x
Filter:
Filters applied
- Enzymology
- DiscussionRemove Discussion filter
Publication Date
Please choose a date range between 2019 and 2019.
Enzymology
5 Results
- JBC Editors' Picks HighlightsOpen Access
Deoxyribonucleotide salvage falls short in whole animals
Journal of Biological ChemistryVol. 294Issue 44p15898–15899Published online: November 1, 2019- Christopher K. Mathews
Cited in Scopus: 2Ribonucleotide reductase (RNR) catalyzes the first committed reaction in DNA synthesis. Most of what we know about RNR regulation comes from studies with cultured cells and with purified proteins. In this study, Tran et al. use Cre-Lox technology to inactivate RNR large subunit expression in heart and skeletal muscle of mouse embryos. Analysis of these mutants paints a picture of dNTP regulation in whole animals quite different from that seen in studies of purified proteins and cultured cells. - Editors' Pick HighlightsOpen Access
How a purine salvage enzyme singles out the right base
Journal of Biological ChemistryVol. 294Issue 32p11992–11993Published online: August 9, 2019- Lakshmeesha Kempaiah Nagappa
- Sundaram Balasubramanian
- Hemalatha Balaram
Cited in Scopus: 0Two phosphoribosyltransferases in the purine salvage pathway exhibit exquisite substrate specificity despite the chemical similarity of their distinct substrates, but the basis for this discrimination was not fully understood. Ozeir et al. now employ a complementary biochemical, structural, and computational approach to deduce the chemical constraints governing binding and propose a distinct mechanism for catalysis in one of these enzymes, adenine phosphoribosyltransferase. These insights, built on data from an unexpected finding, finally provide direct answers to key questions regarding these enzymes and substrate recognition more generally. - Editors' Pick HighlightsOpen Access
Surprise! A hidden B12 cofactor catalyzes a radical methylation
Journal of Biological ChemistryVol. 294Issue 31p11726–11727Published online: August 1, 2019- Joseph T. Jarrett
Cited in Scopus: 2Radical S-adenosylmethionine (SAM) (RS) methylases perform methylation reactions at unactivated carbon and phosphorus atoms. RS enzymes typically abstract a hydrogen from their substrates, generating a substrate-centered radical; class B RS methylases catalyze methyl transfer from SAM to cobalamin and then to a substrate-centered carbon or phosphorus radical. Radle et al. now show that Mmp10, an RS enzyme implicated in the methylation of Arg-285 in methyl coenzyme M reductase, binds a methylcobalamin cofactor required for methyl transfer from SAM to a peptide substrate. - Editors' Pick HighlightsOpen Access
Chloride to the rescue
Journal of Biological ChemistryVol. 294Issue 30p11402–11403Published online: July 26, 2019- Marcia E. Newcomer
Cited in Scopus: 1On the fiftieth anniversary of the discovery of the Ser-His-Asp catalytic triad, perhaps the most unusual variation on the textbook classic is described: An incomplete catalytic triad in a hydrolase is rescued by a chloride ion (Fig. 1). Structural and functional data provide compelling evidence that the active site of a phospholipase from Vibrio vulnificus employs the anion in place of the commonly observed Asp, reminding us that even well-trodden scientific ground has surprises in store. - ClassicsOpen Access
On the trail of steroid aromatase: The work of Kenneth J. Ryan
Journal of Biological ChemistryVol. 294Issue 28p10743–10745Published online: July 12, 2019- Martin J. Spiering
Cited in Scopus: 1The sexes in humans and other animals typically display numerous differences. This belies the fact that the two major hormone classes responsible for these differences, androgens and estrogens, differ only subtly in their chemical backbones. Androgens have a six-carbon nonaromatic ring—the “A ring” (Fig. 1)—in their steroid skeleton, whereas estrogens have an aromatic A ring. Remarkably, a single protein, steroid aromatase (also called estrogen synthase), is the only known enzyme capable of “aromatizing” the A ring in androgens such as testosterone and androstenedione to produce estrogens such as estradiol and estrone.