x
Filter:
Filters applied
- Membrane Biology
- Kleyman, Thomas RRemove Kleyman, Thomas R filter
- Baty, Catherine JRemove Baty, Catherine J filter
Publication Date
Please choose a date range between 2020 and 2020.
Membrane Biology
1 Results
- Membrane BiologyOpen Access
Paraoxonase 3 functions as a chaperone to decrease functional expression of the epithelial sodium channel
Journal of Biological ChemistryVol. 295Issue 15p4950–4962Published online: February 20, 2020- Shujie Shi
- Nicolas Montalbetti
- Xueqi Wang
- Brittney M. Rush
- Allison L. Marciszyn
- Catherine J. Baty
- and others
Cited in Scopus: 3The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum–resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family.