x
Filter:
Filters applied
- DNA and Chromosomes
- Gu, LiyaRemove Gu, Liya filter
- ROSRemove ROS filter
Publication Date
Please choose a date range between 2021 and 2022.
DNA and Chromosomes
2 Results
- Research ArticleOpen Access
Interplay between H3K36me3, methyltransferase SETD2, and mismatch recognition protein MutSα facilitates processing of oxidative DNA damage in human cells
Journal of Biological ChemistryVol. 298Issue 7102102Published online: June 3, 2022- Sida Guo
- Jun Fang
- Weizhi Xu
- Janice Ortega
- Chang-Yi Liu
- Liya Gu
- and others
Cited in Scopus: 0Oxidative DNA damage contributes to aging and the pathogenesis of numerous human diseases including cancer. 8-hydroxyguanine (8-oxoG) is the major product of oxidative DNA lesions. Although OGG1-mediated base excision repair is the primary mechanism for 8-oxoG removal, DNA mismatch repair has also been implicated in processing oxidative DNA damage. However, the mechanism of the latter is not fully understood. Here, we treated human cells defective in various 8-oxoG repair factors with H2O2 and performed biochemical, live cell imaging, and chromatin immunoprecipitation sequencing analyses to determine their response to the treatment. - Research ArticleOpen Access
DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington’s disease via insertion sequences of its catalytic domain
Journal of Biological ChemistryVol. 297Issue 4101144Published online: August 29, 2021- Kara Y. Chan
- Xueying Li
- Janice Ortega
- Liya Gu
- Guo-Min Li
Cited in Scopus: 3Huntington's disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ's subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT.