoma), HeLa, and iBMK (immortalized mouse baby kidney epithelium, kindly provided by Dr. Eileen White, The Cancer Institute of New Jersey, NJ, USA) cells were maintained in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (Hyclone), 1% nonessential amino acids (Invitrogen), 100 U/mL penicillin and 100 µg/ml streptomycin (Invitrogen). PAM212 and HeLa cells were maintained in monolayer culture at 37°C and in 95% air/5% CO₂ (vol/vol). iBMK cells were maintained at 38.5°C in 8.5% CO₂.

To inhibit transcription, NHEKs were treated with 1 µg/ml actinomycin D (Fisher) for 1 hour prior to sham or UVA radiation. To inhibit autophagic flux, cells were treated with 25 nM Bafilomycin A1 (Sigma) for 1 hour prior to UVA radiation. Protein stability was assessed by treating cells with 100 ng/µl cyclohexamide (CHX) for the indicated times. Cells were treated with 10 µM MG132 (Sigma) for 6 hours before lysing cells for co-IP.

siRNA and Plasmid Transfection

NHEKs were transiently transfected with siRNA targeting TFEB (Santa Cruz) or p62 (Dharmacon) using an Amaxa Nucleofector kit according to the manufacturer’s protocol. Mouse shCon, shp62, shAtg5, and shAtg7 constructs in pLKO.1 vector were purchased from Sigma. Lentivirus was produced by co-transfecting HEK-293T cells with the lentiviral construct, pCMV8.2 packaging plasmid, and pVSV-G envelope plasmid. Supernatant was
collected 24-48 hours after transfection and used to infect cells in the presence of 8 µg/ml Polybrene (Sigma). Stable clones were selected using 2 µg/ml puromycin (Santa Cruz) treatment for 2 weeks as described previously15.

HA-p62 in pcDNA4 was obtained from Qing Zhong (University of California, Berkeley) (Addgene plasmid 28027). Mutant HA-p62-dUBA was generated from HA-p62-pCDNA4 as described previously15. HeLa cells were transfected with HA-p62 and HA-p62-dUBA constructs using X-tremeGENE 9 (Roche) as described previously45. COX-2 (human) in pCDNA5 vector was generously provided by William Smith (University of Michigan)46. pCMV6-AC-GFP COX-2 (mouse) was purchased from Origene. COX-2 constructs were transiently transfected into HeLa cells (human COX-2) and PAM212 cells (mouse COX-2) using X-tremeGene 9 HP transfection reagent (Roche) as described previously45.

UVA Treatments

For UVA irradiation, four parallel PUVA lamps were used and doses were measured using a Goldilux UV meter equipped with UVA and UVB detector (Oriel). Contamination from UVB irradiation was eliminated using a 0.13 mm Mylar filter material from Cope Plastics. This filter limits UVB exposure to 0.003% of the total emitted UV radiation47,48. We have found that these lamps emit no UVC radiation (100-280 nm). The UVA dosages used here are relevant to human exposure. The dose of UVA which will cause erythema is 30 J/cm² for human skin,1 and the UVA dose (20 J/cm²) used in the in vitro studies equates to about 1 hour in the midday sun during the summer at latitude 48°N in Paris, France49. In our laboratory, obtaining 20 J/cm² of UVA irradiation requires approximately 1 hour. Therefore, the UVA dose used in our application is relevant to human exposure.

RNA-Seq Analysis

Normal human epidermal keratinocytes (NHEKs) were exposed to sham or UVA irradiation (20 J/cm²). Six hours after irradiation, RNA was prepared from these cells using an RNeasy Plus Kit (Qiagen), according to the manufacturer's protocol. Two biological repeats were included for each treatment group. RNA quality assessment, library preparation, and sequencing were performed by the University of Chicago Functional Genomics Facility. RNA quality assessment was performed using an Agilent Bioanalyzer. An oligo dT-selected library was prepared and sequencing was performed on an Illumina HiSeq2000 platform with 50 bp single-end reads.

The established Tuxedo protocol was used to analyze the RNA-Seq data50. In this pipeline, quality control analysis of raw RNA-Seq data was performed in FastQ Groomer. Reads were then aligned to the human reference genome (hg38) using Tophat2. Transcript assembly was performed using Cufflinks. Cufflinks assemblies were combined using CuffMerge for all treatments. CuffDiff was used to calculate the difference in gene expression between sham- and UVA-irradiated samples, with a false-discovery rate of 10 percent and p<0.05 as a standard of significance. CummeRbund was used to perform analyses of differentially expressed genes.
genes. Gene ontology and KEGG pathway analysis were performed using DAVID.

Real-time PCR
Quantitative real-time PCR assays were performed using a CFX Connect real-time system (Bio-Rad) using Bio-Rad iQ SYBR Green Supermix (Bio-Rad, 1708880).(1) The threshold cycle number (CT) for each sample was determined in triplicate. The CT values were normalized against Gapdh as described previously15,45. Amplification primers are as follows. GAPDH, 5’-ACC ACA GTC CAT GCC ATC AC-3’ (Forward, F) and 5’-TCC ACC ACC CTG TTG CTG TA-3’ (Reverse, R). TFEB, 5’-GCT GAT CCC CAA GGC CAA T-3’ (F) and 5’-TCT CCA GCT CCC TGG ACT TT-3’ (R). p62, 5’-CAG AGA AGC CCA TGG ACA G-3’ (F) and 5’-AGC TGC CTT GTA CCC ACA TC-3’ (R). LC3, 5’-AGA CCT CAT AGC AGC GCC G-3’ (F) and 5’-ACA CTG ACA ATT TCA TCC CG-3’ (R). ULK1, 5’-TCG AGT TCT CCC GCA AGG-3’ (F) and 5’-CGT CTG AGA CTT GGC GAG GT-3’ (R). ULK2, 5’-TGG GTC CTC CCA ACT ATC TAC AAG T-3’ (F) and 5’-CGA GAT GTT TGG CAC CAA-3’ (R). LAMP1, 5’-TCT CAG TGA ACT ACG ACA CCA-3’ (F) and 5’-AGT GTA GTG TGG CAC CAA-3’ (R). LAMP2, 5’-GAA AAT GCC ACT TGC CTT TAT GC-3’ (F) and 5’-AGG AAA AGC CAG GTC CAA AC-3’ (R).

Western Blot
Prior to Western blot analysis, cells were treated as indicated, then lysed using RIPA lysis buffer containing protease and phosphatase inhibitors (Thermo). Supernatant was removed for analysis or frozen for later use. Normalization of total protein levels was performed using the BCA assay. Lysate was separated on 4-12% gradient SDS-PAGE gels (Novex) and blotted onto nitrocellulose membranes (Novex). For expression analysis, the following antibodies were used: p62 (GP62-C, Progen), GAPDH (FL-335, Santa Cruz), COX-2 (ab15191, Abcam), LC3A/B (4108, Cell Signaling), and TFEB (A303-673A-M). Anti-horseradish peroxidase (HRP) secondary antibodies (Cell Signaling) were used for visualization of proteins. Film was used for visualization.

ChIP
IP was performed on 5x10^6 cells following treatment with sham or UVA (20 J/cm^2) irradiation. ChIP was performed using an EZ-Magna ChIP A Kit (Millipore), according to the manufacturer's protocol. The lysate was sonicated 12 times for 10s each, with a 30s rest between each sonication. IP was performed with TFEB (ab2636, Abcam) antibody, as well as with positive and negative control antibodies included in the EZ-Magna ChIP Kit. qPCR analysis of IP samples was performed using the following primers: 5’-CAC AGG CCT TCC TTG TGT C-3’ (Forward) and 5’-GCA GAG GCT GTG GCC TA-3’ (Reverse).

Immunofluorescence Microscopy
For immunofluorescence analysis, cells were seeded onto glass coverslips overnight prior to treatment. Following treatment, cells were fixed using 10% neutral buffered formalin, permeabilized using Triton X-100, and incubated with primary antibody overnight. AlexaFluor fluorescence-conjugated secondary antibodies were added for 2h before imaging samples. Samples were examined using an inverted microscope with fluorescence.
function and dedicated analysis software (Olympus, Model IX71).

PGE2 production Assay

PGE$_2$ production was measured using a PGE$_2$ Parameter Assay Kit (KGE004B, R&D). HeLa cells were transiently transfected with empty vector (EV), EV and HA-tagged p62, EV and COX-2, HA-p62 and COX-2 or HA-p62-dUBA and COX-2 using X-tremegene 9 transfection reagent. 48 hours after transfection, cells were serum starved for 24 hours before taking samples for this assay. PAM212 cells with stable knockdown of p62 (shp62) were transiently transfected with mouse COX-2 (shp62-COX-2). 48h after transfection, cells were serum starved for 24h prior to taking medium for this assay.

Migration and Proliferation Assays

Cell proliferation was measured using the CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (MTS) (Promega) according to the manufacturer's protocol as described previously.15 Cell viability was measured using the Cell Counting Kit-8 (CCK-8) assay (Sigma) according to the manufacturer’s protocol. Migration was measured using Transwell inserts (Corning) with serum-free medium above and below the insert, with medium supplemented with 10% FBS below the insert, and with serum-free medium containing PGE$_2$ below the insert. Migrated cells were measured 16 hours after seeding.

Mouse studies

All animal procedures were approved by the University of Chicago Institutional Animal Care and Use Committee. BALB/c mice were purchased from Charles River Laboratories. 5 million PAM212 cells, which are syngeneic with BALB/c mice, were injected subcutaneously into the flanks of BALB/c mice. Tumor growth was measured over 10-12 weeks using a caliper and at 1cm3 volume, tumors were harvested along with the lungs for histological analysis. Tumors and lungs were fixed in 10% formalin for immunohistochemistry (IHC) analysis. For UVA treatment studies in mice, SKH1 hairless mice received sham or 15 J/cm2 UVA irradiation every other day for a total of 3 treatments, then skin samples were harvested for immunohistochemical analysis 72 h after the final treatment.

Immunohistochemical analysis (IHC)

For H&E, myeloperoxidase (MPO), and keratin 10 (K10) staining, tumors and lungs (or skin in UVA experiments) were harvested and fixed in 10% formalin. Paraffin-embedding, sectioning, and H&E staining were performed by the Human Tissue Resource Center at the University of Chicago. MPO (Abcam ab45977, 1:500) and K10 (Covance MMS-159S, 1:1000) staining was performed as described previously.51 Stained samples were scanned by the Integrated Light Microscopy Core Facility at the University of Chicago.

Statistical Analysis

Statistical analyses for qPCR, and migration, proliferation, viability and PGE$_2$
production assays were performed using GraphPad Prism 5. Data were expressed as mean of at least three independent experiments and analyzed by Student's t test. Error bars indicate standard deviation of the mean. P < 0.05 is considered statistically significant.

ACKNOWLEDGMENTS

We thank Dr. Norbert Fusenig for providing the HaCaT cells (human keratinocytes and epithelial cells), Dr. Seungmin Hwang for providing the pLKO.1 shAtg5 (mouse), and pLKO.1 shAtg7 (mouse) vectors, Dr. Eileen White for providing the iBMK cells, Dr. William Smith for the COX-2 plasmid (human), Terri Li for immunohistochemistry, and Dr. Ann Motten for a critical reading of the manuscript. This work was supported by the NIH/NIEHS grant ES024373 and ES016936 (YYH), the American Cancer Society (ACS) grant RSG-13-078-01 (YYH), the University of Chicago Cancer Research Center (P30 CA014599), the CTSA (UL1 TR000430), and the University of Chicago Friends of Dermatology Endowment Fund.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHORS’ CONTRIBUTION

AS and BZ and YYH conceived and coordinated the study, analyzed the data, and wrote the paper. AS and BZ designed, performed and analyzed the experiments shown in all figures. LQ provided technical assistance and critical reagents. All authors reviewed the results and approved the final version of the manuscript.

References

5. Lazovich, D. et al. Indoor tanning and risk of melanoma: A case-control study in a highly

Figure legends

Figure 1. UVA induces expression of autophagy and lysosomal genes. (A) Schematic of RNA-Seq analysis of normal human epidermal keratinocytes (NHEK) at 6 h post-sham or -UVA (20J/cm²) radiation. Gene expression and pathway analysis were performed using the Tuxedo pipeline and DAVID. (B) Volcano plot representing genes significantly differentially expressed between sham and UVA-irradiated NHEKs as determined by RNA-Seq. p<0.05. (C) Pathway analysis of the significantly upregulated genes by RNA-Seq identified highly enriched pathways following UVA irradiation in NHEKs. (D) Real-time PCR validation of RNA-Seq results in NHEKs treated with UVA. *p<0.05, **p<0.01 (Student’s t-test).

Figure 2. p62 is upregulated by UVA independent of autophagy. (A) p62 protein levels in NHEKs 0, 1.5, and 6h after UVA radiation (10J/cm²). (B) p62 protein levels 6h after irradiation with 0, 5, 10 or 15 J/cm² UVA. (C) Immunohistochemical staining of p62 in mouse skin after UVA irradiation (30 J/cm²) every other day for a total of three treatments and collected at 72 h post-the final UVA irradiation. (D) p62 protein levels in the SCC cell line PAM212 at 0, 1.5, and 6h after UVA irradiation. (E) p62 protein levels in irradiated PAM212 cells treated with vehicle or the autophagic flux inhibitor bafilomycin A1. (F) p62 protein levels in PAM212 cells transfected with shCon or shAtg7 after sham or UVA irradiation. (G) p62 levels in iBMK cells transfected with shCon or shAtg5 after sham or UVA irradiation.

Figure 3. TFEB is activated by UVA. (A) TFEB and p62 protein expression in NHEKs 6h after treatment with sham or UVA (20 J/cm²) irradiation. (B) Immunofluorescence analysis of TFEB localization in NHEKs 6h after sham or UVA irradiation. (C) TFEB protein expression in NHEKs treated with phosphatase inhibitor (PI) calyculin A (50 nM) 0.5h after sham or UVA radiation (20 J/cm²). (D) Phosphorylation of mTOR target gene 4EBP1 0.5h after UVA exposure (20 J/cm²) in NHEKs.

Figure 4. TFEB is activated by UVA to regulate expression of p62 and LC3. (A) TFEB and p62 protein levels in NHEKs transfected with siCon or siTFEB treated with sham or UVA irradiation. (B) TFEB, (C) p62, and (D) LC3 mRNA in NHEKs transfected with siCon or siTFEB and treated with sham or UVA irradiation. n.s.=not significant; *p<0.05, **p<0.01. (E) qPCR analysis of p62 mRNA in NHEKs treated with sham or UVA radiation with or without actinomycin D (1 ug/ml) for 6h. (F) p62 mRNA levels in PAM212 squamous cell carcinoma cells 6h after sham or UVA irradiation. (G) Chromatin immunoprecipitation (ChIP) analysis of TFEB binding to the p62 promoter in NHEKs treated with sham or UVA irradiation. **p<0.01.

Figure 5. COX-2 is induced by UVA concomitant with p62 upregulation. (A) COX-2 and p62 protein levels in NHEKs treated with sham or UVA irradiation (20J/cm³). (B) p62 and COX-2 protein in PAM212 cells after UVA irradiation (10J/cm³). qPCR analysis of p62 and COX-2 protein in NHEKs (C) and PAM212 cells (D). *p<0.05, **p<0.01. (E) COX-2 protein levels in PAM212 cells transfected with shCon and shp62. (F) qPCR analysis of COX-2 RNA levels in PAM212 cells transfected with shCon and shp62. ***p<0.001.
Figure 6. p62 regulates COX-2 protein stability through the UBA domain. (A) HeLa cells were transiently transfected with COX-2 and either empty vector or HA-p62. COX-2 stability was measured over time by treating with cyclohexamide (CHX) for the time indicated. (B) Quantification of the stability of COX-2 protein in (A). (C) HA-tagged wild-type (WT) or mutant p62 lacking the ubiquitin-associated (UBA) domain (dUBA) were transfected into HeLa cells. (D) COX-2 stability was measured over time after treating with CHX for 0, 4, or 8h, and quantified. (E) Co-immunoprecipitation of p62 and COX-2 in PAM212 cells treated with the proteasome inhibitor MG132 (10 µM) for 6h. (F) Transcription of COX-2 in HeLa cells transiently transfected with COX-2 and HA-p62 or HA-p62-dUBA 48h after transcription.

Figure 7. p62 regulates PGE_2 production, but not proliferation or migration in vitro. (A) PGE_2 production in PAM212 cells stably transfected with shCon or shp62, and shp62 cells were transiently transfected with COX-2. n.s.=not significant; *p<0.05; **p<0.01. (B) PGE_2 production in HeLa cells transiently transfected with empty vector (EV), HA-p62, COX-2, and HA-p62-dUBA as indicated. n.s.=not significant; *p<0.05; **p<0.01. (C) Proliferation of PAM212 cells stably transfected with shCon or shp62 measured over 3 days using MTS proliferation assay. (D) Migration of WT, shCon, and shp62 PAM212 cells measured using Transwell migration assay in serum-free medium.

Figure 8. p62 regulates tumor growth, metastasis, and immune infiltration in vivo. (A) shCon and shp62 PAM212 cells were injected into syngeneic BALB/c mice and tumor growth measured over 10 weeks. N=6 per group. *, P < 0.05, Student’s t-test, significant difference as compared with shCon group. (B) Metastasis to the lungs of mice injected with shCon and shp62 PAM212 cells was measured using H&E staining. N=6 mice per group. *, P < 0.05, Student’s t-test, significant difference. (C) H&E staining of tumors from mice injected with shCon and shp62 PAM212 cells. Black arrow: immune cell infiltration. Gray arrow: differentiated keratinocytes. 20X magnification, scale bar=100 um. Inset: 40X magnification, scale bar=50 um. (D and E) IHC staining for MPO (D) and K10 (E) in tumors from mice injected with shCon and shp62 PAM212 cells. 20X magnification, scale bar=100 um. Inset: 40X magnification, scale bar=50 um.
Figure 1: UVA induces expression of autophagy and lysosomal genes.

Pathway:
- **Genes Upregulated:**
 - Pathways in Cancer: COX-2, c-myc, EGF, MDM2, Bcl-XL, p21, JNK, HIF1α, CEBPα
 - MAPK Signaling Pathway: EGFR, FGFR, PDGF, Ras, PKA, CREB, RSK2, TNFR, TGFBR, Fas, IL-1
 - Cell Adhesion Molecules: CLDN, OCLN, JAM1, IGSF4, NRCAM, CDH2
 - Lysosome: LAMP1, LAMP2, LIMP, cathepsins, MANB, HYAL1
 - Additional Autophagy Genes: TFEB, p62, ULK1, ULK2, LC3, NBR1, Atg14, Atg16L2

RNA-Seq
- 4,045 Differentially Expressed Genes

Enrichment of lysosomal and autophagy genes
Figure 2: p62 is upregulated by UVA independent of autophagy.
Figure 3: TFEB is activated by UVA.
Figure 4: TFEB is activated by UVA to induce p62 transcription.

A) Immunoblot analysis showing TFEB and p62 levels under sham and UVA conditions with siCon or siTFEB.

B) mRNA levels of TFEB under sham and UVA conditions with siCon or siTFEB.

C) mRNA levels of p62 under sham and UVA conditions with siCon or siTFEB.

D) mRNA levels of LC3 under sham and UVA conditions with siCon or siTFEB.

E) mRNA levels of p62 in NHEK cells under Veh and Actinomycin D conditions.

F) mRNA levels of p62 in PAM212 cells under sham and UVA conditions.

G) TFEB binding site enrichment under sham and UVA conditions.
Figure 5: COX-2 is induced by UVA concomitant with p62 upregulation.
Figure 6: p62 regulates COX-2 protein stability (through its UBA domain).

A) Western blot images showing COX-2, HA, and GAPDH levels with CHX treatment over time (EV and HA-p62 conditions).

B) Graph showing COX-2 protein stability over time with CHX treatment. The figure compares COX-2+EV and COX-2+p62 conditions.

C) Schematic of a protein domain with labeled regions such as WT, PB1, ZZ, TBS, LIR, KIR, UBA, and HA.

D) Western blot images showing COX-2, HA, and GAPDH levels with CHX treatment over time (HA-p62 and HA-p62-dUBA conditions).

E) Immunoblot (IB) images showing COX-2 and p62 levels with IP and IgG controls.

F) Graph showing p62 and p62-dUBA protein stability over time. The figure compares p62 and p62-dUBA conditions.
Figure 7: p62 regulates PGE$_2$ production, but not proliferation or migration in vitro.
Figure 8: p62 regulates tumor growth, metastasis, and immune infiltration \textit{in vivo}.
Adaptor Protein p62 Promotes Skin Tumor Growth and Metastasis and is Induced by UVA Radiation
Ashley Sample, Baozhong Zhao, Lei Qiang and Yu-Ying He

J. Biol. Chem. published online July 19, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.786160

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2017/07/19/jbc.M117.786160.full.html#ref-list-1