x
Filter:
Filters applied
- DNA and Chromosomes
- Gu, LiyaRemove Gu, Liya filter
- DNA mismatch repairRemove DNA mismatch repair filter
Publication Date
Please choose a date range between 2015 and 2021.
DNA and Chromosomes
4 Results
- Research ArticleOpen Access
OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination
Journal of Biological ChemistryVol. 296100466Published online: February 25, 2021- Qiong Wu
- Yaping Huang
- Liya Gu
- Zhijie Chang
- Guo-Min Li
Cited in Scopus: 7DNA mismatch repair (MMR) maintains genome stability primarily by correcting replication errors. MMR deficiency can lead to cancer development and bolsters cancer cell resistance to chemotherapy. However, recent studies have shown that checkpoint blockade therapy is effective in MMR-deficient cancers, thus the ability to identify cancer etiology would greatly benefit cancer treatment. MutS homolog 2 (MSH2) is an obligate subunit of mismatch recognition proteins MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3). - DNA and ChromosomesOpen Access
Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway
Journal of Biological ChemistryVol. 294Issue 17p7037–7045Published online: April 26, 2019- Bo Peng
- Janice Ortega
- Liya Gu
- Zhijie Chang
- Guo-Min Li
Cited in Scopus: 13Proliferating cell nuclear antigen (PCNA) and its posttranslational modifications regulate DNA metabolic reactions, including DNA replication and repair, at replication forks. PCNA phosphorylation at Tyr-211 (PCNA-Y211p) inhibits DNA mismatch repair and induces misincorporation during DNA synthesis. Here, we describe an unexpected role of PCNA-Y211p in cancer promotion and development. Cells expressing phosphorylation-mimicking PCNA, PCNA-Y211D, show elevated hallmarks specific to the epithelial-mesenchymal transition (EMT), including the up-regulation of the EMT-promoting factor Snail and the down-regulation of EMT-inhibitory factors E-cadherin and GSK3β. - DNA and ChromosomesOpen Access
H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation
Journal of Biological ChemistryVol. 293Issue 20p7811–7823Published online: April 2, 2018- Yaping Huang
- Liya Gu
- Guo-Min Li
Cited in Scopus: 44Histone H3 trimethylation at lysine 36 (H3K36me3) is an important histone mark involved in both transcription elongation and DNA mismatch repair (MMR). It is known that H3K36me3 recruits the mismatch-recognition protein MutSα to replicating chromatin via its physical interaction with MutSα's PWWP domain, but the exact role of H3K36me3 in transcription is undefined. Using ChIP combined with whole-genome DNA sequencing analysis, we demonstrate here that H3K36me3, together with MutSα, is involved in protecting against mutation, preferentially in actively transcribed genomic regions. - Molecular Bases of Disease DNA and ChromosomesOpen Access
Arsenic Inhibits DNA Mismatch Repair by Promoting EGFR Expression and PCNA Phosphorylation
Journal of Biological ChemistryVol. 290Issue 23p14536–14541Published online: April 23, 2015- Dan Tong
- Janice Ortega
- Christine Kim
- Jian Huang
- Liya Gu
- Guo-Min Li
Cited in Scopus: 28Both genotoxic and non-genotoxic chemicals can act as carcinogens. However, while genotoxic compounds lead directly to mutations that promote unregulated cell growth, the mechanism by which non-genotoxic carcinogens lead to cellular transformation is poorly understood. Using a model non-genotoxic carcinogen, arsenic, we show here that exposure to arsenic inhibits mismatch repair (MMR) in human cells, possibly through its ability to stimulate epidermal growth factor receptor (EGFR)-dependent tyrosine phosphorylation of proliferating cellular nuclear antigen (PCNA).