x
Filter:
Filters applied
- Glycobiology and Extracellular Matrices
- CSRemove CS filter
- August - November 2022Remove August - November 2022 filter
Glycobiology and Extracellular Matrices
2 Results
- Research ArticleOpen Access
A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells
Journal of Biological ChemistryVol. 298Issue 12102609Published online: October 17, 2022- Yingying Xu
- Liran Shi
- Yong Qin
- Xunyi Yuan
- Xu Wang
- Qingdong Zhang
- and others
Cited in Scopus: 0The high heterogeneity and mutation rate of cancer cells often lead to the failure of targeted therapy, and therefore, new targets for multitarget therapy of tumors are urgently needed. Aberrantly expressed glycosaminoglycans (GAGs) have been shown to be involved in tumorigenesis and are promising new targets. Recently, the GAG-binding domain rVAR2 of the Plasmodium falciparum VAR2CSA protein was identified as a probe targeting cancer-associated chondroitin sulfate A-like epitopes. In this study, we found that rVAR2 could also bind to heparin (Hep) and chondroitin sulfate E. - Research ArticleOpen Access
Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates heparan sulfate biosynthesis and shapes gastric cancer cell motility and invasion
Journal of Biological ChemistryVol. 298Issue 11102546Published online: September 28, 2022- Catarina Marques
- Juliana Poças
- Catarina Gomes
- Isabel Faria-Ramos
- Celso A. Reis
- Romain R. Vivès
- and others
Cited in Scopus: 0Heparan sulfate (HS) proteoglycans (HSPGs) are abundant glycoconjugates in cells’ glycocalyx and extracellular matrix. By acting as scaffolds for protein–protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell–extracellular matrix crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood.