x
Filter:
Filters applied
- Gene Regulation
- Lee, Seong MinRemove Lee, Seong Min filter
- Onal, MeldaRemove Onal, Melda filter
Gene Regulation
1 Results
- Editors' PicksOpen Access
A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation
Journal of Biological ChemistryVol. 292Issue 42p17541–17558Published online: August 14, 2017- Mark B. Meyer
- Nancy A. Benkusky
- Martin Kaufmann
- Seong Min Lee
- Melda Onal
- Glenville Jones
- and others
Cited in Scopus: 56The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression.