x
Filter:
Filters applied
- Membrane Biology
- Kleyman, Thomas RRemove Kleyman, Thomas R filter
- ParaoxonaseRemove Paraoxonase filter
- Caenorhabditis elegans (C. elegans)Remove Caenorhabditis elegans (C. elegans) filter
- molecular chaperoneRemove molecular chaperone filter
Membrane Biology
1 Results
- Membrane BiologyOpen Access
Regulation of the epithelial Na+ channel by paraoxonase-2
Journal of Biological ChemistryVol. 292Issue 38p15927–15938Published online: August 2, 2017- Shujie Shi
- Teresa M. Buck
- Carol L. Kinlough
- Allison L. Marciszyn
- Rebecca P. Hughey
- Martin Chalfie
- and others
Cited in Scopus: 10Paraoxonase-2 (PON-2) is a membrane-bound lactonase with unique anti-oxidative and anti-atherosclerotic properties. PON-2 shares key structural elements with MEC-6, an endoplasmic reticulum–resident molecular chaperone in Caenorhabditis elegans. MEC-6 modulates the expression of a mechanotransductive ion channel comprising MEC-4 and MEC-10 in touch-receptor neurons. Because pon-2 mRNA resides in multiple rat nephron segments, including the aldosterone-sensitive distal nephron where the epithelial Na+ channel (ENaC) is expressed, we hypothesized that PON-2 would similarly regulate ENaC expression.