x
Filter:
Filters applied
- DNA and Chromosomes
- Gu, LiyaRemove Gu, Liya filter
- PCNARemove PCNA filter
Publication Date
Please choose a date range between 2019 and 2021.
DNA and Chromosomes
2 Results
- Research ArticleOpen Access
DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington’s disease via insertion sequences of its catalytic domain
Journal of Biological ChemistryVol. 297Issue 4101144Published online: August 29, 2021- Kara Y. Chan
- Xueying Li
- Janice Ortega
- Liya Gu
- Guo-Min Li
Cited in Scopus: 3Huntington's disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ's subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. - DNA and ChromosomesOpen Access
Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway
Journal of Biological ChemistryVol. 294Issue 17p7037–7045Published online: April 26, 2019- Bo Peng
- Janice Ortega
- Liya Gu
- Zhijie Chang
- Guo-Min Li
Cited in Scopus: 13Proliferating cell nuclear antigen (PCNA) and its posttranslational modifications regulate DNA metabolic reactions, including DNA replication and repair, at replication forks. PCNA phosphorylation at Tyr-211 (PCNA-Y211p) inhibits DNA mismatch repair and induces misincorporation during DNA synthesis. Here, we describe an unexpected role of PCNA-Y211p in cancer promotion and development. Cells expressing phosphorylation-mimicking PCNA, PCNA-Y211D, show elevated hallmarks specific to the epithelial-mesenchymal transition (EMT), including the up-regulation of the EMT-promoting factor Snail and the down-regulation of EMT-inhibitory factors E-cadherin and GSK3β.