x
Filter:
Filters applied
- Membrane Biology
- Brodsky, Jeffrey LRemove Brodsky, Jeffrey L filter
- Hughey, Rebecca PRemove Hughey, Rebecca P filter
Publication Date
Please choose a date range between 2015 and 2018.
Membrane Biology
3 Results
- Membrane BiologyOpen Access
Thumb domains of the three epithelial Na+ channel subunits have distinct functions
Journal of Biological ChemistryVol. 293Issue 45p17582–17592Published online: September 18, 2018- Shaohu Sheng
- Jingxin Chen
- Anindit Mukherjee
- Megan E. Yates
- Teresa M. Buck
- Jeffrey L. Brodsky
- and others
Cited in Scopus: 4The epithelial Na+ channel (ENaC) possesses a large extracellular domain formed by a β-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, β, or γ). Removing the γ subunit thumb domain had no effect on Na+ currents when expressed in Xenopus oocytes, but moderately reduced channel surface expression. - Membrane BiologyOpen Access
Regulation of the epithelial Na+ channel by paraoxonase-2
Journal of Biological ChemistryVol. 292Issue 38p15927–15938Published online: August 2, 2017- Shujie Shi
- Teresa M. Buck
- Carol L. Kinlough
- Allison L. Marciszyn
- Rebecca P. Hughey
- Martin Chalfie
- and others
Cited in Scopus: 10Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum–resident molecular chaperone in Caenorhabditis elegans. MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression. - Membrane BiologyOpen Access
Functional Roles of Clusters of Hydrophobic and Polar Residues in the Epithelial Na+ Channel Knuckle Domain
Journal of Biological ChemistryVol. 290Issue 41p25140–25150Published online: August 25, 2015- Jingxin Chen
- Evan C. Ray
- Megan E. Yates
- Teresa M. Buck
- Jeffrey L. Brodsky
- Carol L. Kinlough
- and others
Cited in Scopus: 10Background: There are regulatory interactions between ENaC and extracellular factors.Results: Mutations of multiple α subunit knuckle residues activate ENaC by suppressing the inhibitory effect of Na+. Channels lacking the β or γ subunit knuckle have processing defects.Conclusion: Interactions between the α subunit knuckle and palm/finger domains regulate ENaC.Significance: Intrasubunit domain-domain interactions have important regulatory roles.